HiGHS

High-performance open-source software for linear optimization

Julian Hall

School of Mathematics University of Edinburgh

jajhall@ed.ac.uk

CO@Work 2020

21 September 2020

What's in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

- Julian Hall: Reader (1990-date)
- Ivet Galabova: PhD (2016-date)
- Qi Huangfu
 - PhD (2009-2013)
 - FICO Xpress (2013-2018)
- Michael Feldmeier: PhD (2018-date)

Linear programming (LP)

- Dual simplex (Huangfu and Hall)
 - Serial techniques exploiting sparsity
 - Parallel techniques exploiting multicore architectures
- Interior point (Schork)
 - Highly accurate due to its iterative linear system solver
 - Crossover to a basic solution

Mixed-integer programming (MIP)

Prototype solver

HiGHS: Features and interfaces

Features

- Model management: Load/add/delete/modify problem data
- Presolve
- Crash

Interfaces

- Language
 - C++ HiGHS class
 - Load from .mps
 - Load from .lp
 - C
 - C#
 - Julia
 - FORTRAN
 - Python

- Applications
 - GAMS
 - JuliaOpt
 - OSI
 - SCIP
 - SciPy

Future

- AMPL
- MATLAB
- Mosel
- PuLp
- R

Suggestions?

- Open-source (MIT license)
 - GitHub: ERGO-Code/HiGHS
 - COIN-OR: Successor to Clp?
- No third-party code required
- Runs under Linux, Windows and Mac
- Build requires CMake 3.15
- Parallel code uses OpenMP
- Documentation: http://www.HiGHS.dev/

Commercial		Oper
• COPT	MindOpt	•
• Gurobi	• Mosek	٩
• Matlab	• SAS	

Open-source

- Clp (COIN-OR) Soplex (ZIB)
- Glop (Google)
- Soplex (ZIB) • Glpk (GNU)

Solver	MindOpt	Gurobi	COPT	Clp	Mosek	SAS	HiGHS	Glop
Time	1	1.1	1.4	3.0	6.0	6.1	10	14
Solved	40	40	40	40	38	37	37	35

Solver	Matlab	Soplex	Glpk
Time	16	16	54
Solved	33	39	31

_

Solver	MindOpt	Gurobi	COPT	Clp	Mosek	SAS	HiGHS	Glop
Time	1	1.1	1.4	3.0	6.0	6.1	10	14
Solved	40	40	40	40	38	37	37	35

Why is the HiGHS score so bad?

- HiGHS parallel code not used
- HiGHS triangular crash not used

- Clp has a better presolve
- Clp has the Idiot crash
- Clp has a primal simplex solver
- Clp has "sprint" ("sifting") variant

HiGHS: SCIP Interface

Development

- Speed of HiGHS relative to Soplex motivates writing a HiGHS interface to SCIP
- Prototype interface now complete, but lacks
 - Primal ray for unbounded LPs
 - Farkas proof for infeasibility
 - Full efficiency when hot-starting nodes
- Passes 94% of the SCIP unit tests

Initial results: Time limit 3600s

	Solves	Timeout	Fails	Faster	M-time
SCIP-Soplex	89	5	1	41	105
SCIP-HiGHS	65	22	8	7	242

95 MIPLIB problems that Mittelmann's SCIP-Soplex test solves in 1000s

LP

- Improve presolve (Galabova)
- Add primal simplex solver and sifting (Hall)
- Improve simplex performance (Hall)
- Add Idiot crash and crossover (Galabova and Hall)
- Improve Idiot crash (Galabova)

QP

• Active set QP solver (Feldmeier)

MIP

• Develop successor to Cbc?

Further interfaces

- AMPL
- MATLAB
- Mosel
- PuLp
- R

HIGHS

- High performance LP solvers: simplex and IPM
- Reads: .mps and .lp
- Language interfaces: C++ (native) C, C#, Julia, FORTRAN, Python
- Application interfaces: GAMS, JuliaOpt, OSI, SCIP, SciPy
- Permissive license and no third-party code
- Available for research and consultancy

HiGHS: http://www.HiGHS.dev/

I. L. Galabova and J. A. J. Hall.

The 'Idiot' crash quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems. *Optimization Methods and Software*, 35(3):488–501, 2020.

Q. Huangfu and J. A. J. Hall.

Novel update techniques for the revised simplex method.

Computational Optimization and Applications, 60(4):587–608, 2015.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. Mathematical Programming Computation, 10(1):119–142, 2018.

L. Schork and J. Gondzio.

Implementation of an interior point method with basis preconditioning.

Mathematical Programming Computation, pages 1–33, 2020.