VRPPD Challenge CO@work 2024

Team5

Andras Czegel, <u>Federico Michelotto</u>, Matea Miskovic, Franziska Strobel

Implemented Approach

- Greedy constructive heuristic to build the initial solution
- Ruin-and-Recreate

 Remove a susbet of deliveries
 Re-insert the removed deliveries

Initial Solution

best_insertion(solution, delivery):

returns the min cost {courier, pickup and dropoff position}

constructive_heur():

- $\circ~$ shuffle the deliveries
- $\circ~$ serve each delivery in the best_insertion allocation

Max attempts = 100

Stop as soon as a feasible solution that serves all deliveries is found

Ruin-and-Recreate

• Remove a susbet of deliveries (Ruin)

Simulate a random walk starting from a random selected courier
 Remove all deliveries belonging to the visited couriers
 Stop the ruin when *R* deliveries have been removed (*R* between 5 and 9)

- Re-insert the removed deliveries (Recreate)
 - o Apply constructive_heur
 - \circ 3 recreate attempts
 - \odot Accept only non-worsening solutions!
 - Solutions with more served deliveries (any cost)
 - OR with the same number of deliveries and not more expensive

Ruin-and-Recreate

Remove a susbet of deliveries (Ruin)

 Simulate a random walk starting from a random selected courier
 Remove all deliveries belonging to the visited couriers

• Stop the ruin when *R* deliveries have been removed (*R* between 5 and 9)

- Re-insert the removed deliveries (Recreate)
 - o Apply constructive_heur
 - \odot 3 recreate attempts
 - O Accept only non-worsening solutions!
 - Solutions with more served deliveries (any cost) BUG!
 - OR with the same number of deliveries and not more expensive

Experiments Settings

- Implemented in C++
- Timelimit

 \circ 216 seconds for 45 instances \circ 600 seconds for 5 instances

• Stops after 100k consecutive non-improving iterations

Thanks