Optimization in practice

From long to short, from planning to operation of (power) grids

analytical. quantitative. tech.

Berlin, 27.09.2024

Short Profile

Short Profile

Working at d-fine allows me to continue pursuing my academic passion of mathematical optimization and putting my expertise into practice by tackling real-world problems.

d-fine is a European consultancy focusing on analytical, quantitative and technological endeavours

Together with our clients, we drive strategies, develop business designs and implement tailored IT solutions. A collaborative and trustworthy relationship is important to us.

Our industry experience and competences

implementation

d-fine project examples

OPTIMIZATION IN PRACTICE

Project examples: Energy grid investments 01

PROJECT EXAMPLE: ENERGY GRID INVESTMENTS

01.01 Introduction

Energy transition – one of the greatest challenges of the 21st century⁰¹

Sector-linked view of the energy industry for optimal planning of future investments

01 Renewable energy (renewables) includes the energy sources wind, PV, etc.. 02 Oils includes crude oil as well as naphtha (chemical industry) and kerosene (aviation) from Fischer-Tropsch synthesis 03 Demand-side management (DSM) covers the household, industry & transport sectors as well as vehicle-2-grid (V2G).

PyPSA-Eur – An Open-Source Energy System Model

- Fully equipped with data, solver, configuration, etc.
- Transparent development (GitHub)
- Over 47 users of the PyPSA framework in science and industry (e.g. Shell, TransnetBW, TUB, KIT, ...)

01 https://github.com/PyPSA/pypsa-eur

Why Linear Programming?

60 Nodes 10 Time steps, i.e. $\Delta t = 876h$ CPU time Optimisation: 5,6s

60 Nodes 730 Time steps, i.e. $\Delta t = 12h$ CPU time Optimisation: 4h Mio.

60 Nodes

2190 Time steps, i.e. $\Delta t = 4h$ CPU time Optimisation: 15h

Energy system models are "extreme-scale" and therefore modeling with non-linearities is only permissible for smaller sections (temporal or spatial).

PROJECT EXAMPLE: ENERGY GRID INVESTMENTS

PyPSA: Power System Analysis 01.02

Example Network Optimization: Minimum-cost flow problem

Given a network consisting of a directed Graph $G=(V,E)$ with node supply/demand b_i for each node $i \in V$, costs $c_{i,j} \in \mathbb{R}$ and capacities $u_{i,j} \in \mathbb{R}$ for each edge $(i,j) \in E$. Find the cheapest possible way to meet the demand in the network.⁰¹

Assumption: The demand equals the given supply

$$
\sum_{i\in V}b_i=0
$$

Objective function

$$
\min \sum_{(i,j) \in E} c_{i,j} x_{i,j}
$$

Flow balancing constraints

$$
\sum_{j:(i,j)\in V} x_{i,j} - \sum_{j:(j,i)\in V} x_{j,i} = b_i
$$
 for every $i \in V$

Capacity constraints

$$
0 \leq x_{i,j} \leq u_{i,j} \text{ for all } (i,j) \in E
$$

Real-world application of network optimization:

- communication systems
- manufacturing systems
- **·** transportation systems
- water systems
- energy systems

Remarks

- \leq 0, demand at node *j* ∈ *V*
- $$ > 0 , supply at node $j \in V$
- $c_{i,i}$ costs for edge $(i, j) \in E$
- $x_{i,i}$ flow over edge $(i, j) \in E$
- $u_{i,j}$ capacity of edge $(i,j) \in E$

Note:

$$
x_{i,j} = -x_{j,i} \ \forall \ (i,j) \in E
$$

01 https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecturenotes/MIT15_082JF10_lec01.pdf

Optimization in practice © 2024 d-fine

01 Project examples: Energy grid investments

01.02 PyPSA: Power System Analysis

Lets take a look at energy system modelling with PyPSA …

- **PyPSA minimizes** the **total system costs** and can be used to 01 simultaneously **optimize dispatch** and **capacity** of conversion technologies, stores and grid infrastructure**.**
- The package has **predefined components**, for example
	- Generators
	- Stores
	- Links
	- Loads
- Moreover, every component has predefined properties, for example all components that convert, transfer or store energy have **fixed** and **variable costs**.
- The **loads** are **inelastic** and have to be met for every time step.
- The dispatch and capacity **variables** are **continuous**. Therefore, the resulting **optimization problem** is **linear**, if unit commitment for generators is not included.
- It's possible to model technologies, which can **transfer energy in both directions** (bidirectional edge).

01 Figure based on: T. Brown et al, Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system, Energy, Vol. 160, Pages 720-739, 2018.

Optimization in practice © 2024 d-fine

01.02 PyPSA: Power System Analysis

Energy system modelling – Objective function

In PyPSA⁰¹ the objective function minimizes the sum of all capital and operational costs (variable part) for all components for the given time horizon.

minimize
$$
\sum_{n,s} c_{n,s} \overline{g}_{n,s} + \sum_{n,s} c_{n,s} \overline{h}_{n,s} + \sum_l c_l F_l + \sum_t w_t \left[\sum_{n,s} o_{n,s,t} g_{n,s,t} + \sum_{n,s} o_{n,s,t} h_{n,s,t} + \sum_l o_{l,t} f_{l,t} \right]
$$

Variables/Parameters

01 https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#objective-function

Energy system modelling – Other constraints

Most use-cases require **additional constraints** in order to represent **political goals** or **technology restrictions**. One example is the **reduction of CO² -emissions**. ⁰¹ Keep in mind this actual constraint depends highly on the specific model and how $CO₂$ emissions are included.

$$
\sum_{n,s,t} \frac{1}{\eta_{n,s}} w_t * g_{n,s,t} * e_{n,s} + \sum_{n,s} (e_{n,s,t=-1} - e_{n,s,t=|T|-1}) * e_{n,s} \leq \text{CAP}_{CO2}
$$

Variables/Parameters $\eta_{n,s}$ efficiency generator s at bus n w_t weighting of time step t $g_{n, st}$ dispatch from technology s at bus n at time step t $e_{n,s}$ CO₂-equivalent-tonne-per-MWh of the energy carrier of generator/store s at bus n $e_{n,s,t}$ energy in store s at bus n at time step t $\mathsf{CAP}_{\mathcal{CO}2}$ upper limit on CO_2 -equivalent emissions in t/MWh **Note:** The shadow price of this equation is the system wide $CO₂$ price. **Example**⁰² **– PyPSA-Eur-Sec** load d_m **bus m** store $h_{m,s}$ generator $g_{m,w}$ with CO₂ f_1 **CO² -Emissions** emissions $e_{m,w}$

01 https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#global-constraints 02 https://github.com/PyPSA/pypsa-eur-sec

PROJECT EXAMPLE: ENERGY GRID INVESTMENTS

01.03 Outlook

Renewable energies are gaining ground and energy costs are rising

© 2024 d-fine

01 Project examples: Energy grid Optimization in practice 01.03 Outlook investments

The grids are a connecting element and enable the energy transition

ENERGY GRIDS AS FACILITATORS OF THE ENERGY TRANSITION

The transportation and distribution of individual energy sources will change significantly as a result of sectoral integration:

Few, centralized producers \rightarrow many, decentralized consumers → prosumers

Gas imports \rightarrow Biogas & syngas

 $CH4 \rightarrow H2$ admixture, hydrogen network

THE POSSIBLE ADDITIONAL ROLE OF NETWORK OPERATORS

The new challenges are turning grid operators into service providers and points of contact for customer-specific questions:

- Should I produce my own hydrogen or obtain it from the grid?
- How can I operate my vehicle fleet in a grid-friendly way?
- Are there potential customers for my waste heat?
- How can I make optimum use of the energy generated on site?

OPTIMIZATION IN PRACTICE

Project example: Optimization of Remedial Actions 02

PROJECT EXAMPLE: OPTIMIZATION OF REMEDIAL ACTIONS

Project Background 02.01

Motivation and background

The European energy grid is subject to fluctuations and uncertainties

- The share of renewable energies in the grid is steadily increasing
- Renewable energies are subject to strong fluctuations and uncertainties
- The energy grid must be increasingly protected against unexpected fluctuations

Energy production and consumption must be balanced

The grid must be able to transport energy from the producer to the consumer

The grid must remain stable even in the event of outages

01 https://www.entsoe.eu/data/map/

Grid stability must remain guaranteed even with increasing uncertainties.

Remedial actions (RAs) are used to maintain **grid stability**. Various remedial actions are available to eliminate congestion on grid elements. Some are triggered automatically, others can be controlled by the operator.

© 2024 d-fine

of Remedial Actions

31

Remedial actions (RAs) are used to maintain **grid stability**. Various remedial actions are available to eliminate congestion on grid elements. Some are triggered automatically, others can be controlled by the operator.

Remedial actions (RAs) are used to maintain **grid stability**. Various remedial actions are available to eliminate congestion on grid elements. Some are triggered automatically, others can be controlled by the operator. **Generation** Generation **Redispatch** Hydro unit unit storage Network element The **amount of electricity** supplied (dispatched) by the \equiv power plants or water reservoirs in different parts of the grid is changed. This is a **costly RA** with long activation times. Phase Shifting **Transformer** Load Phase Shifting Transformer A phase-shifting transformer is used to **manipulate the** Network element Network element Network element **active power flow** in a line. It is a **non-costly RA** with **discrete tap positions** that can unbalance the grid if not compensated for. Hydro storage Network element ⊫ **Topology changes**

> To avoid grid overloads, a line can be **disconnected**. This can **significantly change other load flows** and the model becomes more complex.

© 2024 d-fine

02 Project example: Optimization Optimization in practice 02.01 Project Background of Remedial Actions

Load

PROJECT EXAMPLE: OPTIMIZATION OF REMEDIAL ACTIONS

Optimization Problem Formulation 02.02

Optimization problem for the application of remedial actions

The aim is to **reduce the cost** of using RAs. In addition, we can reduce the volume and number of RAs. In order to ensure grid stability, the **load flow limits** on the transmission lines must be adhered to.

$$
\min_{RA} \sum c_{RA} B_{RA,ON} + c_{\Delta,RA} \sum \Delta P_{RA} + w_{n,RA} \sum |B_{RA}|
$$

Variables / Parameters

Load flows must remain **below the limit** of the network elements.

EXTERN A temporary limit must never be exceeded in order to prevent network element failures.

$$
P^t + \Delta P_{RA}^{\quad t} \leq P_{temp,max}
$$

A permanent limit allows small overloads for a short time. $P^t > P_{perm,max} \Rightarrow P^{t+k} + \Delta P_{RA}^{t+k} \leq P_{perm,max}$

Grid balance

After the application of RA, the grid must be balanced, i.e. the sum of all power flow changes must be zero.

$$
\sum \Delta P_{RA,up} + \sum \Delta P_{RA,down} = 0
$$

Alternating current (AC) power-flow model

To ensure the security of the grid a **high accuracy** of the model is needed. We use an AC load flow model instead of an DC approximation. The AC power flow is a **non-linear** system of equations.

Active and reactive power balance

$$
0 = -P_i + \sum_{k=1}^{n} |V_i||V_k|(G_{ik}\cos\theta_{ik} + B_{ik}\sin\theta_{ik})
$$

$$
0 = -Q_i + \sum_{k=1}^{n} |V_i||V_k|(G_{ik}\sin\theta_{ik} - B_{ik}\cos\theta_{ik})
$$

Variables / Parameters

- P_i Active power at bus i
- Q_i Reactive power at bus i
- V_i Voltage magnitude at bus i
- θ_{ik} Voltage angle between bus *i* and bus *k*
- G_{ik} real part of the bus admittance matrix of bus i and bus k
- B_{ik} reactive part of the bus admittance matrix of bus i and bus k

Newton-Raphson solution method

$$
\begin{bmatrix} \Delta \theta \\ \Delta |V| \end{bmatrix} = -J^{-1} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}
$$

with

$$
\Delta P_i = -P_i + \sum_{k=1}^n |V_i||V_k|(G_{ik}\cos\theta_{ik} + B_{ik}\sin\theta_{ik})
$$

$$
\Delta Q_i = -Q_i + \sum_{k=1}^n |V_i||V_k|(G_{ik}\sin\theta_{ik} - B_{ik}\cos\theta_{ik})
$$

$$
J = \begin{bmatrix} \frac{\partial \Delta P}{\partial \theta} & \frac{\partial \Delta P}{\partial |V|} \\ \frac{\partial \Delta Q}{\partial \theta} & \frac{\partial \Delta Q}{\partial |V|} \end{bmatrix}
$$

Optimization in practice © 2024 d-fine

02.02 Optimization Problem Formulation

Open source remedial action optimization and capacity calculation

Optimization in practice © 2024 d-fine

02 Project example: Optimization of Remedial Actions

02.02 Optimization Problem Formulation

Reach out to us with your questions!

Merlin Viernickel Senior Consultant Mobile +49 1525 7975514 Merlin.Viernickel@d-fine.com

Dr Jennifer Uebbing Senior Consultant Mobile +49 15257975561 Jennifer.Uebbing@d-fine.com

