

Optimization in Digital Supply Chain

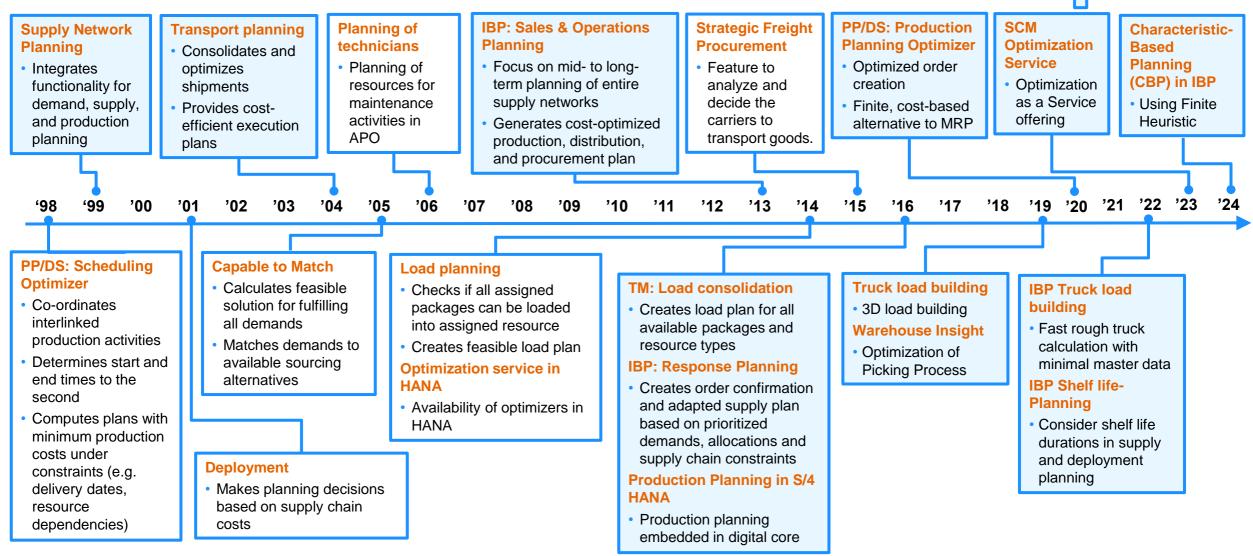
Dr. Jakob Witzig AI & Optimization Algorithm Architect

PUBLIC

Customers of SAP Optimization ...

... produce more than 80% of the coffee and tea we drink each day. ... produce 75%+ of the world's beauty and fragrance products.

... produce more than 85% of the world's athletic footwear.


Customers of SAP Optimization ...

... produce more than 77% of the world's beer.

Optimization in SAP Digital Supply Chain

SAP has developed and delivered optimization solutions in SCM for 25+ years

Focus products

Optimization @ Digital Supply Chain Expertise

Customers

- ~2000 customers
- Different industries
- · Optimization engines as standard software
- Included in cloud & on-premise solutions

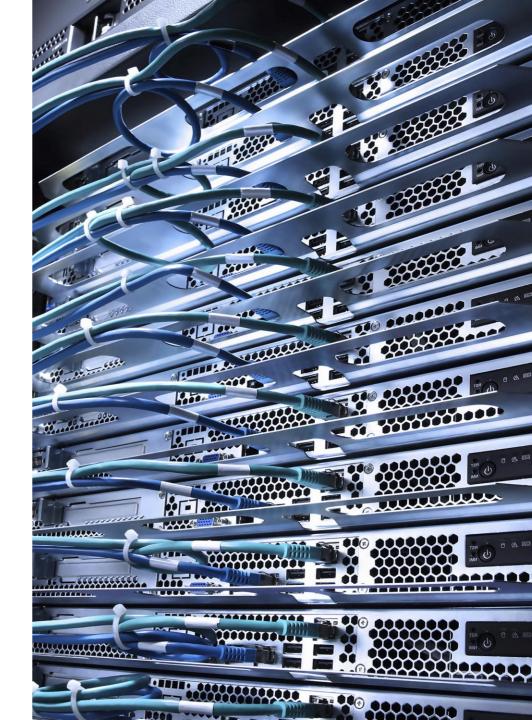
Algorithms

- Linear and mixed-integer Programming
- Meta-Heuristics (Genetic Algorithms, Evolutionary local search,..)
- Integrated ML (data cleaning, parameter setting)
- · Problem dictates algorithm (not the other way around)

Partners

- Gurobi strategic optimization partnership
- Zuse Institute Berlin

Research


- Cooperation with TU Munich
- Research Campus MODAL
- >120 student theses

Optimization Team

70+ optimization and AI/ML experts

• Located in Walldorf, Munich, Budapest and Montral

Optimization @ Digital Supply Chain Challenges

Features & Function

- Need to cover multitude of different requirements across wide range of industries
- Divergent perceptions on critical features across customer base
- Extensibility to support additional requirements, also in cloud-based solutions

Performance / Runtimes

- Wide range of model sizes with varying degrees of complexity
- Tight runtime windows
- Increasing model scope and complexity as supply chains grow and business models evolve

Usability

- Productive use requires robust, fail-safe models and limited specialized knowledge
 on customer side
- Customers expect explanation of optimization results

Service & Support

- Fast delivery of new features and corrections
- Up- and downwards compatibility to reduce maintenance effort
- Extremely high reliability requirements for cloud-based on on-premise solutions
- 24/7 tiered support model

Optimized Planning in Digital Supply Chains – Solution Overview

Plan

- Mid-term production, transportation and purchasing planning
- Fast finite heuristic
 - Backtracking
 - · High service level and low stocks
- Optimization
 - Inventory planning including fair-share
 - Simplified cost maintenance / generation
 - Specialized Deployment Optimization
- Demand-Driven Replenishment (DDMRP)
 - Decoupled local decision taking
- Inventory Optimization
 - Calculate optimal inventory levels
- Load Consolidation (TLB)
 - Group transports into full truck loads

Manufacture

- PP/DS: Detailed Scheduling Optimization
 - Optimized setup sequences
 - Alternative modes
 - High service level and low stocks
 - Finite capacities
- PP/DS: Production Planning Optimization
 - Alternative to MRP
 - Finite capacities
 - Lot sizing
 - Inventory planning

Deliver

Transportation (TM)

- Efficient and sustainable transportation
- High utilization
- Improved speed
- Routing optimization
- Load consolidation
- Truck load building
- Optimal pallet building
- Operative Carrier Selection
- Strategic Freight Procurement

Warehouse (WI)

- Optimal Picking
 - Minimal picking distances
 - Considering capacities & deadlines

Package Building Optimization

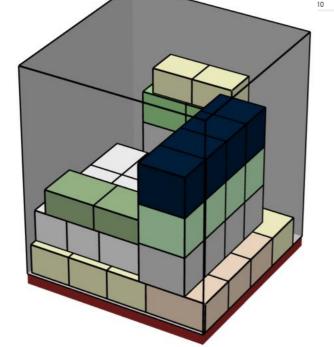
Scenario

Consolidation of product/packages to create pallets in order to minimize number of pallets

Algorithm

Meta Heuristic, Evolutionary Local Search

Remarks:

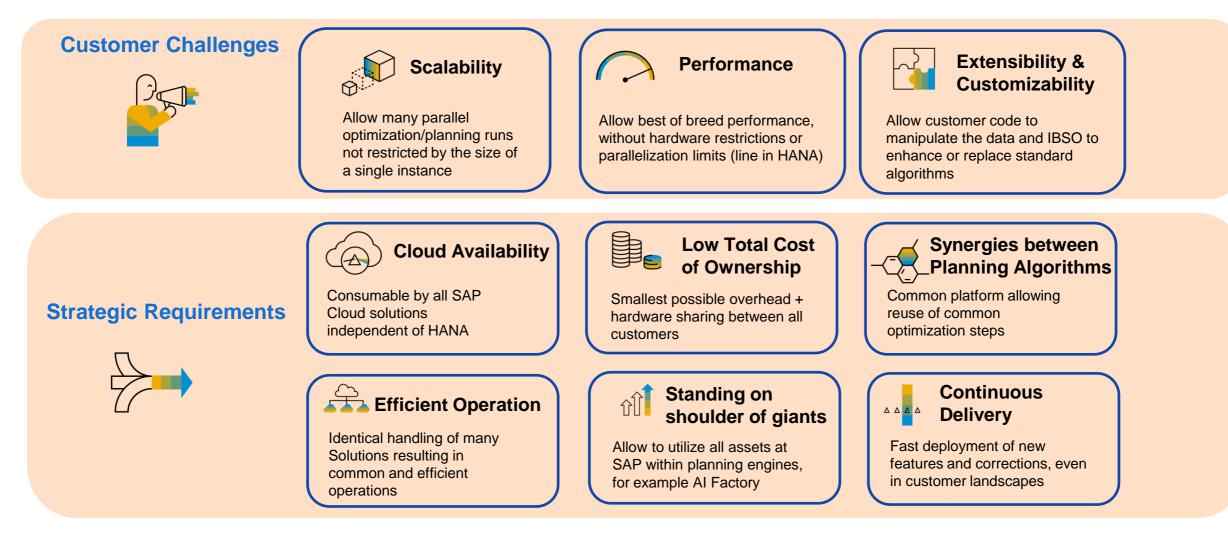

- Optimized pallet building
- Multi-level packaging
- Stackability matrix
- Incompatibilites (between products in mixed carton and in mixed pallet)
- Height, volume and weight constraints
- Orientation constraints of the products
- In combination with tour planning: cross-delivery packaging

Package Building Optimization

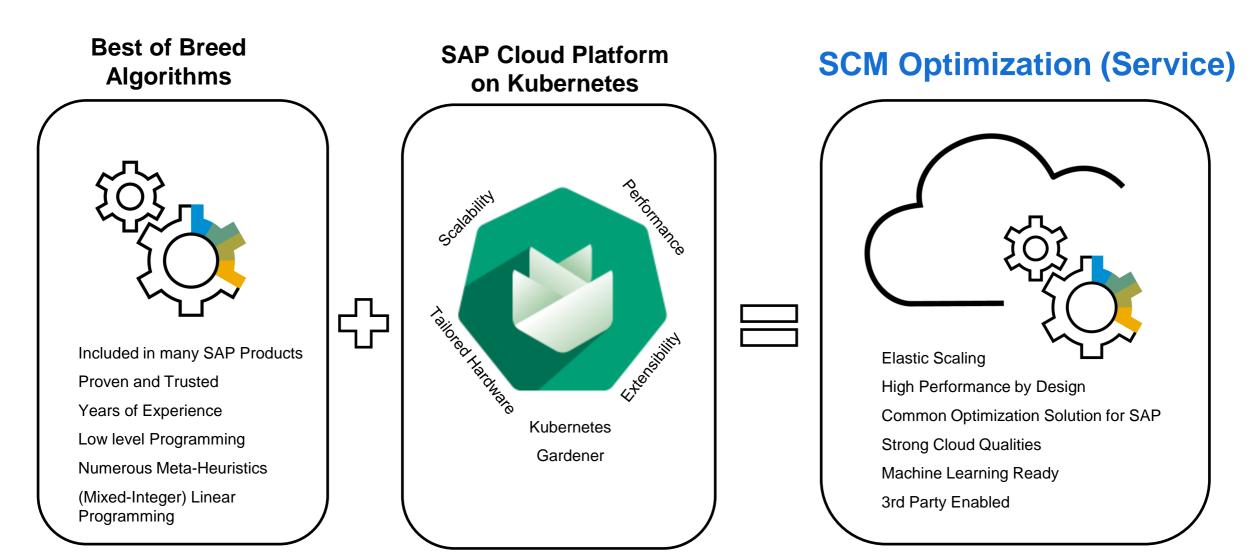
Demand list (20 56) • • • • ×											
ID	Product	Name	Count	Length (mm)	Width (mm)	Height (mm)	Vol sum (mm ³)	Weight (g)	Priority	Stack matrix grp	Stack fa
958752	0	250 TETRA X24 F/	1	219	308	136	9,173,472	6,640	1	1	
953218	0	500 PET X12 B BR(1	292	222	191	12,381,384	7,390	1	1	
952352	0	500 PET X12 B BR(1	292	222	191	12,381,384	7,390	1	1	
957603	0	390 PET X24 FAN1	10	381	256	191	186,293,760	10,280	1	1	
953555	0	14G BAG X100 GR	2	325	250	160	26,000,000	1,570		1	
953685	0	600 FLO X12 P/AE	5	292	222	254	82,326,480	8,130	1	1	
954300	0	600 FLO X12 PADI	1	292	222	254	16,465,296	7,660	1	1	
50200	0	500 PET X12 NTEA	11	292	216	203	140,839,776	6,890	1	1	
50188	0	500 PET X12 NTEA	4	292	216	203	51,214,464	6,890	1	1	
52096	0	500 PET X12 NEST	2	292	216	203	25,607,232	6,890	1	1	
57963	0	350 PET X12 NB V	2	262	200	164	17,187,200	5,530	1	1	
957342	0	390 PET X24 VANI	1	381	256	191	18,629,376	10,280	1	1	
57602	0	390 PET X24 DIET	3	381	256	191	55,888,128	9,900	1	1	
58589	0	1.0KG BAG X1 GR	0	140	90	250	0	1,025	1	1	
58666	0	600 FLO X12 P/AE	4	292	222	254	65,861,184	8,130	1	1	
58668	0	600 FLO X12 P/AE	6	292	222	254	98,791,776	8,130	1	1	
58786	0	1.0KG BAG X1 GR	0	95	60	220	0	1,000	1	1	
		\sim				30	0	262	1	1	
						32	23,603,400	10,000	1	2	
	/					10	31,775,000	9,000	1	2	

Package Building Optimization Current Research Questions

Configure meta heuristics and evolutionary local search



Optimize grouping of packages



SCM Optimization Service

SCM Optimization Service – Motivation

SCM Optimization Service – Solution Approach

SCM Optimization meets AI

Infuse Supply Chain Solutions with Business AI and Analytics

Today, we are already a leader in adopting AI for supply chains as demonstrated by our current projects. Moving forward, we will intensify our efforts with a comprehensive AI acceleration and plan to solidify our leadership position.

- Gradient boosting algorithms for demand forecasting
- Intelligent slotting
- Failure Curve Analytics
- Automated parameter configuration
- ...

Optimization

- Transportation plans
- Supply network
- Workflows in a warehouse
- Production scheduling
- ..

GenAl

 Explanation of supply chain planning run

Next:

- Manufacturing issue analysis and solution assistant
- Advanced Failure Modes Analysis
- ...

Customer collaboration and research partnerships

Next: Combine optimization with ML models, Quantum computing

Customer adoption and value validation

Thank you.

Contact information:

Dr. Jakob Witzig jakob.witzig@sap.com Jakob Witzig AI & Optimization Algorithm Architect

