SPONSORED BY THE

Federal Ministry of Education and Research

öffentlich-private Partnerschaft für Innovationen

Data Preprocessing and Data Quality Assessment for Energy System Optimization

Inci Yüksel-Ergün, Thorsten Koch, Janina Zittel

CO@WORK 2024 25.09.2024

Chair of Software and Algorithms for Discrete Optimization

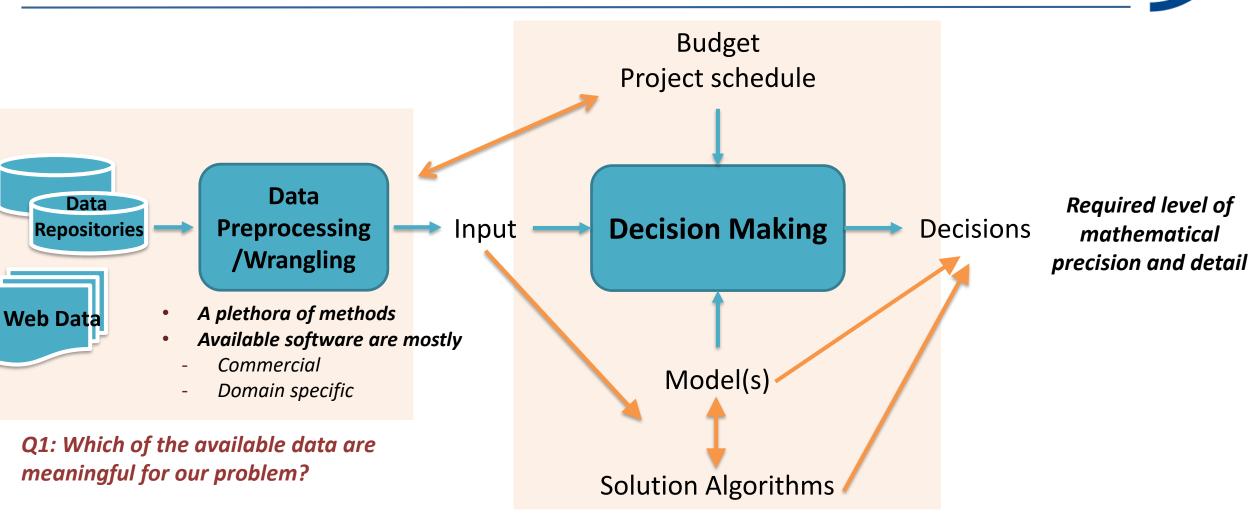
Adminis	trative Council				Scientific Advi	sory Board
Presi	ident (C. Schuette) Vi	ice-President (S	S. Pokutta) Ma	inaging Director	(K. Rost-Drese, act.)
	the start the	Rese	earch Departm	ents		
Mathematics of C (C. Sch		Mathemati	cal Algorithmic (S. Pokutta)	Intelligence		ributed Computing . / S. Pokutta, act.)
Department Modelling and Simulation of Complex Processes" (M. Weiser)	Department "Visual and Datacentric Computing" (T. Conrad)	Department "Al in Society, Science, and Technology" (S. Pokutta)	Department "Applied Algorithmic Intelligence Methods" (T. Koch)	Department "Network Optimization" (R. Borndörfer)	Department "Distributed Algorithms" (F. Schintke)	Department "Supercomputing" (T. Steinke)
g to Dan El Tay		Res	earch Service L	Jnits		
IT and Data Services (C. Schäuble)		Digital Data and Information for Society, Science, and Culture (B. Rusch, T. Koch)		NHR Center (T. Steinke, act.)		
		Admini	stration (K. Ros	t-Drese)		
Ombudsperson Good Scientific Practice	c de la companya de la company	taff Council 'hairperson (T. Hasler)		Women's repre (M. Kost		Data Protection Officer (O. Paetsch)

Applied Algorithmic Intelligence Methods (A²IM) Department

Aims at computing **smart** decisions

Applies advanced **algorithmic intelligence methods** from mathematical optimization and machine learning to explore algorithmic solutions for **real-world problems**

Addresses better planning, extension, and control of vital and complex infrastructure networks



Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken

Data Preprocessing vs Decision Making

Energy system transition to decarbonization

Decarbonization of energy system vs. Secure energy supply

Renewable Energy Vectors by Vecteezy, https://www.vecteezy.com/free-vector/renewable-energy

Russian war on Ukraine

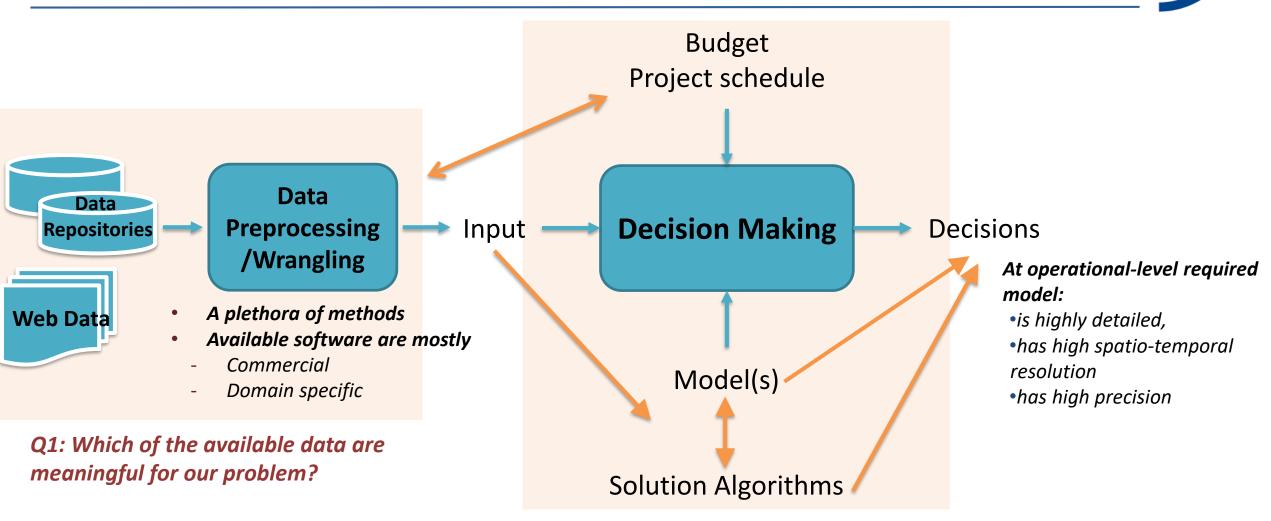
Impacts on gas transport

[1] ENTSOG. Transmission Capacity Map. Retrieved from https://www.entsog.eu/maps#transmission-capacity-map-2021. Accessed on 31.10.2022

Impacts on decision-making models

- Experience from past becomes obsolete
- Not sufficient historical data for the new cases

Need for operational-level decision making models:

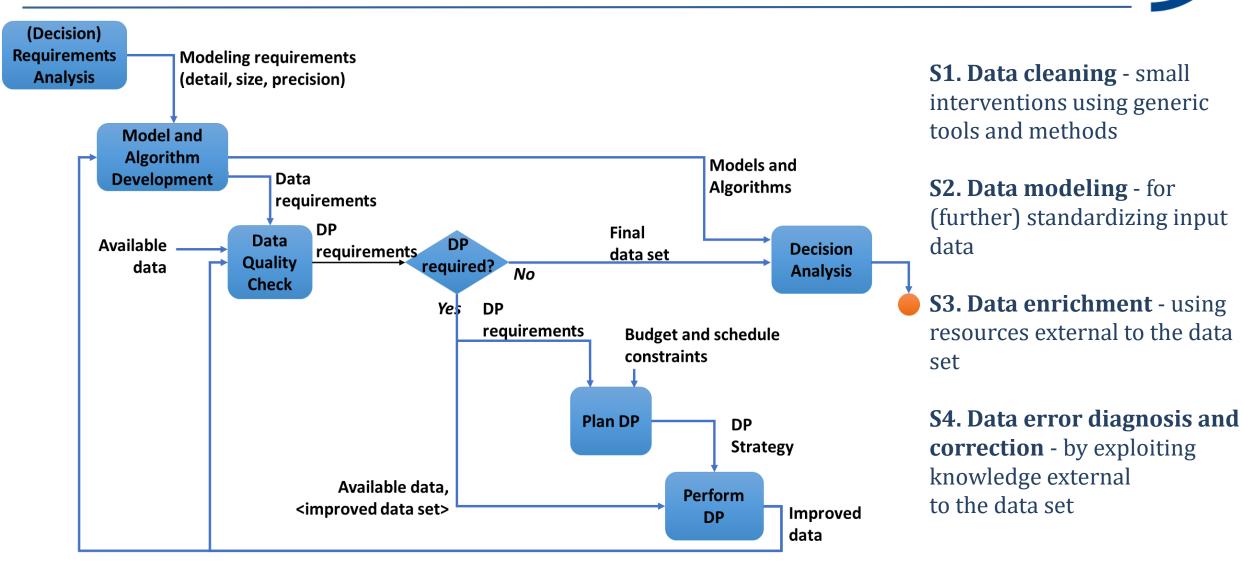

- Increased modeling detail → individual network components, such as compressor stations
- Higher spatio-temporal resolution
- Higher mathematical precision

Example: Gas Network Planning Problems

Example Planning	Medeling Datail	Computatio	onal Size	Modeling	Typical models
Problem	Modeling Detail	Geographical	Temporal	Precision	used in literature:
Investment, Capacity expansion	Flow between countries / important gas systems	Span: Continent Res: Countries / Gas systems	Span: Decades / years	LP	High-level gas network optimization model
	Gas flow on a linearized gas pipeline network	Span: Country Res: Physical nodes	Span: A year/months	LP	Linear gas network optimization model
Nomination Validation	Steady-state physical flow based gas flow on a gas network including active components; operational state of the active components	Span: Country Res: Physical nodes	Span: A day	MINLP	Stationary gas network optimization model
Grid operation, Live dispatch	Time dependent physical flow based gas flow on a gas network including active components; operational state of the active components	Span: Sub-country Res: Physical nodes	Span: Hours Res: Minutes	MINLP	Transient gas network optimization model

Data Preprocessing vs Decision Making

sufficient quality?


Q2: Is the input data set of the

Dimensions of Data Quality

Selecting a Data Preprocessing Strategy

[5] Inci Yueksel-Erguen, J. Zittel, Y. Wang, F. Hennings, T. Koch. Lessons learned from gas network data preprocessing. Technical Report 20-13(v2). Zuse Institute Berlin, Takustr. 7, 14195 Berlin: ZIB, 2020.

I. Yüksel Ergün | ZIB | 25.09.2024

Dimensions of Data Quality & Data Preprocessing

[4] Askham et al. The six primary dimensions for data quality assessment. Technical Report, 2013, DAMA UK.

Data Improvement Method	Related Data Quality Dimension	Error
Text mining, fuzzy queries	Uniqueness	Repetition of the objects using different names / ids
Schema validation	Uniqueness Validity	Format mismatch Nonconformance to bounds
Data augmentation	Completeness Accuracy	Insufficient detail Missing entries/attributes
Data generation	Completeness Accuracy	Insufficient detail Missing entries/attributes
Consistency check heuristics	Consistency Accuracy	Conflicts in the data set Wrong modeling assumptions Data preprocessing errors

Examples for consistency check heuristics: [5] Inci Yueksel-Erguen, J. Zittel, Y. Wang, F. Hennings, T. Koch. Lessons learned from gas network data preprocessing. Technical Report 20-13(v2). Zuse Institute Berlin, Takustr. 7, 14195 Berlin: ZIB, 2020.

Nomination validation (NoVa): Is the given amounts of gas flow at entries and exits technically feasible? [2]

• A stationary gas network optimization model

Input:

- A gas network
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits

Constraints

- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

Weymouth Equation: $\alpha(p_1^2 - p_2^2) = \beta q_3 |q_3|$

 p_2

Gas Network

 q_1

 q_2

 $q_3 = q_1 + q_1$

>

 p_1

Nomination validation (NoVa): Is the given amounts of gas flow at entries and exits technically feasible? [2]

• A stationary gas network optimization model

Input:

- A gas network
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits

Constraints

- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

Weymouth Equation: $\alpha(p_1^2 - p_2^2) = \beta q_3 |q_3|$

 p_2

Gas Network

 q_1

 q_2

 $q_3 = q_1 + q_1$

>

 p_1

Nomination validation (NoVa): Is the given amounts of gas flow at entries and exits technically feasible? [2]

• A stationary gas network optimization model

Input:

- A gas network
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits

Constraints

- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

Weymouth Equation: $\alpha(p_1^2 - p_2^2) = \beta q_3 |q_3|$

 p_2

Gas Network

 q_1

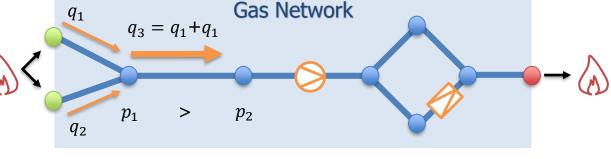
 q_2

 $q_3 = q_1 + q_1$

>

 p_1

Nomination validation (NoVa): Is the given amounts of gas flow at entries and exits technically feasible? [2]


• A stationary gas network optimization model

Input:

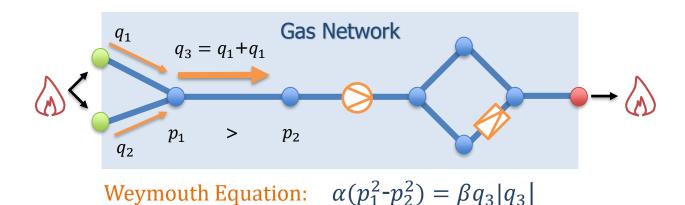
- A gas network
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits

Constraints

- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

Weymouth Equation: $\alpha(p_1^2 - p_2^2) = \beta q_3 |q_3|$

Nomination validation (NoVa): Is the given amounts of gas flow at entries and exits technically feasible? [2]


- A stationary gas network optimization model
- A mixed integer non-linear program (MINLP) **Input:**
- A gas network
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits

Constraints

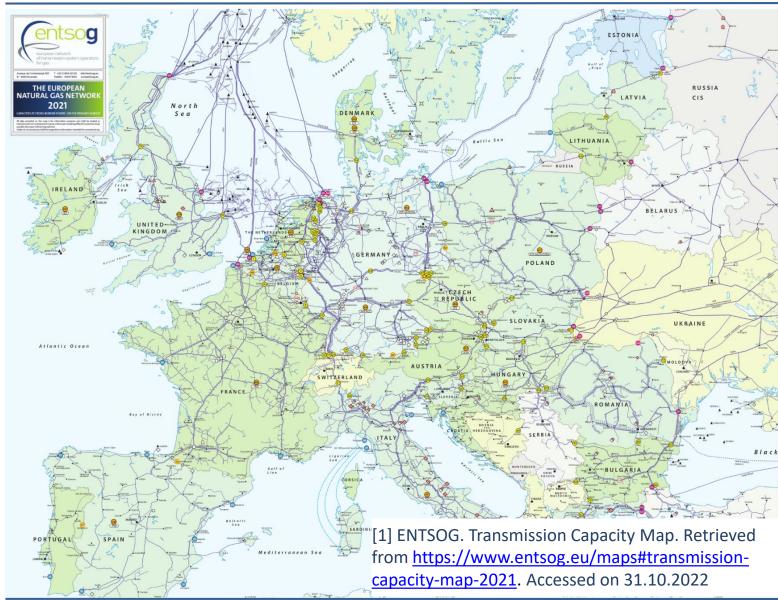
- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

Output:

- Feasibility of the given scenario
- State of the network for a feasible scenario

GNO data requirements – GasLib data model [3]:

- A node-based scenario
- Network topology and physical properties data for individual network components
- Compressor station data


[2] Koch et al. Evaluating Gas Network Capacities. Society for Industrial and Applied Mathematics, 2015, USA.

[3] Schmidt et al. GasLib - A Library of Gas Network Instances, Data 2, No. 4, article 40 (2017)

I. Yüksel Ergün | ZIB | 25.09.2024

The European Gas Transport Network

European gas transport network in numbers:

- 42 member, 10 associated partner, 2 observer
 TSOs
- > 200 interconnection points, > 170 storages
- ≈ 200,000 km transmission pipelines (EU+UK)

Data Limitations:

- Network topology and physical properties data for individual network components
- Compressor station data
- A node-based scenario

Decision-Making with Open Data - 1

Coo + Carto - Alto -	Data Sets	Topology	Demand TS	
	ENTSOG IP [4]	High-Level	Aggregated@IP (H)	[6] ENTSOG TP, <u>https://transparency.entsog.eu/</u> , Last accessed 25.08.2023
	ENTSOG SOS [5]	(cumulative cap.)	Aggregated@BZ (H)	 [7] ENTSOG SOS, <u>https://www.entsog.eu/security-of-supply-simulation#</u> [8] ENTSOG TYNDP, <u>https://www.entsog.eu/tyndp#</u>, Last
	ENTSOG TYNDP [6]		Aggregated@Cnt (F)	accessed 25.08.2023 [9] SciGRID Gas, <u>https://www.gas.scigrid.de</u> , Last accessed
	SciGrid Gas [7]			06.07.2023 [10] Kunz, F. et al.: Reference Data Set (V1.0.0),
GERMANY	Germany LKD-EU [8]	Pipeline Network (approximate cap.)	Subregion-Based	<u>https://doi.org/10.5281/zenodo.1044463</u> , Last accessed 06.07.2023
	Network Topology Data + TSO data (node press.) Compressor station data	Pipeline Network + Active components (computed cap. + gas flow directions)	Node-Based	Operational (GNO): A routing of gas in the network, resulting gas pressure at the nodes, and operational state of the complex facilities of the network

Germany Gas Transport Network Data Set – Data Preprocessing

Text mining/ Fuzzy Queries:

- Associating the ENTSOG high-level topology with Germany network topology from LKD-EU data
- Associating the TSO node data with Germany network topology from LKD-EU data

Schema Validation:

• GasLib XML data model

Data augmentation:

- Redefining entry and exit points using Transmission System Operator (TSO) data
- Adding height data to nodes via a geographical information system (GIS) software
- Associating known node pressures from TSO data for pipeline capacity computation
- Adding major pipelines built after the available LKD-EU data set was published

Data generation:

• Estimating compressor and driver data based on partially available public data and network topology using equations of appropriate mathematical models

Germany Gas Transport Network Data Set

European Gas Transport Network: Interconnections

[1] ENTSOG. Transmission Capacity Map. Retrieved from <u>https://www.entsog.eu/maps#transmission-capacity-map-2021</u>. Accessed on 31.10.2022

[1] ENTSOG. Transmission Capacity Map. Retrieved from <u>https://www.entsog.eu/maps#transmission-capacity-map-2021</u>. Accessed on 31.10.2022

Germany Gas Transport Network: Topology & Complex facilities

- ≈70 entry & ≈900 exit points
- ≈1650 inner nodes
- ≈1770 pipes
- ≈95 control valves
- 58 compressor stations
 - 129 compressors & drivers
 - 200 valves

[11] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport. Energy Systems, 2023.
[10] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling the German System (Version 1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463.

Gas Data Files: Technical properties

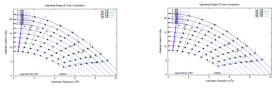
Network topology data: .net file (>34K lines; >28K data attributes)

<source id="N1" x="-100" y="500"> <height ·unit="m" ·value="200.0"/> <pressureMin·unit="bar"·value="30.0"/> sureMax unit="bar" value="70.0"/> <flowMin unit="1000m_cube_per_hour" value="50.0"/> <flowMax unit="1000m_cube_per_hour" value="750.0"/ <gasTemperature unit="Celsius" value="10.0"/> <calorificValue ··value="37"·unit="MJ_per_m_cube"/> <normDensity value="0.785" unit="kg_per_m_cube"/> <coefficient-A-heatCapacity value="32.23"/> <coefficient-B-heatCapacity value="-0.01"/> <coefficient-C-heatCapacity value="0"/> <molarMass value="19.5" unit="kg_per_kmol"/> <pseudocriticalPressure value="44.5" unit="bar"/> <pseudocriticalTemperature ...value="190" unit="K"/> </source>

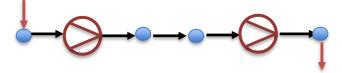
Compressor station data: .cs file (>54K lines)

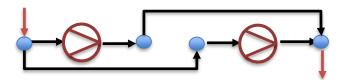
<compressorStation-id="CS3"> <compressors> <turboCompressor-drive="P_CS3_M1"-id="T_CS3_M1"> <turboCompressor-drive="P_CS3_M3"-id="T_CS3_M3"> </compressors> <drives> <gasTurbine-id="P_CS3_M1"> <gasTurbine-id="P_CS3_M3"> </drives> <configurations>

<configuration.confid="1"nrOfSerialStages="2">
 <stage.stageNr="1".nrOfParallelUnits="1">
 <stage.stageNr="1".nrOfParallelUnits="1">
 </configuration>


<configuration.confid="3".nrOfSerialStages="1"> <stage.stageNr="1".nrOfParallelUnits="1"> </configuration>

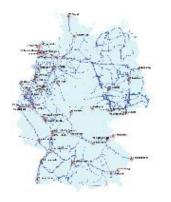
<configuration confid="2" nrOfSerialStages="1"> <stage stageNr="1" nrOfParallelUnits="2"> </configuration>


<configuration.confId="4".nrOfSerialStages="1"> <stage.stageNr="1".nrOfParallelUnits="1"> </configuration>


</configurations> </compressorStation>

Compressor station characteristic diagrams

Alternative compressor machine configurations


I. Yüksel Ergün | ZIB | 25.09.2024

Decision-Making with Open Data -2

Data Sets	Topology	Flow	Complementary Data
ENTSOG IP [4]	High-Level	Aggregated@IP	ENTSOG IP/node matching
ENTSOG SOS [5]	(cumulative cap.)	Aggregated@BZ	GIE Storage data [9]
Germany LKD-EU [8]	Pipeline Network (approximate cap.)	Subregion-Based	 [12] AGSI+ Transparency Platform, https://agsi.gie.eu/ Last accessed 06.07.2023 [11] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport. Technical Report 22-17. ZIB, Takustr. 7, 14195 Berlin, 2022.
Germany gas network dataset [10, 11]: Germany LKD-EU [8] + TSO data Compressor station data	Pipeline Network + Active components (computed cap. + gas flow directions)	Node-Based	Operational: A routing of gas in the network resulting gas pressure at the nodes, and operational state of the complex facilities of the network

We require scenarios for a selected smaller region in Europe that are:

- reproducible using open data and open models,
- **consistent** with the limitations of the *pan-European network infrastructure* given *the pan-European gas supply*,
- robust against data uncertainties,
- *effectively span* the feasible scenario space, and
- able to reflect the future uncertainties from what-if scenarios.

We developed

a mathematical modeling-based scenario generator to generate meaningful realistic scenarios.

[13] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. Consistent flow scenario generation based on open data for operational analysis of European gas transport networks. Accepted for publication by OR 2023 Proceedings.

[14] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. Mathematical optimization based flow scenario generation for operational analysis of European gas transport networks based on open data. Technical Report 24-03. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2024.

Scenario Generator

Scenario Generation Tool

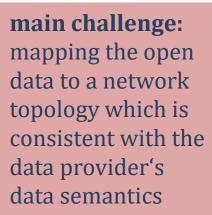
- Find the gas in-/out-flow of a region:
 - use ENTSOG IP and SOS data to model the high-level pan-European gas network

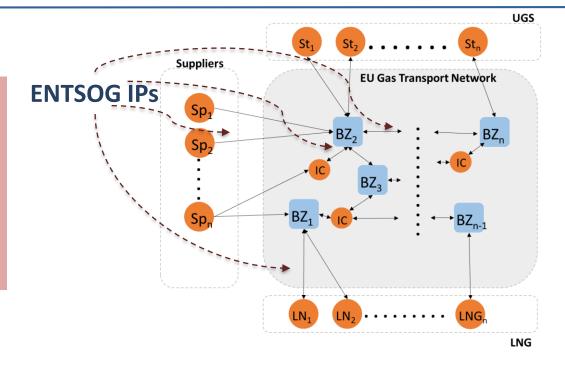
- Disaggregate the gas in-/out-flow of the specified region to its entry-exit nodes by ensuring:
 - correct system/node associations
 - meeting sub-region demand distribution of the specified region
 - feasibility given approximate maximum pipeline gas capacity

M1: High-level Pan-European Gas Network Model

Cumulative gas in-/out- flow of the selected region based on IPs

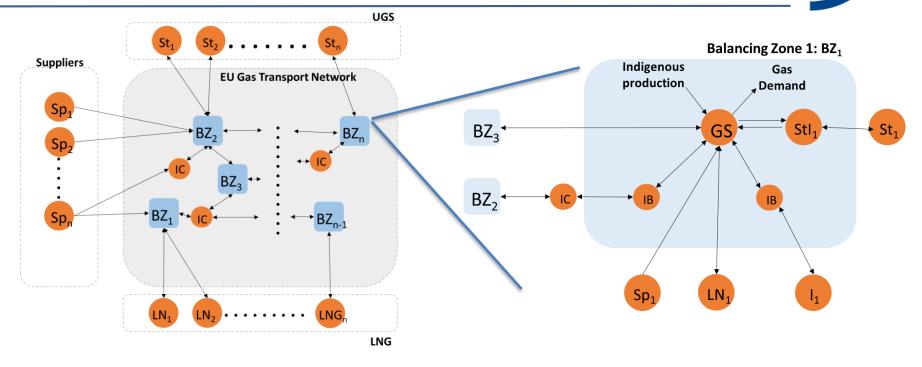
M2: Regional Gas Transport Network Model (Linear)


Gas in-/out- flow of the selected region based on physical entry/exit nodes


Regional Gas Transport Network Model (GNO-Nonlinear)

M1 High-level Pan-European Gas Network Model

Input:


- The high-level network topology data from ENTSOG IP
- Gas supply to Europe via imports, LNG, underground gas storage facilities, and production
- Gas demand of countries or balancing zones, gas injected to the storages, exports, LNG
- Storage flow models incl. working capacity, injection and withdrawal capacities based on gas volume in the storages

Output:

- Minimum possible demand curtailment
- Gas distribution to the high-level gas network, *i.e.*, *utilization of the pipeline capacities and storage facilities, cross-border exchange limitations, imbalances in the network due to cross-border exchange capacities: curtailed demand vs. stored gas*
- Geographical disaggregation of the supplied gas to Europe

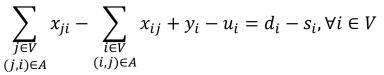
M1 High-level Pan-European Gas Network Model

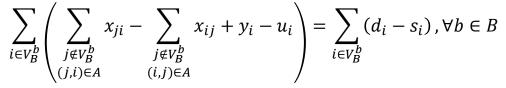
main challenge: mapping the open data to a network topology which is consistent with the data provider's data semantics

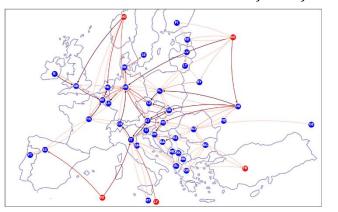
Input:

- The high-level network topology data from ENTSOG IP
- Gas supply to Europe via imports, LNG, underground gas storage facilities, and production
- Gas demand of countries or balancing zones, gas injected to the storages, exports, LNG
- Storage flow models incl. working capacity, injection and withdrawal capacities based on gas volume in the storages

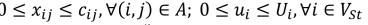
Output:

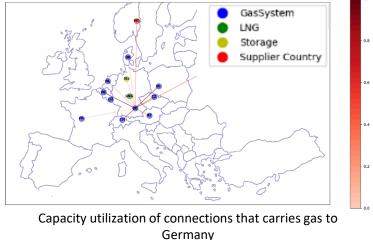

- Minimum possible demand curtailment
- Gas distribution to the high-level gas network, *i.e.*, utilization of the pipeline capacities and storage facilities, cross-border exchange limitations, imbalances in the network due to cross-border exchange capacities: curtailed demand vs. stored gas
- Geographical disaggregation of the supplied gas to Europe


M1 – Mathematical Model


Sets		
V	Entry-exit nodes in the high-level European gas	
	network	
Α	Arcs between the nodes in V	subject to
GS	Gas Systems	
IB	Internal Bottlenecks	
IC	International Connections	2 j (j,
St	UGSs	(j,
StI	UGS Interconnection Nodes	_ / _
LN	LNG Facilities	$\sum ($
В	Balancing Zones	$ \begin{array}{c c} $
Sp	Suppliers	(j,i)
Subsets a	nd Indexed Sets	
$V_{Set} \subset V$	Nodes denoting the infrastructure given by the	$y_i \ge 0, \forall i \in V$
	Set definition	0
$V_B^b \subset V$	Nodes in the balancing zone $b \in B$	
Paramete	rs	
C _{ij}	Capacity of arc $(i, j), (i, j) \in A$	
U_i	Capacity of a UGS, $i \in V_{St}$	
d_i	Demand of node $I, i \in V$	
Si	Supply of node $I, i \in V$	
ϵ_1	UGS gas volume adjustment coefficient	
Variables		
x _{ij}	Gas flow on the arc $(i, j) \in A$	
u_i	Amount of gas injected to the UGS $i, i \in V_{St}$	Capacity utilization of connectio
17.		capacity utilization of connectio

$$\min\sum_{i\in V}y_i-\epsilon_1\sum_{i\in V_{St}}u_i$$

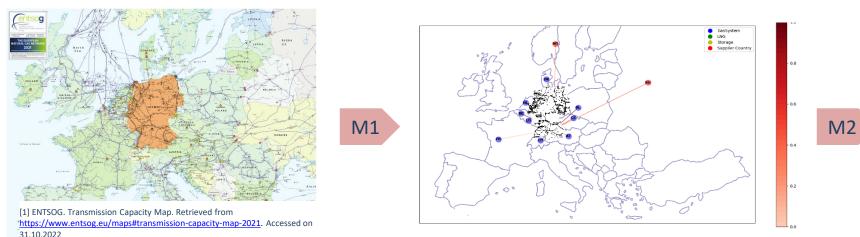


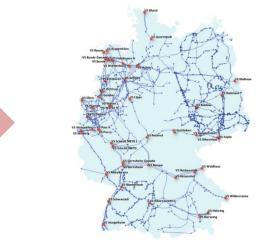


$$v_i \ge 0, \forall i \in V_{GS} \cap V_{IB}; \ y_i = 0, \forall i \in V \setminus V_{GS} \cap V_{IB}; \ u_i = 0, \forall i \in V \setminus V_{St}$$

ion between the <mark>EU</mark> and the non-EU countries

I. Yüksel Ergün | ZIB | 25.09.2024


Demand curtailment of node $i \in V$


 y_i

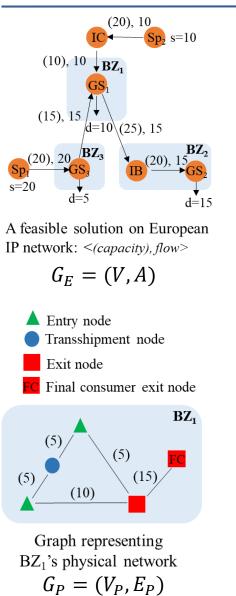
M2: Regional Gas Transport Network Model (Linear)

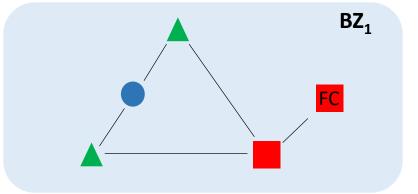
Dispatch to \approx 70 entry & \approx 900 exit points

[11] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport. Technical Report 22-17. ZIB, Takustr. 7, 14195 Berlin, 2022.

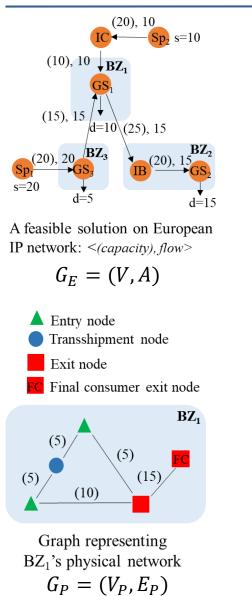
[10] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling the German System (V1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463.

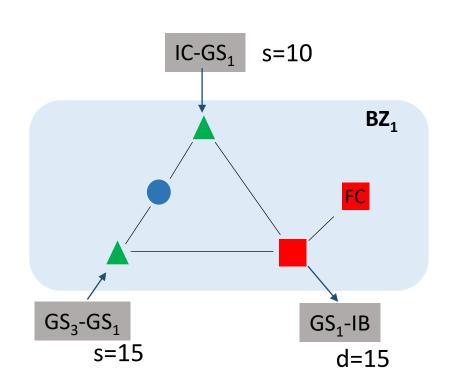
- A valid dispatch of the gas demand and supply to the boundary nodes of the network
- Amount of gas amount reduction in supply/demand by source
- Amount of gas exchange between sub-regional demand

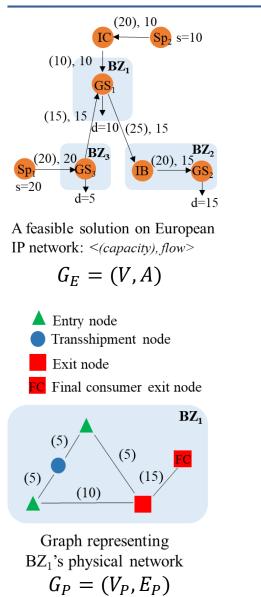

Input:

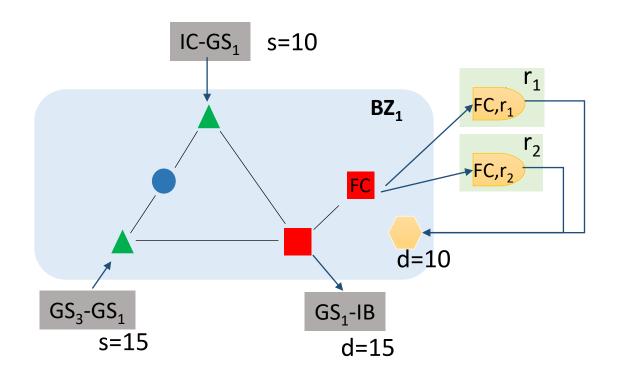

- Amount of gas demand and supply of the region as a result of M1
- Network topology data of the region including physical entry, exit and inner nodes, and pipelines with predefined capacity upper bounds
- Physical entry-exit node association to the high-level ENTSOG data set given in M1
- Gas demand distribution to NUTS-3/postal code regions

Output

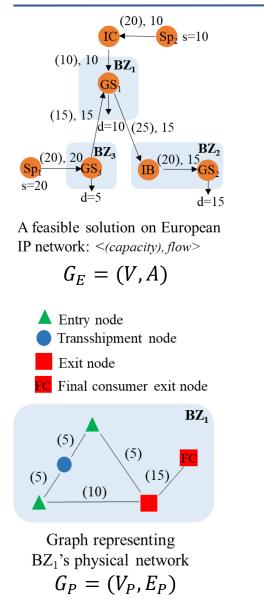

I. Yüksel Ergün| ZIB | 25.09.2024

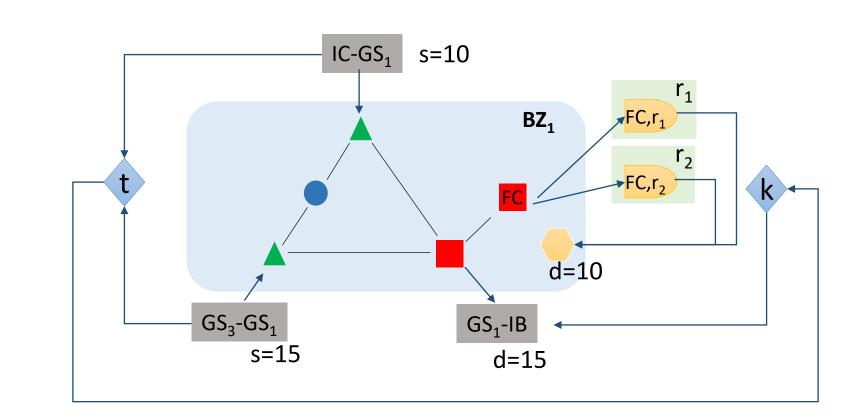


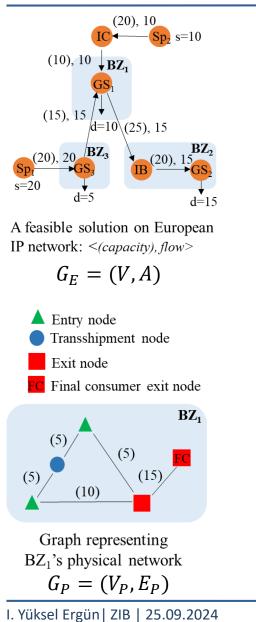


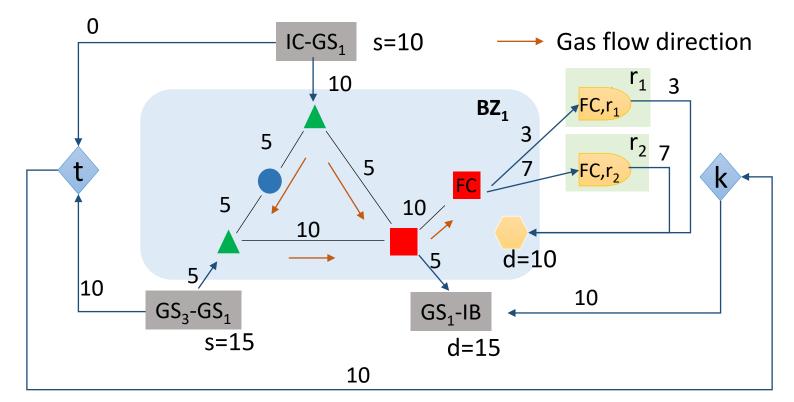


NT1: Matching the boundary nodes






NT1: Matching the boundary nodes NT2: Geographical dispatch



NT1: Matching the boundary nodesNT2: Geographical dispatchNT3: Exploring artificial feasible solutions

 $G_R = (V_R, E_R, A_{Ar})$

NT1: Matching the boundary nodesNT2: Geographical dispatchNT3: Exploring artificial feasible solutions

C2F - Results

- NT1 + NT2
 - filters the infeasible scenarios before operational analysis
 - the resulting feasible scenarios from M2 are still feasible in M1
- NT1 + NT2 + NT3
 - the scenarios are feasible for both M1 and M2 if the x_{tk} =0
 - otherwise, the reason of infeasibility should be investigated for individual cases by checking the non-negative flows on the arcs artificial arcs added by NT3

M2 – Mathematical Model

berlin	ZIB ZUSE INSTITUTE BERLIN

Subsets and I	ndexed sets	$\min f_{t,k} + \epsilon_2 \sum \pi_r^+ + \pi_r^-$
$V_P \subset V_R \\ V_P^0 \subset V_P$	Physical gas network nodes of the selected region in EU Transshipment nodes	$r\in S$
$V_P^+ \subset V_P$ $V_P^- \subset V_P$	Entry nodes Exit nodes	subject to
$V_P^{-,S}(r) \subset V_P^-$ $V_{Ar} \subset V_R$	Admissible exit nodes serving to subregion $r, r \in S$ Artificial nodes representing the gas exchange of the physical gas network with EU network	$\sum_{\substack{j \in V_{R,} \\ (j,i) \in A_{Ar} \lor \{j,i\} \in E_P}} f_{ji} - \sum_{\substack{j \in V_{R,} \\ (i,j) \in A_{Ar} \lor \{i,j\} \in E_P}} f_{ij} = d_i - d_$
$V_{Ar}^{SX} \subset V_{Ar}$ $A_{Ar}^{P,SX} \subset A_{Ar}$	Subregion-admissable exit node association Artificial arcs between $V_P^{-,S}(r)$, $\forall r \in S$ and V_{Ar}^{SX} denoting the flow from final consumer nodes to subregions	$\sum f_{ij} + \pi_r^+ - \pi_r^- = d^r, \forall r \in$
Parameters	Subregione	$i \in V_P^{-,S}(r), j \in V_{Ar}^{SX}$
C _{ij}	Maximum allowable flow on the connection between nodes <i>i</i> and <i>j</i> : <i>i</i> , <i>j</i> \in <i>V</i> _{<i>R</i>} and (<i>i</i> , <i>j</i>) \in <i>A</i> _{<i>Ar</i>} , or <i>i</i> , <i>j</i> \in <i>E</i> _{<i>P</i>} and	$(i,j) \in A_{Ar}^{P,SX}$
$d_i \\ d^r$	$i, j \in V_P$ Demand of node $i, i \in V_{Ar}$ Demand of subregion $r, r \in S$	$\sum_{r \in S} \pi_r^+ + \pi_r^- \le \theta$
ϵ_2	Supply of node $i, i \in V_{Ar}$ Adjustment coefficient for demand distribution among	$0 \le f_{ij} \le c_{ij}, \forall (i,j) \in A_{Ar}$
θ	subregions Allowable deviation from total final consumer demand	$-c_{ji} \le f_{ij} \le c_{ij}, \forall \{i, j\} \in E_P$ $0 \le \pi_r^+, 0 \le \pi_r^-, \forall r \in S$
Variables f _{ij}	Gas flow on the arc (i, j) if $(i, j) \in A_{Ar}$ or on the edge i, j if $i, j \in E_P$	$0 \leq n_r, 0 \leq n_r, 0 \leq 0$
$\begin{array}{c} \pi_r^+ \\ \pi_r^- \end{array}$	non-negative increase in demand for subregion $r, r \in S$ non-negative decrease in demand for subregion $r, r \in S$	

$$\sum_{\substack{i \in V_R, \\ r \lor \{j,i\} \in E_P}} f_{ji} - \sum_{\substack{j \in V_R, \\ (i,j) \in A_{Ar} \lor \{i,j\} \in E_P}} f_{ij} = d_i - s_i, \forall i \in V_R$$

$$\sum_{\substack{i \in V_P^{-,S}(r), \ j \in V_{Ar}^{SX} \\ (i,j) \in A_{Ar}^{P,SX}}} f_{ij} + \pi_r^+ - \ \pi_r^- = d^r, \forall r \in S$$

xml·version="1.0"·encoding="UTF-8"?
<boundaryvalue <="" td="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></boundaryvalue>
xmlns="http://gaslib.zib.de/Gas"
xsi:schemaLocation="http://gaslib.zib.de/Gas
http://gaslib.zib.de/schema/Scenario.xsd"
xmlns:framework="http://gaslib.zib.de/Framework">
xmlns="http://gaslib.zib.de/Gas" xsi:schemaLocation="http://gaslib.zib.de/Gas

<scenario id="ExampleScenario">

<node type="entry".id="entry01">

<flow bound="lower" value="160.00" unit="1000m_cube_per_hour"/> <flow bound="upper" value="160.00" unit="1000m_cube_per_hour"/> </node>

<node type="entry".id="entry02">

<flow bound="lower" value="140.00" unit="1000m_cube_per_hour"/> <flow bound="upper" value="140.00" unit="1000m_cube_per_hour"/> </node>

<node type="exit" id="exit01">

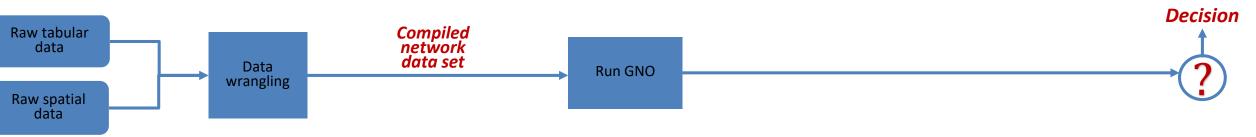
<flow bound="lower" value="200.00" unit="1000m_cube_per_hour"/> <flow bound="upper" value="200.00" unit="1000m_cube_per_hour"/> </node>

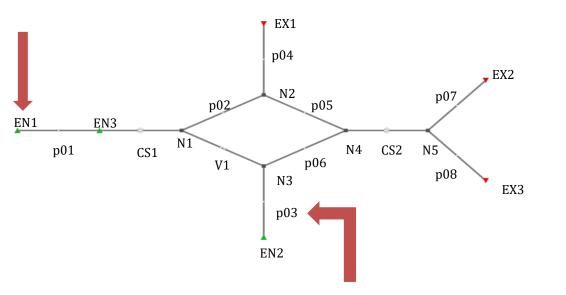
</scenario>

</boundaryValue>

Scenario Generation with LP

- Enhancing objective function by introducing auxiliary variables and parameters
 - Storage levels, sub-region demand flexibility
- Generating artificial feasible solutions by NT3
 - To explore feasible scenarios in the neighborhood of the base scenario
 - Commenting on the infeasibility of an upper-stream scenarios
- Generating alternative solutions using information from NT3 and adding constraints
 - To generate solutions sharing the flow amount between pipelines before reaching their capacities
- Incorporating side constraints
 - To explore effects of potential future regulations

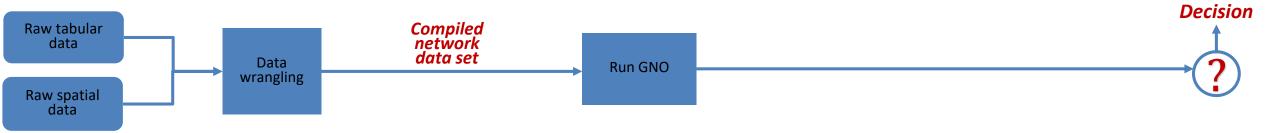

Analysis Results with the Compiled Data Set


berlir

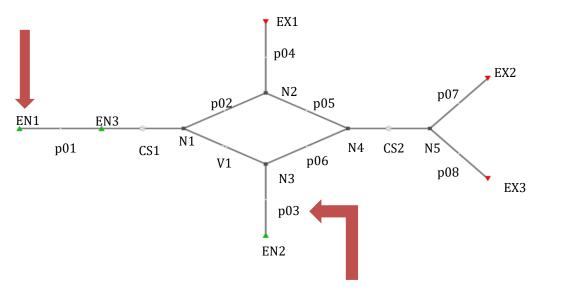
ZUSE INSTITUTE BERLIN

Analysis Results with the Compiled Data Set

Inject a "data error" to GasLib11 instance - .net file by $\overline{p_{EN1}}=70 \rightarrow 50$

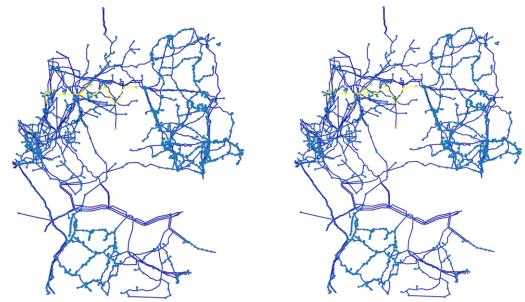

ERROR: INFEASIBILITY: Preprocessing detected that problem is infeasible. Reason:

Lower Bound of flow on arc pipe03_entry02_N03 = 186.1060148 [1000 Nm^3 / h] Upper Bound of flow on arc pipe03_entry02_N03 = 140 [1000 Nm^3 / h] Infeasible what-if scenarios:


inconsistency between upper/lower bounds

Analysis Results with the Compiled Data Set

Inject a "data error" to GasLib11 instance - .net file by $\overline{p_{EN1}}=70 \rightarrow 50$



ERROR: INFEASIBILITY: Preprocessing detected that problem is infeasible. Reason:

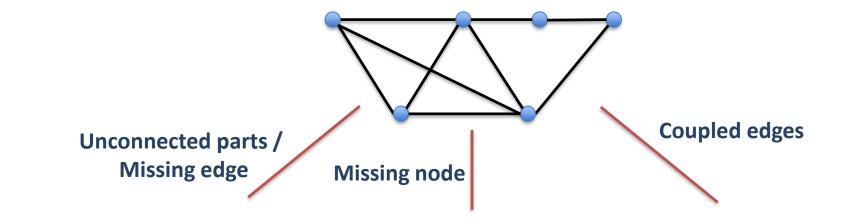
Lower Bound of flow on arc pipe03_entry02_N03 = 186.1060148 [1000 Nm^3 / h] Upper Bound of flow on arc pipe03_entry02_N03 = 140 [1000 Nm^3 / h]

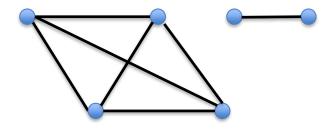
Infeasible what-if scenarios:

- inconsistency between upper/lower bounds
- consistent bottlenecks from various scenarios

[11] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport. Energy Systems, 2023.

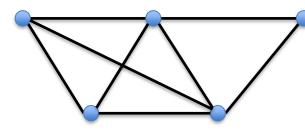
I. Yüksel Ergün | ZIB | 25.09.2024


Dealing with Complex Errors in Infrastructure Datasets



- Highly-connected data in industrial applications
 - provided by industrial partners
 - consolidated from public data sources
 - generated using mathematical models
- Data errors too complex for humans to understand detected by analysis tools
 - Detection and correction of such errors are extremely difficult
- Engineered to fulfill a quality of service (QoS) level
 - Assumptions like iid cannot be made
- A holistic quality assessment is required
 - Error in critical components introduce bottlenecks

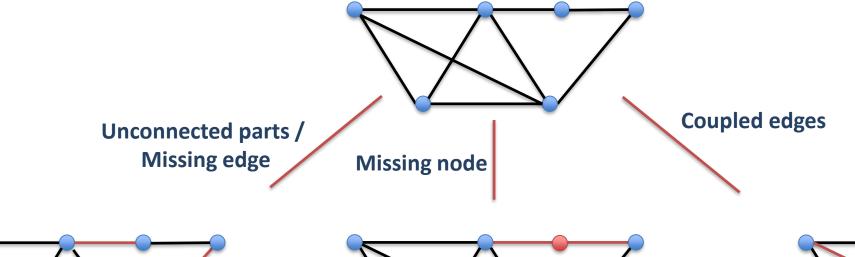
Network Topology Data Errors



Correction:

• add the missing edge

Correction:

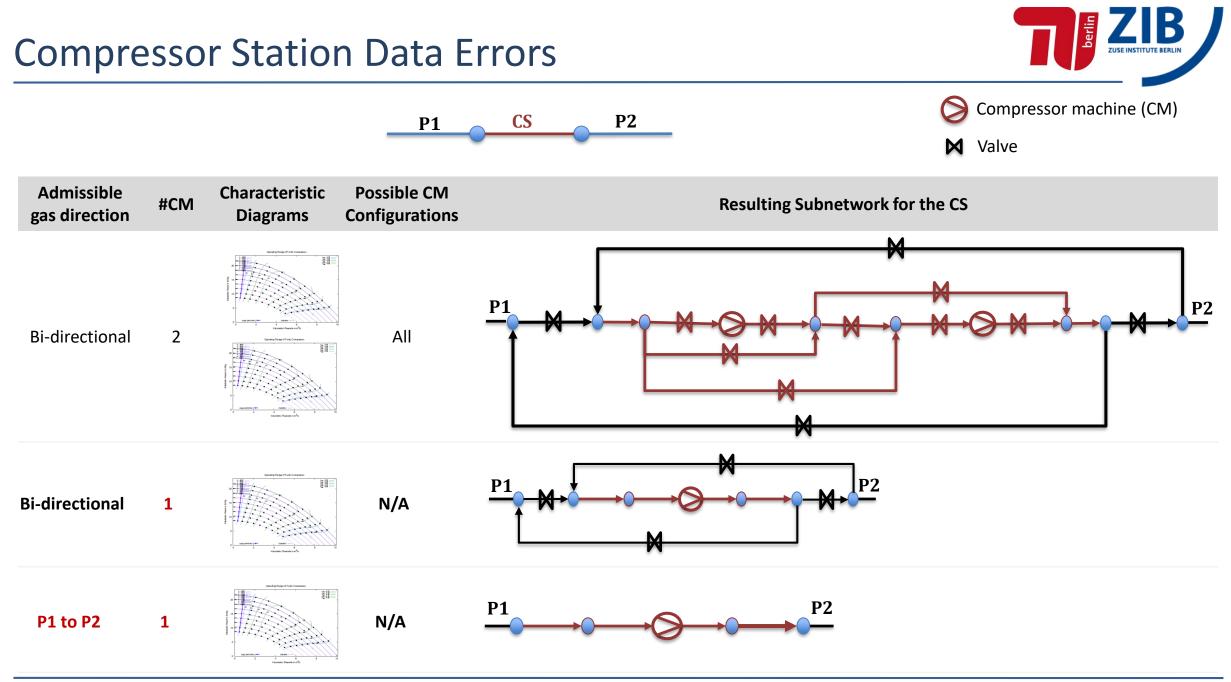

- add the missing node to node set
- updating end node of existing edges
- adding two pipes between the end nodes of the existing edges and the added node

Correction:

- deleting the node
- deleting two of the existing edges
- updating end nodes of the two edges

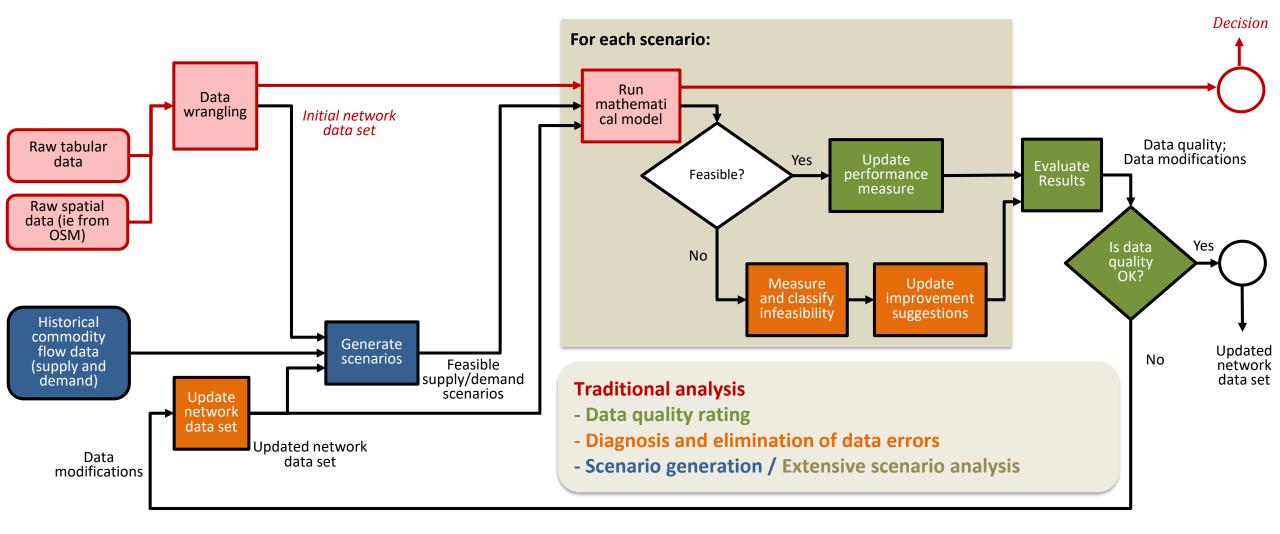
Network Topology Data Errors

Correction:

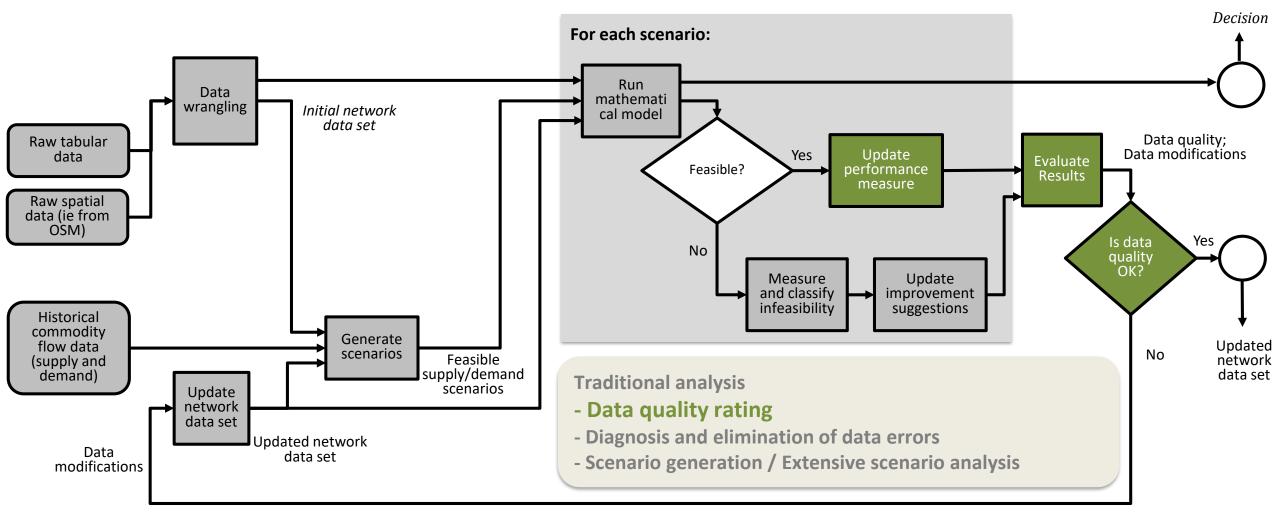

• add the missing edge

Correction:

- add the missing node to node set
- updating end node of existing edges
- adding two pipes between the end nodes of the existing edges and the added node


Correction:

- deleting the node
- deleting two of the existing edges
- updating end nodes of the two edges


I. Yüksel Ergün | ZIB | 25.09.2024

A Data Quality Assessment and Improvement Framework

[15] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. A Quality Assessment and Improvement Framework for Supply Infrastructure and Utility Network Datasets. (Under preparation)

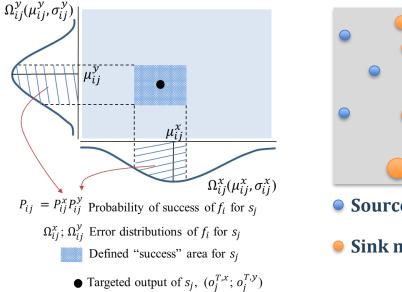
Proposed Framework

Data Quality Rating - 1

A data rating measure to facilitate the automated improvement by enabling us to

- quantify our distance to the quality level for the aimed analysis
- **compare** the performance of alternative improvements

.. and also lead us/the search to the potential errors and error sources...

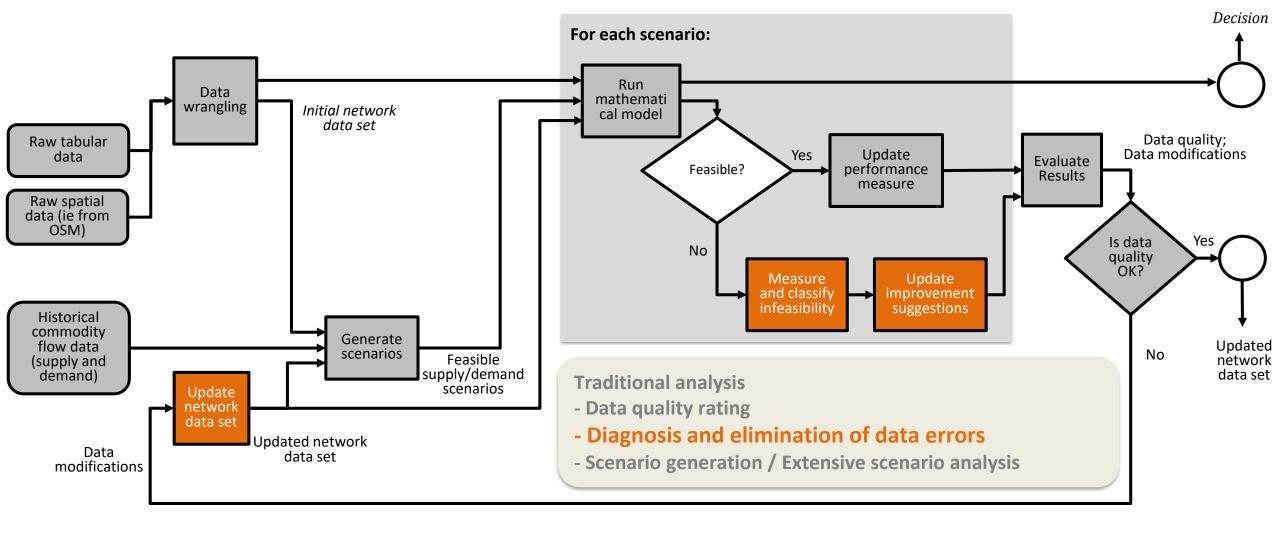

Example: Number of scenarios generated from the historical data that the data set finds a feasible routing

- Not informative enough
- Especially in the very beginning of the improvement process we may get 0 for all scenario sets

Data Quality Rating - 2

Definition 1: A data set, DSⁱ, correctly and accurately represents an infrastructure design f_i if there exists a feasible solution for the mathematical model using DS¹ for all scenarios that can be routed by the infrastructure.

Source node


Sink node

Data Quality Rating

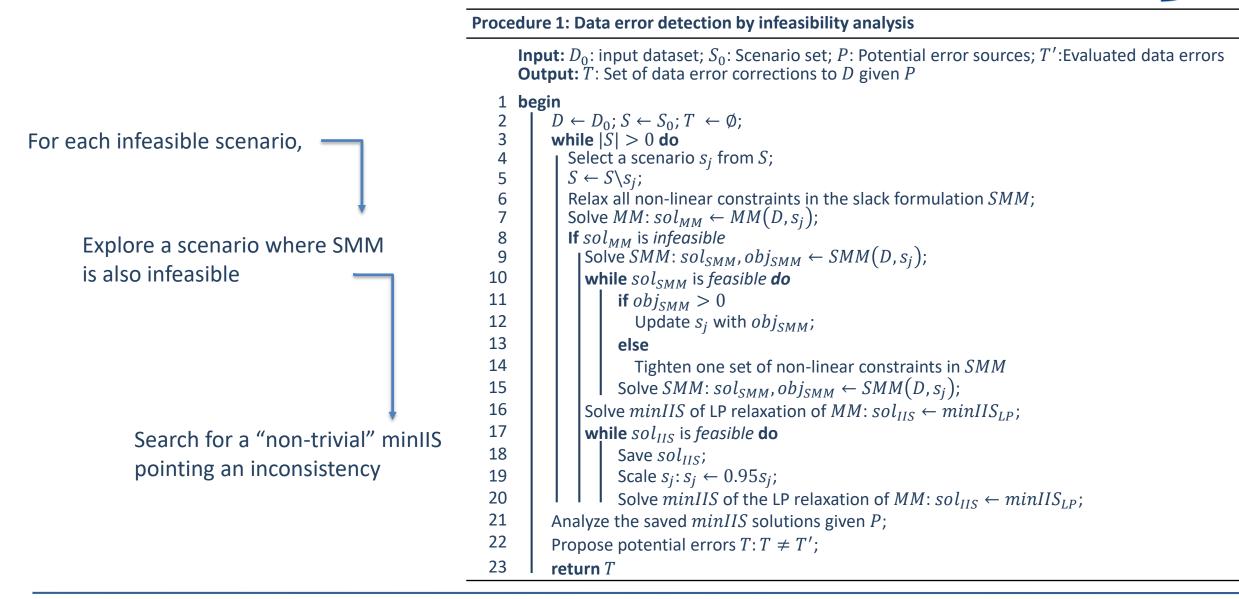
- For S_H , the infrastructure is represented by a data set DS^r correctly and accurately if $\exists [\epsilon_R^r, \epsilon_{\Phi}^r]$ neighborhood of s_i , $\xi_i^r, \forall s_i \in S_H$ such that $|\xi_i^r| > 1$; ϵ_R^r and ϵ_{Φ}^r converges to 0, and the mathematical model finds a feasible solution to $\forall s_k \in \xi_i^r$ using DS^r .
- The corollaries enable exploring the scenario space by ξ_i^l having lacksquarefeasible solutions for all scenarios using an extensive scenario analysis, and compare them with the historical flow scenarios on the basis of $[\epsilon_R^l, \epsilon_{\Phi}^l]$ to assess the quality of DS^i .

A $[\epsilon_R^l, \epsilon_{\Phi}^l]$ be a scenario neighborhood of a historical flow scenario s_i , $s_i \in S_H$ $\xi_i^l = \{s_k \colon | R_k^l - R_i^T | \le \epsilon_R^l; | \Phi_k^l - \Phi_i^T | \le \epsilon_\Phi^l\}$

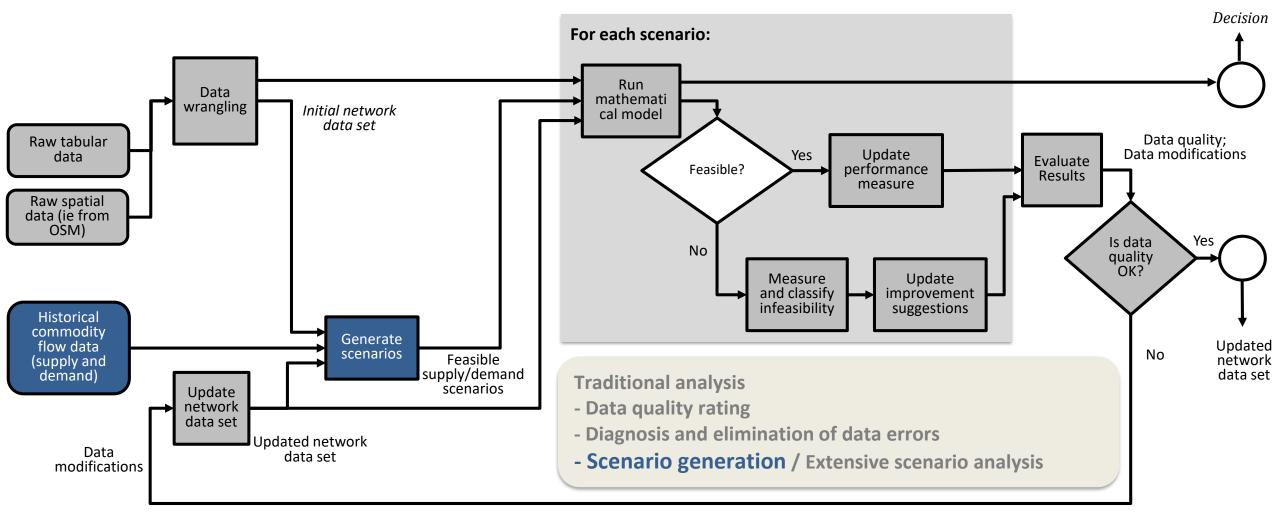
Proposed Framework

Mathematical Modeling Methods for Infeasibility Analysis

Slack Formulations


- Different aspects of the formulations can be relaxed with slack variables
- The objective is to minimize the deviation from the original model → zero objective function
- The smallest distance from the feasibility

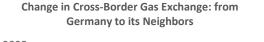
(Minimum) Irreducible Infeasible Subsystems (IIS)

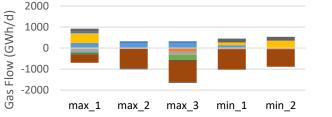

An IIS of a MIP is a subset of the constraints and bounds that is infeasible and becomes feasible if a single constraint or bound is removed

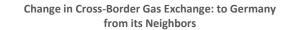
- Isolates the infeasibility by variables and constraints
- Not an explicit reason why a IIS is infeasible
- Long computation times for large-scale MIPs
- A trivial IIS is not informative

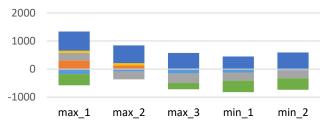
Mathematical Modeling Methods for Infeasibility Analysis

Proposed Framework


Gas Network Scenario Generator



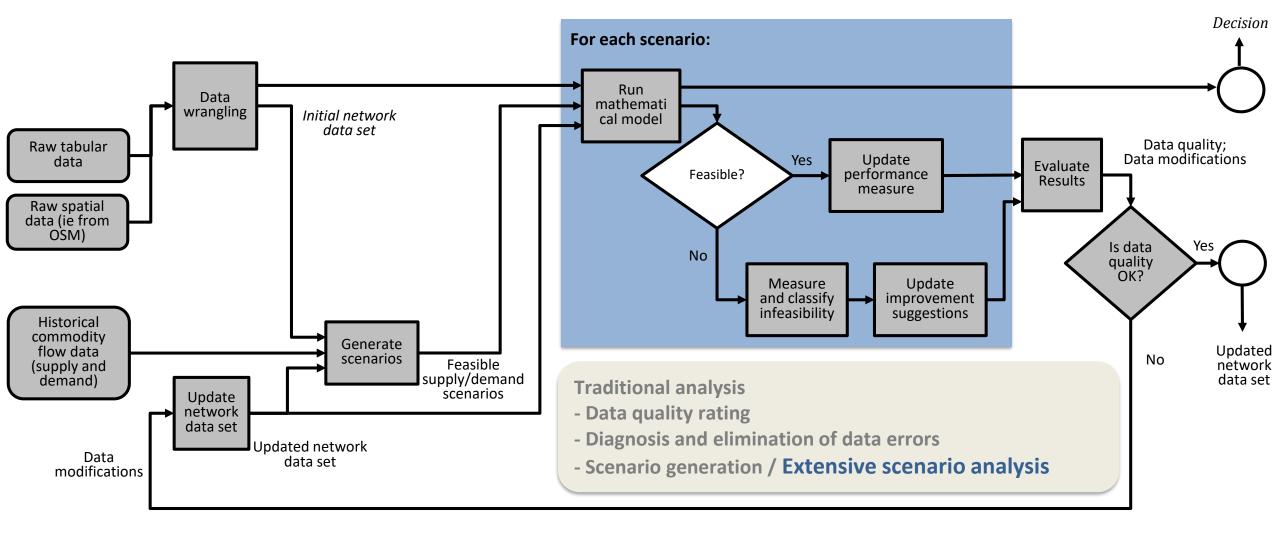

■ max_1 ■ max_2 ■ max_3 ■ zero ■ min_1 ■ min_2



■ AT ■ BE ■ CH ■ CZ ■ DK ■ FR ■ LU ■ NL ■ PL

M1: High-level Pan-European Gas Network Model

Cumulative gas in-/out- flow of the selected region based on IPs


M2: Regional Gas Transport Network Model (Linear)

Gas in-/out- flow of the selected region based on physical entry/exit nodes

Regional Gas Transport Network Model (GNO-Nonlinear)

I. Yüksel Ergün | ZIB | 25.09.2024k

Proposed Framework

Set $\epsilon_R = \epsilon_R^0$, where ϵ_R^0 is a sufficiently large initial neighborhood size while $\epsilon_R > \epsilon_R^T$

Generate $[\epsilon_R, \epsilon_{\Phi}^l]$ scenario neighborhoods for each $s_j \in S$

Use Procedure 1 to detect and correct errors until there exists a feasible solution for all scenarios in $[\epsilon_R, \epsilon_{\Phi}^l]$ for each $s_i \in S$

Update $\epsilon_R = \beta \epsilon_R$, where $\beta < 1$ is a non-negative neighborhood size shrinking factor

Gas Transport Network Quality Rating

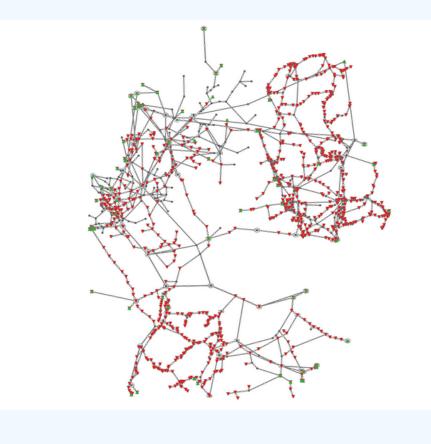
Representative flow scenarios: ENTSOG Security of supply simulation (2017)

[16] ENTSOG. 2017. Security of Supply Scenarios. https://www.entsog.eu/security-of-supply-simulation#union-wide-simulation-of-supply-and-infrastructuredisruption-scenarios Last accessed 10 October 2022.

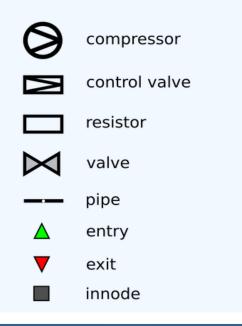
- Text mining, fuzzy queries
- Schema validation
- Data augmentation
- Data generation
- Consistency check heuristics

Less than 40% of representative historical flow scenarios at 90% commodity level

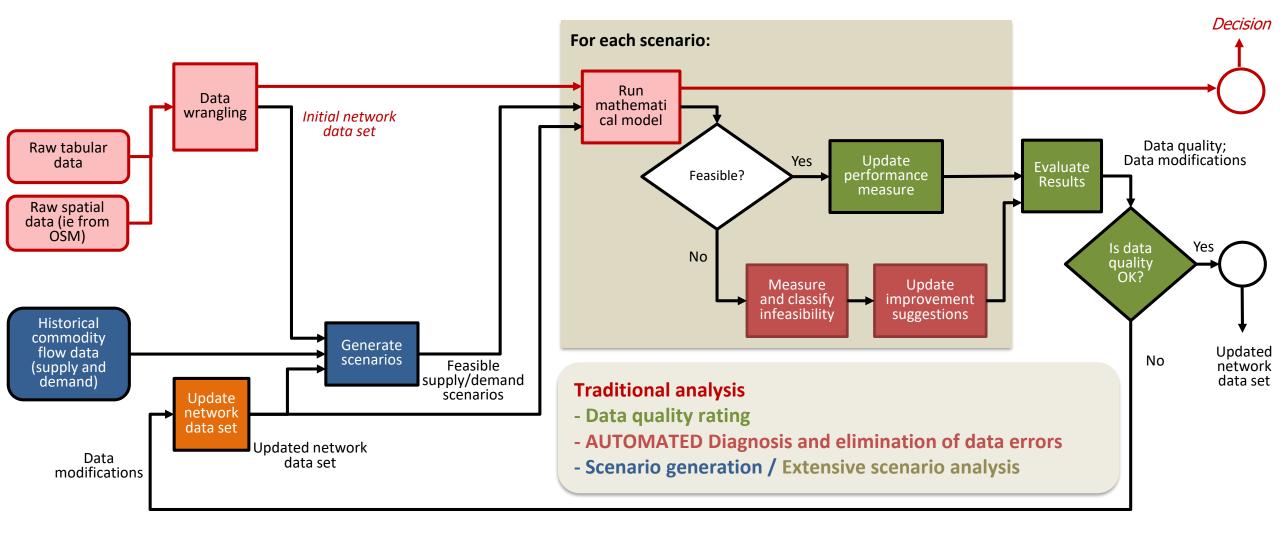
• Extensive scenario analysis


All representative historical flow scenarios at 95% commodity level

German Gas Transport Network Data Set



GasLib-2607


https://gaslib.zib.de/download/data/GasLib-2607-v1-20240708.zip

- network file (.net)
- compressor file (.cs)
- visualization (.svg)
- nominations (.zip archive of .scn)
- complete GasLib-2607 archive (.zip)
- changelog for GasLib-2607 (plaintxt)

Future Outlook

References

[1] ENTSOG. Transmission Capacity Map. Retrieved from https://www.entsog.eu/maps#transmission-capacity-map-2021. Accessed on 31.10.2022

[2] Thorsten Koch, Benjamin Hiller, Marc E. Pfetsch, and Lars Schewe. 2015. Evaluating Gas Network Capacities. Society for Industrial and Applied Mathematics, USA.

[3] Schmidt, M. et al.: GasLib—A Library of Gas Network Instances. Data, 2(40) (2017)

[4] Nicola Askham, Denise Cook, Martin Doyle, Helen Fereday, Mike Gibson, Ulrich Landbeck, Rob Lee, Chris Maynard, Gary Palmer, Julian Schwarzenbach. The six primary dimensions for data quality assessment. Technical Report, 2013, DAMA United Kingdom.

[5] Inci Yueksel-Erguen, Janina Zittel, Ying Wang, Felix Hennings, Thorsten Koch. Lessons learned from gas network data preprocessing. Technical Report 20-13(v2). Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2020. Available online https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7826

[6] ENTSOG TP, https://transparency.entsog.eu/, Last accessed 25.08.2023

[7] ENTSOG SOS, https://www.entsog.eu/security-of-supply-simulation#

[8] ENTSOG TYNDP, https://www.entsog.eu/tyndp#, , Last accessed 25.08.2023

[9] SciGRID Gas, https://www.gas.scigrid.de, Last accessed 06.07.2023

[10] Kunz, F. et al.: Reference Data Set (V1.0.0), https://doi.org/10.5281/zenodo.1044463, Last accessed 06.07.2023

[11] Inci Yueksel-Erguen, Dieter Most, Lothar Wyrwoll, Carlo Schmitt, Janina Zittel. Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport. Energy Systems, 2023.

[12] AGSI+ Transparency Platform, https://agsi.gie.eu/ Last accessed 06.07.2023

[13] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. Consistent flow scenario generation based on open data for operational analysis of European gas transport networks. Accepted for publication by OR 2023 Proceedings.

[14] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. Mathematical optimization based flow scenario generation for operational analysis of European gas transport networks based on open data. Technical Report 24-03. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2024. Available online https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/9578

[15] Inci Yueksel-Erguen, Thorsten Koch, Janina Zittel. A Quality Assessment and Improvement Framework for Supply Infrastructure and Utility Network Datasets. (Under preparation)

[16] ENTSOG. 2017. Security of Supply Scenarios. https://www.entsog.eu/security-of-supply-simulation#union-wide-simulation-of-supply-and-infrastructure-disruption-scenarios Last accessed 10 October 2022.

[17] GasLib-2607 instance. Available online https://gaslib.zib.de/download/data/GasLib-2607-v1-20240708.zip