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Approximation

Given A ∈ Rm×n and b ∈ Rm, the map f :Rn →
Rm, x 7→ A x+ b is an affine linear map.

An ℓ-layer perceptron is a map x 7→ fℓ ◦
g . . .◦ f2 ◦g◦ f1(x) where f1, . . . , fℓ are affine
linear maps and g a non-linear activation
function.

A neural network is a multilayer
perceptron that accounts for some
structure in the input.
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Approximation

Let us assume we are using ReLU activation, that is g(x) = max(x, 0).

Universal Approximation Theorem
Any continuous function with compact support can be approximated
arbitrarily closely by a 2-layer perceptron.

Under additional assumptions it can also be approximated by a (not
necessarily 2-layer) perceptron with width at most dimension of the input.

See Shen et al. [15] for a study of the optimal depth–width–tradeoff.

Question
How few layers can a multilayer perceptron have that exactly models
a specific function, e.g., the maximum of its input? See Hertrich et al. [9]
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Approximation

The answer to many questions is given by concrete objects ...

Sphere packing
What is the densest arrangement of congruent
spheres in Euclidean space?

Hadwiger Nelson
Howmany colors do you need such that no two
points at unit distance have the same color?

Mantel’s Theorem
What is the maximum edge density of a graph
without triangles?

Idea. Somehow get a neural network to represent these objects.
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Approximation

1 Represent discrete objects such as graphs or 0-1-matrices
through binary vectors and define a cost function.

1 0 1

2 Model a distribution over these vectors through a neural
network evaluated in a round-based fashion.

_ 1 _ 1 0 _ 1 0 1

3 Update the parameters of the neural network through
Reinforcement Learning to incentivise lower cost.

1 1 0✓ 1 0 0
7

0 0 0
7

0 1 1✓ 1 1 1
7
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Approximation

Any connected graph on n vertices with
matching number µ and largest eigen-
value λ1 satisfies λ1 + µ ≥

√
n− 1+ 1.

Aouchiche and Hansen [1]

Any connected graph with diameter D,
proximity π and distance spectrum ∂1 ≥
. . . ≥ ∂n satisfies π + ∂⌊2D/3⌋ > 0.

Aouchiche and Hansen [2]

What is the largest permanent of an n×n
0-1 matrix A = (ai,j) that avoids the pat-
tern ai1,i3 = ai2,i1 = ai3,i2 = 1?

Brualdi and Cao [3]
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Generalization

More commonly, machine learning applications are (or at least used
to be) supervised regression or classification tasks on datasets:

R262 144

{0, 1}

Universal approximation tells us that we can fit any dataset, even
random noise! Why would this generalize to any actual application?
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Generalization

Classical statistics emphasizes sim-
ple models, guarantees, assump-
tions about the data, and inter-
pretability of the output.

Big Data relies on overparameter-
ization, offers little formal guaran-
tees or interpretability, and accepts
behavior like adversarial examples.

Generalization is achieved through
many practical tools, but the cur-
rent state of machine learning has
been likened to alchemy. Ali Rahimi
at NeurIPS 2017 xkcd.com
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Generalization

Two collaborations from Google DeepMind with András Juhász and Marc
Lackenby (knot theory) and Geordie Williamson (representation theory).
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Generalization

A knot is an embedding of the S1 into
R3. Two knots equivalent if they can con-
tinuously be deformed into each other.
An invariant is a function on equivalence
classes of knots.

Juhász and Lackenby believed in an undiscovered relation between
geometric and algebraic varieties.

geometric varieties
Meridional translation
Longitudinal translation

Short geodesic
Injectivity radius

...

algebraic varieties

Signature
Jones polynomial

...
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Generalization

Based on this, it was conjectured that∣∣ 2σ(K)− Re
(
λ(K)/µ(K)

)∣∣ < c1 vol(K) + c2∣∣ 2σ(K)− Re
(
λ(K)/µ(K)

)∣∣ < c vol(K) inj(K)−3

which was turned into a theorem in a separate publication [4]!
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Emergence

Over the last few years we have increasingly seen systems
transcending big data with capabilities that verge on emergence.
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Emergence

Why has theoretical math not been affected by this (yet)?

Large Language Models (LLMs) have been called stochastic parrots
that do not transcend the quality of their input. Unlike (some)
humans, they do not internally reason before answering.

Computation has seemingly gone from precise output when given
precise input to accepting fuzzy input at the cost of fuzzy output.

But this story is not entirely true ...
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Emergence

Math has become a proving ground for AI companies claiming to
have figured out reasoning while avoiding ‘hallucinations’.
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Emergence

Many approaches work directly in formal proof languages...

Figure taken from [18]

The Role of Machine Learning for Mathematics 19



Pointers for your own research



Pointers for your own research

• Implementing a machine learning approach is often hard for
entirely different reasons than mathematics is hard.

• Know in advance if you care about the application or method.

• Be realistic in you expectations of what you can achieve.

• If you end up publicizing your method, be aware of existing
approaches (in particular beyond Machine Learning):

• Discrete black-box optimization has been studied since the 60s
with effective approaches like Simmulated Annealing [10]. They
have been extensively used to find objects like Ramsey colorings.

• Graffiti [6] or AutoGraphiX [8] have been formulating and refuting
conjectures in extremal graph theory since the 80s.
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Thank you!
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