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The energy transition needs both
heat and power transformation
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➢ District heating networks can play a 
significant role in the decarbonization

➢ 6 million German households (= 14%) 
are connected to DHNs
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➢ Heat sector including space heat, process heat & 
cooling adds up to 59% of the German end energy

➢ Share of EE in power sector already > 45% while heat 
sector remains below 20%

https://wärme.vattenfall.de/energie-news/
fahrplan-zur-dekarbonisierung/

District
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Exploring transformation pathways 
on an urban scale
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https://wärme.vattenfall.de/energie-news/fahrplan-zur-dekarbonisierung/

Decarbonization Roadmap Berlin Goals:

• Exploring transformation pathways with 
reasonable trade-offs between economic 
and environmental targets

• Long-term investment planning of an 
energy provider on an urban scale



District heating network model
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Fuel Purchase
(Wood, Methane, etc.)

Heat Generation &
Transportation

(combined heat and power,
heating stations, etc.)

Heat Storage

Heat Demand

Power Trading

Fuel
Power
Heat

Heat Import

Input: demand/price forecast time series
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Operation optimization
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The operation optimization is modeled as a unit 
commitment problem: 

• commitment decisions: whether a unit is 
producing/storing energy at a time, 

• production decisions: how much energy a unit is 
producing/storing at a time, 

• network flow decisions: how much energy is 
flowing on each edge of the grid 
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MIP: operation optimization
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min ෍

𝑡∈𝑇

𝑐𝑜𝑠𝑡𝑠
𝑜𝑝

(𝑧𝑡, 𝑠𝑡, ℎ𝑡, 𝑝𝑡, 𝑒𝑡, 𝑥𝑡)

𝑅 set of resources
𝐼 set of generating units
𝐾 set of storage units
𝑇 set of time steps
𝐷𝑟 demand of resource r
𝑎, 𝑐 storage and capacity 

parameters

𝒛𝒊,𝒕 ∈ 𝟎, 𝟏  operation of unit i at time t
𝒙

𝒕,𝒊𝒊𝒏
𝒓 , 𝒙𝒕,𝒊𝒐𝒖𝒕

𝒓 ∈ ℝ≥𝟎 incoming/outgoing flow of resource r at unit i at time t

𝑠𝑖,𝑡 ∈ 0,1  activation of a unit i at time t
ℎ𝑡,𝑘

𝑟  ∈ ℝ≥0 level of resource r in storage k at time t

𝑝𝑡
𝑟 ∈ ℝ≥0 purchased amount of resource r at time t

𝑒𝑡
𝑟 ∈ ℝ≥0 sold amount of resource r at time t

Main Variables:

Objectives:



MIP: operation optimization
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෍

𝑖∈𝐼

𝑥𝑡,𝑖𝑜𝑢𝑡
𝑟 + ෍

𝑘∈𝐾

𝑥𝑡,𝑘𝑜𝑢𝑡
𝑟 + 𝑝𝑡

𝑟 = 𝐷𝑟 + ෍

𝑖∈𝐼

𝑥
𝑡,𝑖𝑖𝑛
𝑟 + ෍

𝑘∈𝐾

𝑥
𝑡,𝑘𝑖𝑛
𝑟 + 𝑒𝑡

𝑟 ∀𝑟 ∈ 𝑅

𝑥
𝑡,𝑖𝑜𝑢𝑡
𝑟2 = 𝜑𝑖,𝑡

𝑟1,𝑟2 𝑥
𝑡,𝑖𝑖𝑛
𝑟1  ∀𝑖 ∈ I, t ∈ 𝑇, 𝑟1, 𝑟2 ∈ 𝑅

𝑠𝑖,𝑡 ≤ 𝑧𝑖,𝑡,         𝑠𝑖,𝑡 ≤ 1 − 𝑧𝑖,𝑡,         𝑠𝑖,𝑡 ≥ 𝑧𝑖,𝑡  − 𝑧𝑖,𝑡−1                                ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇

෍

𝜏∈𝑇𝑖,𝑡
𝑢𝑝

𝑠𝑖,𝑡 − 𝑧𝑖,𝑡 ≤ 0 , ෍

𝜏∈𝑇𝑖,𝑡
𝑑𝑜𝑤𝑛

𝑠𝑖,𝑡 + 𝑧𝑖,𝑡 − 1 ≤ 0 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇

𝑥𝑡+1,𝑖𝑜𝑢𝑡
𝑟 − 𝑥𝑡,𝑖𝑜𝑢𝑡

𝑟 ≤ 𝑎𝑖
𝑢𝑝

,       𝑥𝑡,𝑖𝑜𝑢𝑡
𝑟 − 𝑥𝑡+1,𝑖𝑜𝑢𝑡

𝑟 ≤ 𝑎𝑖
𝑑𝑜𝑤𝑛                 𝑖 ∈ I, t ∈ 𝑇, 𝑟 ∈ 𝑅

ℎ𝑡+1,𝑘
𝑟 = 𝑎𝑡,𝑘

𝑙𝑜𝑠𝑠ℎ𝑡,𝑘
𝑟 + 𝑎𝑡,𝑘

𝑙𝑜𝑎𝑑𝑥
𝑡,𝑘𝑖𝑛
𝑟 − 𝑎𝑡,𝑘

𝑢𝑛𝑙𝑜𝑎𝑑𝑥𝑡,𝑘𝑜𝑢𝑡
𝑟  k ∈ 𝐾, t ∈ 𝑇, 𝑟 ∈ 𝑅

ℎ, 𝑥, 𝑝, 𝑒 ≤ 𝑐𝑚𝑎𝑥, ℎ, 𝑥, 𝑝, 𝑒 ≥ 𝑐𝑚𝑖𝑛

Constraints

resource conversion

storage management

capacities

activation

minimum up and
down times

ramping

resource balancing 

𝑧 = operation, 𝑥 = flow,  𝑠 = activation,
ℎ = storage level, 𝑝 = resource import, 𝑒 = resource export



Design optimization
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The operation optimization is modeled as a unit 
commitment problem: 

• commitment decisions: whether a unit is 
producing/storing energy at a time, 

• production decisions: how much energy a unit is 
producing/storing at a time, 

• network flow decisions: how much energy is 
flowing on each edge of the grid 

 

Design optimization or investment planning comprises: 

• design/investment decisions: whether an 
investment is selected.
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Design and operation optimization
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The operation optimization is modeled as a unit 
commitment problem: 

• commitment decisions: whether a unit is 
producing/storing energy at a time, 

• production decisions: how much energy a unit is 
producing/storing at a time, 

• network flow decisions: how much energy is 
flowing on each edge of the grid 

 

Design optimization or investment planning comprises: 

• design/investment decisions: whether an 
investment is selected.
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Design and operation optimization
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The operation optimization is modeled as a unit 
commitment problem: 

• commitment decisions: whether a unit is 
producing/storing energy at a time, 

• production decisions: how much energy a unit is 
producing/storing at a time, 

• network flow decisions: how much energy is 
flowing on each edge of the grid 

 

Design optimization or investment planning comprises: 

• design/investment decisions: whether an 
investment is selected.
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MIP: design and operation optimization
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min ෍

𝑡∈𝑇

𝑐𝑜𝑠𝑡𝑠
𝑜𝑝

(𝑧𝑡, 𝑠𝑡, ℎ𝑡, 𝑝𝑡, 𝑒𝑡, 𝑥𝑡) + 𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑣 ො𝒛

𝑅 set of resources
𝐼 set of generating units
𝐾 set of storage units
𝑇 set of time steps
𝐷𝑟 demand of resource r
𝑎, 𝑐 storage and capacity 

parameters

𝑧𝑖,𝑡 ∈ 0,1  operation of unit i at time t
𝑥

𝑡,𝑖𝑖𝑛
𝑟 , 𝑥𝑡,𝑖𝑜𝑢𝑡

𝑟 ∈ ℝ≥0 incoming/outgoing flow of resource r at unit i at time t

ො𝒛𝒊 ∈ 𝟎, 𝟏  investment decision for unit i
𝑠𝑖,𝑡 ∈ 0,1  activation of a unit i at time t
ℎ𝑡,𝑘

𝑟  ∈ ℝ≥0 level of resource r in storage k at time t
𝑝𝑡

𝑟 ∈ ℝ≥0 purchased amount of resource r at time t
𝑒𝑡

𝑟 ∈ ℝ≥0 sold amount of resource r at time t

Main Variables:

Objectives:



MIP: design and operation optimization
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෍

𝑖∈𝐼

𝑥𝑡,𝑖𝑜𝑢𝑡
𝑟 + ෍

𝑘∈𝐾

𝑥𝑡,𝑘𝑜𝑢𝑡
𝑟 + 𝑝𝑡

𝑟 = 𝐷𝑟 + ෍

𝑖∈𝐼

𝑥
𝑡,𝑖𝑖𝑛
𝑟 + ෍

𝑘∈𝐾

𝑥
𝑡,𝑘𝑖𝑛
𝑟 + 𝑒𝑡

𝑟 ∀𝑟 ∈ 𝑅

𝒛𝒊,𝒕  ≤  ො𝒛𝒊 ∀𝒊 ∈ 𝑰, 𝒕 ∈ 𝑻

𝑥
𝑡,𝑖𝑜𝑢𝑡
𝑟2 = 𝜑𝑖,𝑡

𝑟1,𝑟2 𝑥
𝑡,𝑖𝑖𝑛
𝑟1  ∀𝑖 ∈ I, t ∈ 𝑇, 𝑟1, 𝑟2 ∈ 𝑅

𝑠𝑖,𝑡 ≤ 𝑧𝑖,𝑡,         𝑠𝑖,𝑡 ≤ 1 − 𝑧𝑖,𝑡,         𝑠𝑖,𝑡 ≥ 𝑧𝑖,𝑡  − 𝑧𝑖,𝑡−1                                ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇

෍

𝜏∈𝑇𝑖,𝑡
𝑢𝑝

𝑠𝑖,𝑡 − 𝑧𝑖,𝑡 ≤ 0 , ෍

𝜏∈𝑇𝑖,𝑡
𝑑𝑜𝑤𝑛

𝑠𝑖,𝑡 + 𝑧𝑖,𝑡 − 1 ≤ 0 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇

𝑥𝑡+1,𝑖𝑜𝑢𝑡
𝑟 − 𝑥𝑡,𝑖𝑜𝑢𝑡

𝑟 ≤ 𝑎𝑖
𝑢𝑝

,       𝑥𝑡,𝑖𝑜𝑢𝑡
𝑟 − 𝑥𝑡+1,𝑖𝑜𝑢𝑡

𝑟 ≤ 𝑎𝑖
𝑑𝑜𝑤𝑛                 𝑖 ∈ I, t ∈ 𝑇, 𝑟 ∈ 𝑅

ℎ𝑡+1,𝑘
𝑟 = 𝑎𝑡,𝑘

𝑙𝑜𝑠𝑠ℎ𝑡,𝑘
𝑟 + 𝑎𝑡,𝑘

𝑙𝑜𝑎𝑑𝑥
𝑡,𝑘𝑖𝑛
𝑟 − 𝑎𝑡,𝑘

𝑢𝑛𝑙𝑜𝑎𝑑𝑥𝑡,𝑘𝑜𝑢𝑡
𝑟  k ∈ 𝐾, t ∈ 𝑇, 𝑟 ∈ 𝑅

ℎ, 𝑥, 𝑝, 𝑒 ≤ 𝑐𝑚𝑎𝑥, ℎ, 𝑥, 𝑝, 𝑒 ≥ 𝑐𝑚𝑖𝑛

Constraints

resource conversion

storage management

capacities

activation

minimum up and
down times

ramping

𝐢𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭 𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧

resource balancing 

𝑧 = operation, ො𝒛 = investment decision, 𝑥 = flow,  𝑠 = activation,
ℎ = storage level, 𝑝 = resource import, 𝑒 = resource export



MIP: design and operation optimization
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𝑅 set of resources
𝐼 set of generating units
𝐾 set of storage units
𝑇 set of time steps
𝐷𝑟 demand of resource r
𝑎, 𝑐 storage and capacity 

parameters

𝒛𝒊,𝒕 ∈ 𝟎, 𝟏  operation of unit i at time t
𝒙

𝒕,𝒊𝒊𝒏
𝒓 , 𝒙𝒕,𝒊𝒐𝒖𝒕

𝒓 ∈ ℝ≥𝟎 incoming/outgoing flow of resource r at unit i at time t

ො𝒛𝒊 ∈ 𝟎, 𝟏  investment decision for unit i
𝑠𝑖,𝑡 ∈ 0,1  activation of a unit i at time t
ℎ𝑡,𝑘

𝑟  ∈ ℝ≥0 level of resource r in storage k at time t

𝑝𝑡
𝑟 ∈ ℝ≥0 purchased amount of resource r at time t

𝑒𝑡
𝑟 ∈ ℝ≥0 sold amount of resource r at time t

Main Variables:

Objectives:

min ෍

𝑡∈𝑇

𝑐𝑜𝑠𝑡𝑠
𝑜𝑝

(𝑧𝑡, 𝑠𝑡, ℎ𝑡, 𝑝𝑡, 𝑒𝑡, 𝑥𝑡) + 𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑣 ො𝒛



MIP: multi-objective 
design and operation optimization
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min 𝑓1
𝑖𝑛𝑣 Ƹ𝑧 + ෍

𝑡∈𝑇

𝑓1
𝑜𝑝

(𝑧𝑡, 𝑠𝑡, ℎ𝑡, 𝑝𝑡, 𝑒𝑡, 𝑥𝑡) , ෍

𝑡∈𝑇

𝑓2( 𝑝𝑡, 𝑥𝑡) , ෍

𝑡∈𝑇

𝑓3(𝑥𝑡)

𝑅 set of resources
𝐼 set of generating units
𝐾 set of storage units
𝑇 set of time steps
𝐷𝑟 demand of resource r
𝑎, 𝑐 storage and capacity 

parameters

𝒛𝒊,𝒕 ∈ 𝟎, 𝟏  operation of unit i at time t
𝒙

𝒕,𝒊𝒊𝒏
𝒓 , 𝒙𝒕,𝒊𝒐𝒖𝒕

𝒓 ∈ ℝ≥𝟎 incoming/outgoing flow of resource r at unit i at time t

ො𝒛𝒊 ∈ 𝟎, 𝟏  investment decision for unit i
𝑠𝑖,𝑡 ∈ 0,1  activation of a unit i at time t
ℎ𝑡,𝑘

𝑟  ∈ ℝ≥0 level of resource r in storage k at time t

𝑝𝑡
𝑟 ∈ ℝ≥0 purchased amount of resource r at time t

𝑒𝑡
𝑟 ∈ ℝ≥0 sold amount of resource r at time t

Main Variables:

Objectives:

costs emissions CHP heat
(CHP = combined heat and power plants)



Multi-objective optimization (MOO)
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Let 𝑓𝑖: 𝑋 → ℝ, 𝑖 ∈ 1, … , 𝑘  be 𝑘 objective functions of a minimization problem. Given two feasible solutions 𝑥1, 𝑥2 ∈ 𝑋, 
𝑥1 dominates 𝑥2 if
 ∀𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 ≤ 𝑓𝑖 𝑥2  and ∃𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 < 𝑓𝑖 𝑥2 .

𝑓1

𝑓2

feasible objective 
region

Pareto-front

utopia point



Multi-objective optimization (MOO)
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Let 𝑓𝑖: 𝑋 → ℝ, 𝑖 ∈ 1, … , 𝑘  be 𝑘 objective functions of a minimization problem. Given two feasible solutions 𝑥1, 𝑥2 ∈ 𝑋, 
𝑥1 dominates 𝑥2 if
 ∀𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 ≤ 𝑓𝑖 𝑥2  and ∃𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 < 𝑓𝑖 𝑥2 .

A solution 𝑥 ∈ 𝑋 is called Pareto-optimal 
if 𝑥 is not dominated by any other solution.

𝑓1

𝑓2

feasible objective 
region

Pareto-front

utopia point



Multi-objective optimization (MOO)
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Let 𝑓𝑖: 𝑋 → ℝ, 𝑖 ∈ 1, … , 𝑘  be 𝑘 objective functions of a minimization problem. Given two feasible solutions 𝑥1, 𝑥2 ∈ 𝑋, 
𝑥1 dominates 𝑥2 if
 ∀𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 ≤ 𝑓𝑖 𝑥2  and ∃𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 < 𝑓𝑖 𝑥2 .

A solution 𝑥 ∈ 𝑋 is called Pareto-optimal 
if 𝑥 is not dominated by any other solution.

The set of Pareto-optimal solutions is called 
Pareto-front.

𝑓1

𝑓2

feasible objective 
region

Pareto-front
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Multi-objective optimization (MOO)
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Let 𝑓𝑖: 𝑋 → ℝ, 𝑖 ∈ 1, … , 𝑘  be 𝑘 objective functions of a minimization problem. Given two feasible solutions 𝑥1, 𝑥2 ∈ 𝑋, 
𝑥1 dominates 𝑥2 if
 ∀𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 ≤ 𝑓𝑖 𝑥2  and ∃𝑖 ∈ 1, … , 𝑘 : 𝑓𝑖 𝑥1 < 𝑓𝑖 𝑥2 .

A solution 𝑥 ∈ 𝑋 is called Pareto-optimal 
if 𝑥 is not dominated by any other solution.

The set of Pareto-optimal solutions is called 
Pareto-front.

𝑓1

𝑓2

feasible objective 
region

Pareto-front

utopia point

→ Compute a relevant subset of the Pareto-front.
→ Transform a multi-objective problem into a single-objective problem by combining the objectives somehow.



Classical MOO approaches
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Weighted sum

𝑠. 𝑡.  

𝑤1𝑓1 𝑥 + 𝑤2𝑓2 𝑥 + 𝑤3𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥 +
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𝑤1, 𝑤2, 𝑤3 ∈ 0,1 3

σ𝑖 𝑤𝑖 = 1 



Classical MOO approaches
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Weighted sum

Epsilon constraint

𝑠. 𝑡.  

𝑤1𝑓1 𝑥 + 𝑤2𝑓2 𝑥 + 𝑤3𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ 𝑠. 𝑡.  

𝑓1(𝑥)

𝑥 ∈ Χ
𝑓2 𝑥 ≤  𝜀2

𝑓3 𝑥 ≤  𝜀3

min
𝑥

min
𝑥 𝜀2, 𝜀3 ∈ ℝ2 

+

+
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𝑤1, 𝑤2, 𝑤3 ∈ 0,1 3

σ𝑖 𝑤𝑖 = 1 
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Weighted sum

Epsilon constraint

Lexicographic optimization

𝑠. 𝑡.  

𝑓1(𝑥)

𝑥 ∈ Χ

𝑓1
𝑜𝑝𝑡

= min
𝑥

𝑠. 𝑡.  

𝑓2(𝑥)

𝑥 ∈ Χ

𝑓1 𝑥 ≤  𝑓1
𝑜𝑝𝑡

𝑓2
𝑜𝑝𝑡

= min
𝑥

𝑠. 𝑡.  

𝑓3(𝑥)

𝑥 ∈ Χ

𝑓1 𝑥 ≤  𝑓1
𝑜𝑝𝑡

𝑓2 𝑥 ≤  𝑓2
𝑜𝑝𝑡

𝑓3
𝑜𝑝𝑡

= min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ

𝑠. 𝑡.  

𝑤1𝑓1 𝑥 + 𝑤2𝑓2 𝑥 + 𝑤3𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ

min
𝑥

min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3(𝑥)

𝑥 ∈ Χ 𝑠. 𝑡.  

𝑓1(𝑥)

𝑥 ∈ Χ
𝑓2 𝑥 ≤  𝜀2

𝑓3 𝑥 ≤  𝜀3

min
𝑥

min
𝑥

𝑤1, 𝑤2, 𝑤3 ∈ 0,1 3

σ𝑖 𝑤𝑖 = 1 

𝜀2, 𝜀3 ∈ ℝ2 

+

+
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weighted sum epsilon constraint lexicographic

number of generated 
solutions

number of weight 
vector samples

number of epsilon 
vector samples

1

number of unique, 
non-dominated 
solutions

major reduction by filtering for non-dominated 
solutions

1

placement of solutions only on convex hull of 
Pareto-front

on convex and non-
convex parts of  
Pareto-front

number of 
optimization calls

number of weight 
samples

number of epsilon 
samples

number of objectives
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often used in practice often best solution 
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used when one 
solution is enough
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weighted sum epsilon constraint lexicographic

number of generated 
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number of weight 
vector samples

number of epsilon 
vector samples

1

number of unique, 
non-dominated  
solutions

major reduction by filtering for non-dominated 
solutions

1

placement of solutions only on convex hull of 
Pareto-front

on convex and non-
convex parts of  
Pareto-front

number of 
optimization calls

number of weight 
samples

number of epsilon 
samples

number of objectives

often used in practice often best solution 
quality, but 
computational effort

used when one 
solution is enough
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𝑠. 𝑡.  

𝑓1(𝑥)

𝑥 ∈ Χ

𝑓1
𝑜𝑝𝑡

= min
𝑥

𝑠. 𝑡.  

𝑓2(𝑥)

𝑥 ∈ Χ

𝑓1 𝑥 ≤ 1 + 𝑝 ∗ 𝑓1
𝑜𝑝𝑡

𝑓2
𝑜𝑝𝑡

= min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥

𝑥 ∈ Χ

1. 2.

𝑝 ∈ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

𝑠. 𝑡.  

𝑓1(𝑥)

𝑥 ∈ Χ

𝑓1
𝑜𝑝𝑡

= min
𝑥

𝑠. 𝑡.  

𝑓2(𝑥)

𝑥 ∈ Χ

𝑓1 𝑥 ≤  𝑓1
𝑜𝑝𝑡

𝑓2
𝑜𝑝𝑡

= min
𝑥

s. t.  

𝑓1 𝑥 , 𝑓2 𝑥

𝑥 ∈ Χ

Lexicographic optimization

Lexicographic optimization with iterative relaxation on objective 1

min
𝑥

min
𝑥

1. 2.



Model: Berlin, Germany
• Heat generation:

• Gas heating plants (43%)
• CHP (= combined heat and power plant)

• CCGT (= combined cycle gas turbine)

• P2H
• Heatpump

• heat storages
• + 38 strategically chosen potential investments

Time horizon: 25 years with a 24h time step

Simplified model structure:

• Graph with 2.9K nodes and 3.8K edges 
• 3.6M variables and 3.5M constraints 
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Design and operation optimization for 2 objectives
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Problem operation + design optimization

Objectives costs, emissions

Method lexicographic with iterative 
relaxations



Costs CO2 No. of 
Investments

101% 100% 11

105% 90% 11

110% 82% 11

115% 78% 10

120% 73% 10

125% 70% 11

130% 67% 11
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Trade-offs including corrresponding pathways
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Design and operation optimization for 2 objectives

Costs CO2 No. of 
Investments

101% 100% 11

105% 90% 11

110% 82% 11

115% 78% 10

120% 73% 10

125% 70% 11

130% 67% 11

1.01 1.05 1.10 1.15 1.20 1.25 1.30
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0.2
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0.6

0.8

1

1.2

normalized costs
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iz
ed

 C
O

2
em
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Trade-offs including corrresponding pathways

difference solely in 
operational decisions

→ Integrating investment planning into unit commitment is important to make informed decisions!
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Design and operation optimization for 2 objectives

Costs 101% 105% 110% 115% 120% 125% 130%

CO2 100% 90% 82% 78% 73% 70% 67%

CHP 1 1 1 1 1 1 1

CHP 1 1 1 1 1 1 1

Block CHP 1 1 1 1 1 1 1

CCGT 1 1 1 1 1 1 1

Heating station (Wood) 1 1 1 1 1 1 1

Gas turbine upgrade 1 1 1 1 1 1 1

Gas turbine 1 1 1 1 1 1 1

Gas turbine 1 1 1 1 1 1 1

Gas turbine 1 1 1 1 1 1 1

Gas turbine 1 1 1 1 1 1 1

Gas turbine 1 1 1 0 0 0 0

Electrical heater 120 MW 0 0 0 0 0 1 1

Seasonal Storage, heating 
station, electrical heater, heat 
pump, etc.

0 0 0 0 0 0 0

robust investments

target-dependent 

investments

25.09.2024 - CO@Work 2024 Stephanie Riedmüller | Zuse Institute Berlin 29



Operation optimization for 3 objectives
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emissions

- efficiency

costs

Algorithm 1: Fixed grid epsilon-constraint method 
       (Mavrotas et al., 2009)

Problem operation 
optimization

Objectives costs, 
emissions, 
CHP-heat

Method epsilon-constraint 
method (fixed grid)



Operation optimization for 3 objectives
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𝑓2 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 

𝑓1 = 𝑐𝑜𝑠𝑡𝑠 𝑓3 = − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝑓3
𝑓3

𝑓2

𝑓2

Algorithm 2: Dynamic grid epsilon-constraint method 
       (Laumanns et al., 2006)

Problem operation 
optimization

Objectives costs, 
emissions, 
CHP-heat

Method epsilon-constraint 
method (dynamic grid)
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𝑓2 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 

𝑓1 = 𝑐𝑜𝑠𝑡𝑠

𝑓2

𝑓2

𝑓3 𝑓3(𝑓3-𝑓3)/2

(𝑓2-𝑓2)/2 𝟎 𝟏

2 3

𝑓3 = − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝒔𝟏
 

Algorithm 2: Dynamic grid epsilon-constraint method
       (Laumanns et al., 2006)

Problem operation 
optimization

Objectives costs, 
emissions, 
CHP-heat

Method epsilon-constraint 
method (dynamic grid)
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Algorithm 2: Dynamic grid epsilon-constraint method
       (Laumanns et al., 2006)

Problem operation 
optimization

Objectives costs, 
emissions, 
CHP-heat

Method epsilon-constraint 
method (dynamic grid)
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Model: singular district of Berlin, Germany (about 
17,000 connected households)
• Heat generation (share of total capacity):

• Gas heating plant  81.6%
• Biomass CHP  16.8%
• Gas CHP (CHP1)  1.3%
• Biogas CHP (CHP2)   0.2%
(CHP = combined heat and power plant)

• Small heat storage

Time horizon: 1 month of different heating periods 
(high season, conclusion) with a 4h time step.

Simplified model structure:

• Graph with 128 nodes and 171 
edges

• 70K variables and constraints

Problem operation optimization

Objectives costs, emissions, CHP heat

Method epsilon-constraint methods 
(fixed and dynamic grid)



Operation optimization for 3 objectives
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conclusion month                                                  high season month

CHP CHP
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fixed grid dynamic grid 

grid fixed dynamic 
      depends on the shape of the feasible space 

runtime grid can be adapted to runtime needs computational efficiency not known before 
runtime, depends on feasible space

works best, when the 
feasible space is …

dense sparse

coverage overview of the shape of the Pareto front finds solutions clustered in small regions

termination after all grid cells have been searched after given size or number of cells
      for large regions when infeasible

parallelization yes limited

Operation optimization for 3 objectives



Model: Berlin, Germany
• Heat generation:

• Gas heating plants (43%)
• CHP (= combined heat and power plant)

• CCGT (= combined cycle gas turbine)

• P2H
• Heatpump

• heat storages

Time horizon: 1 year with a 24h time step

Simplified model structure:

• Graph with 2.9K nodes and 3.8K edges 
• 3.0M variables and 2.9M constraints
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Operation optimization for 3 objectives

Stephanie Riedmüller | Zuse Institute Berlin 37

Problem operation + design optimization

Objectives costs, emissions, CHP-heat

Method epsilon-constraint method 
(fixed grid)
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Operation optimization for 3 objectives



Conclusion

We‘re on it: TrU-5 Multi-Objective Optimization 
for Sustainable Energy System Planning

✔ formulation of integrated design and operation optimization problem in one mixed integer program

✔ generating solutions with reasonable trade-offs is possible by lexicographic optimization with 
iterative relaxations

✔ computing a relevant subset of Pareto-optimal solutions for operation optimization is possible by 
versions of epsilon-constraint method

but:

✗ not efficiently solvable (e.g. the computation of a cost optimal solution takes >50h)

✗ solvable only under restrictions in time granularity and increased MIP-gap  

✗ solving integrated design and operation optimization for three objectives for complete Berlin and 
complete time horizon still open
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