

Multi-Objective Design and Operation Optimization for District Heating Networks

Stephanie Riedmüller

(Zuse Institute Berlin | MODAL EnergyLab)

The energy transition needs both heat and power transformation

- Heat sector including space heat, process heat & cooling adds up to 59% of the German end energy
- Share of EE in power sector already > 45% while heat sector remains below 20%

- District heating networks can play a significant role in the decarbonization
- 6 million German households (= 14%) are connected to DHNs

BEW Berliner Energie und Wärme

Exploring transformation pathways on an urban scale

https://wärme.vattenfall.de/energie-news/fahrplan-zur-dekarbonisierung/

<u>Goals</u>:

- Exploring transformation pathways with reasonable trade-offs between economic and environmental targets
- Long-term investment planning of an energy provider on an urban scale

<u>Input</u>: demand/price forecast time series

The **operation optimization** is modeled as a **unit commitment problem**:

- commitment decisions: whether a unit is producing/storing energy at a time,
- production decisions: how much energy a unit is producing/storing at a time,
- network flow decisions: how much energy is flowing on each edge of the grid

Main Variables:

 $z_{i,t} \in \{0, 1\}$ operation of unit i at time t $x_{t,i^{in}}^r, x_{t,i^{out}}^r \in \mathbb{R}_{\geq 0}$ incoming/outgoing flow of resource r at unit i at time t

$s_{i,t} \in \{0,1\}$	activation of a unit i at time t
$h_{t,k}^r \in \mathbb{R}_{\geq 0}$	level of resource r in storage k at time t
$p_t^r \in \mathbb{R}_{\geq 0}$	purchased amount of resource r at time t
$e_t^r \in \mathbb{R}_{\geq 0}$	sold amount of resource r at time t

R	set of resources
Ι	set of generating units
Κ	set of storage units
Т	set of time steps
D^r	demand of resource r
а, с	storage and capacity
	parameters

Objectives:

$$\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t)$$

MIP: operation optimization

Constraints

$\sum_{i \in I} x_{t,i^{out}}^r + \sum_{k \in K} x_{t,k^{out}}^r + p_t^r = D^r + \sum_{i \in I} x_{t,i^{in}}^r + \sum_{k \in K} x_{t,k}^r$	$e_{in} + e_t^r \qquad \forall r \in R$	resource balancing
$x_{t,i^{out}}^{r_2} = \varphi_{i,t}^{r_1,r_2} \left(x_{t,i^{in}}^{r_1} \right)$	$\forall i \in \mathbf{I}, \mathbf{t} \in T, r_1, r_2 \in R$	resource conversion
$s_{i,t} \le z_{i,t}, \qquad s_{i,t} \le 1 - z_{i,t}, \qquad s_{i,t} \ge z_{i,t} - z_{i,t-1}$	$\forall i \in I, t \in T$	activation
$\sum_{\tau \in T_{i,t}^{up}} (s_{i,t} - z_{i,t}) \le 0, \qquad \sum_{\tau \in T_{i,t}^{down}} (s_{i,t} + z_{i,t} - 1) \le 0$	$\forall i \in I, t \in T$	minimum up and down times
$x_{t+1,i^{out}}^r - x_{t,i^{out}}^r \le a_i^{up}, x_{t,i^{out}}^r - x_{t+1,i^{out}}^r \le a_i^{down}$	$i \in I, t \in T, r \in R$	ramping
$h_{t+1,k}^{r} = a_{t,k}^{loss} h_{t,k}^{r} + a_{t,k}^{load} x_{t,k}^{r} - a_{t,k}^{unload} x_{t,k}^{r}$	$k \in K, t \in T, r \in R$	storage management
$h, x, p, e \leq c_{max}, h, x, p, e \geq c_{min}$		capacities

z = operation,	<i>x</i> = flow,	<i>s</i> = activation,
h = storage level,	p = resource import,	<i>e</i> = resource export

The operation optimization is modeled as a unit commitment problem:

- **commitment decisions**: whether a unit is producing/storing energy at a time,
- **production decisions**: how much energy a unit is producing/storing at a time,
- **network flow decisions**: how much energy is flowing on each edge of the grid

╋

Design optimization or investment planning comprises:

design/investment decisions: whether an investment is selected.

The **operation optimization** is modeled as a **unit** commitment problem: commitment decisions: whether a unit is producing/storing energy at a time, **production decisions**: how much energy a unit is producing/storing at a time, **network flow decisions**: how much energy is ٠ flowing on each edge of the grid

Design optimization or investment planning comprises:

design/investment decisions: whether an investment is selected.

The operation optimization is modeled as a unit commitment problem:
commitment decisions: whether a unit is producing/storing energy at a time,
production decisions: how much energy a unit is producing/storing at a time,
network flow decisions: how much energy is flowing on each edge of the grid

Design optimization or investment planning comprises:

design/investment decisions: whether an investment is selected.

Main Variables:

 $\begin{array}{ll} z_{i,t} \in \{0,1\} & \text{operation of unit i at time t} \\ x_{t,i^{in}}^r, x_{t,i^{out}}^r \in \mathbb{R}_{\geq 0} & \text{incoming/outgoing flow of resource r at unit i at time t} \\ \hline \hat{z_i} \in \{0,1\} & \text{investment decision for unit i} \\ s_{i,t} \in \{0,1\} & \text{activation of a unit i at time t} \\ h_{t,k}^r \in \mathbb{R}_{\geq 0} & \text{level of resource r in storage k at time t} \\ p_t^r \in \mathbb{R}_{\geq 0} & \text{purchased amount of resource r at time t} \\ e_t^r \in \mathbb{R}_{\geq 0} & \text{sold amount of resource r at time t} \end{array}$

set of resources
set of generating units
set of storage units
set of time steps
demand of resource r
storage and capacity
parameters

R

K

Т

 D^r

а, с

Objectives:

$$\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t) + costs^{inv}(\hat{\mathbf{z}})$$

MIP: design and operation optimization

Constraints

$\sum_{i \in I} x_{t,i^{out}}^{r} + \sum_{k \in K} x_{t,k^{out}}^{r} + p_t^{r} = D^r + \sum_{i \in I} x_{t,i^{in}}^{r} + \sum_{k \in K} x_t^{r}$	$r_{t,k^{in}} + e_t^r \qquad \forall r \in R$	resource balancing
$z_{i,t} \leq \hat{z}_i$	$\forall i \in I, t \in T$	investment decision
$x_{t,i^{out}}^{r_2} = \varphi_{i,t}^{r_1,r_2} \left(x_{t,i^{in}}^{r_1} \right)$	$\forall i \in I, t \in T, r_1, r_2 \in R$	resource conversion
$s_{i,t} \le z_{i,t}, \qquad s_{i,t} \le 1 - z_{i,t}, \qquad s_{i,t} \ge z_{i,t} - z_{i,t-1}$	$\forall i \in I, t \in T$	activation
$\sum_{\tau \in T_{i,t}^{up}} (s_{i,t} - z_{i,t}) \le 0, \qquad \sum_{\tau \in T_{i,t}^{down}} (s_{i,t} + z_{i,t} - 1) \le 0$	$\forall i \in I, t \in T$	minimum up and down times
$x_{t+1,i^{out}}^{r} - x_{t,i^{out}}^{r} \le a_i^{up}, x_{t,i^{out}}^{r} - x_{t+1,i^{out}}^{r} \le a_i^{down}$	$i \in I, t \in T, r \in R$	ramping
$h_{t+1,k}^r = a_{t,k}^{loss} h_{t,k}^r + a_{t,k}^{load} x_{t,k}^r - a_{t,k}^{unload} x_{t,k}^r$	$k \in K, t \in T, r \in R$	storage management
$h, x, p, e \le c_{max}, h, x, p, e \ge c_{min}$		capacities

z = operation,	\hat{z} = investment decision,	, <i>x</i> = flow,	s = activation,
h = storage level,	p = resource import,	<i>e</i> = resource export	

Main Variables:

<i>z_{i,t}</i> ∈ { 0 , 1 }	operation of unit i at time t
$x_{t,i^{in}}^r, x_{t,i^{out}}^r \in \mathbb{R}_{\geq 0}$	incoming/outgoing flow of resource r at unit i at time t
$\hat{\mathbf{z}}_i$ ∈ { 0 , 1 }	investment decision for unit i
$s_{i,t} \in \{0,1\}$	activation of a unit i at time t
$h_{t,k}^r \in \mathbb{R}_{\geq 0}$	level of resource r in storage k at time t
$p_t^r \in \mathbb{R}_{\geq 0}$	purchased amount of resource r at time t
$e_t^r \in \mathbb{R}_{\geq 0}$	sold amount of resource r at time t

R	set of resources
Ι	set of generating units
Κ	set of storage units
Т	set of time steps
D^r	demand of resource r
а, с	storage and capacity
	parameters

Objectives:

$$\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t) + costs^{inv}(\hat{z})$$

MIP: multi-objective design and operation optimization

Main Variables:

<i>z_{i,t}</i> ∈ { 0 , 1 }	operation of unit i at time t
$x_{t,i^{in}}^r, x_{t,i^{out}}^r \in \mathbb{R}_{\geq 0}$	incoming/outgoing flow of resource r at unit i at time t
$\hat{\mathbf{z}}_i \in \{0, 1\}$	investment decision for unit i
$s_{i,t} \in \{0,1\}$	activation of a unit i at time t
$h_{t,k}^r \in \mathbb{R}_{\geq 0}$	level of resource r in storage k at time t
$p_t^r \in \mathbb{R}_{\geq 0}$	purchased amount of resource r at time t
$e_t^r \in \mathbb{R}_{\geq 0}$	sold amount of resource r at time t

R	set of resources
Ι	set of generating units
Κ	set of storage units
Т	set of time steps
D^r	demand of resource r
а, с	storage and capacity
	parameters

Objectives: $\min\left(f_1^{inv}(\hat{z}) + \sum_{t \in T} f_1^{op}(z_t, s_t, h_t, p_t, e_t, x_t), \sum_{t \in T} f_2(p_t, x_t), \sum_{t \in T} f_3(x_t)\right)$ costs CHP heat emissions

(CHP = combined heat and power plants)

Let $f_i: X \to \mathbb{R}$, $i \in \{1, ..., k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1, x_2 \in X$, x_1 dominates x_2 if

 $\forall i \in \{1, \dots, k\}: f_i(x_1) \le f_i(x_2) \text{ and } \exists i \in \{1, \dots, k\}: f_i(x_1) < f_i(x_2).$

Let $f_i: X \to \mathbb{R}$, $i \in \{1, ..., k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1, x_2 \in X$, x_1 dominates x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \le f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

Let $f_i: X \to \mathbb{R}$, $i \in \{1, ..., k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1, x_2 \in X$, x_1 dominates x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \le f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

The set of Pareto-optimal solutions is called **Pareto-front**.

Let $f_i: X \to \mathbb{R}$, $i \in \{1, ..., k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1, x_2 \in X$, x_1 dominates x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \le f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

The set of Pareto-optimal solutions is called **Pareto-front**.

 \rightarrow Compute a relevant subset of the Pareto-front.

 \rightarrow Transform a multi-objective problem into a single-objective problem by combining the objectives *somehow*.

Weighted sum

$$\min_{\substack{x \\ \text{s.t. } x \in X}} f_1(x), f_2(x), f_3(x) + \begin{bmatrix} (w_1, w_2, w_3) \in [0, 1]^3 \\ \sum_i w_i = 1 \end{bmatrix} \longrightarrow \sum_{\substack{x \\ \text{s.t. } x \in X}} \min_{\substack{x \\ \text{s.t. } x \in X}} w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x) \\ \text{s.t. } x \in X$$

Weighted sum

х s. t.

$$\min_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} f_1(x), f_2(x), f_3(x) + \begin{pmatrix} (w_1, w_2, w_3) \in [0, 1]^3 \\ \sum_i w_i = 1 \end{pmatrix} \longrightarrow \lim_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} \min_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x)$$

Epsilon constraint

Weighted sum

х

$$\min_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} f_1(x), f_2(x), f_3(x) \\ + \begin{pmatrix} (w_1, w_2, w_3) \in [0, 1]^3 \\ \sum_i w_i = 1 \end{pmatrix} \longrightarrow \lim_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} \min_{\substack{x \\ \text{s.t. } x \in \mathbf{X}}} w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x) \\ \text{s.t. } x \in \mathbf{X}$$

Epsilon constraint

Lexicographic optimization

	weighted sum	epsilon constraint	lexicographic
number of generated solutions	number of weight vector samples	number of epsilon vector samples	1
number of unique, non-dominated solutions	major reduction by filtering for non-dominated solutions		1
placement of solutions	only on convex hull of Pareto-front	on convex and non- convex parts of Pareto-front	
number of optimization calls	number of weight samples	number of epsilon samples	number of objectives

	weighted sum	epsilon constraint	lexicographic
number of generated solutions	number of weight vector samples	number of epsilon vector samples	1
number of unique, non-dominated solutions	major reduction by filtering for non-dominated solutions		1
placement of solutions	only on convex hull of Pareto-front	on convex and non- convex parts of Pareto-front	
number of optimization calls	number of weight samples	number of epsilon samples	number of objectives
	often used in practice	often best solution quality, but computational effort	used when one solution is enough

weighted sum	epsilon constraint	lexicographic
number of weight vector samples	number of epsilon vector samples	1
major reduction by filt solu	ering for non-dominated itions	1
only on convex hull of Pareto-front	on convex and non- convex parts of Pareto-front	
number of weight samples	number of epsilon samples	number of objectives
often used in practice	often best solution quality, but computational effort	used when one solution is enough
	weighted sumnumber of weight vector samplesmajor reduction by filt soldonly on convex hull of Pareto-frontnumber of weight samplesoften used in practice	weighted sumepsilon constraintnumber of weight vector samplesnumber of epsilon vector samplesmajor reduction by filt solering for non-dominated solonly on convex hull of Pareto-fronton convex and non- convex parts of Pareto-frontnumber of weight samplesnumber of epsilon samplesoften used in practice computational effortoften best solution quality, but computational effort

Lexicographic optimization

Lexicographic optimization with iterative relaxation on objective 1

 $p \in \{0.05, 0.1, 0.15, 0.2, 0.25, 0.3\}$

26

CHP (= combined heat and power plant) CCGT (= combined cycle gas turbine) P2H Heatpump heat storages + 38 strategically chosen potential investments

Time horizon: 25 years with a 24h time step

Gas heating plants (43%)

Problem	operation + design optimization
Objectives	costs, emissions
Method	lexicographic with iterative relaxations

3.6M variables and 3.5M constraints

Model: Berlin, Germany

Heat generation:

Costs	CO ₂	No. of Investments
101%	100%	11
105%	90%	11
110%	82%	11
115%	78%	10
120%	73%	10
125%	70%	11
130%	67%	11

Trade-offs including corrresponding pathways

Design and operation optimization for 2 objectives

Costs	CO ₂	No. of Investments
101%	100%	11
105%	90%	11
110%	82%	11
115%	78%	10
120%	73%	10
125%	70%	11
130%	67%	11

Trade-offs including corrresponding pathways

→ Integrating investment planning into unit commitment is important to make informed decisions!

BEW

Berliner Energie und Wärme

Design and operation optimization for 2 objectives Berliner Energie und Wärme

Costs	101%	105%	110%	115%	120%	125%	130%	
CO ₂	100%	90%	82%	78%	73%	70%	67%	
СНР	1	1	1	1	1	1	1	
СНР	1	1	1	1	1	1	1	
Block CHP	1	1	1	1	1	1	1	
CCGT	1	1	1	1	1	1	1	
Heating station (Wood)	1	1	1	1	1	1	1	— robust investments
Gas turbine upgrade	1	1	1	1	1	1	1	
Gas turbine	1	1	1	1	1	1	1	
Gas turbine	1	1	1	1	1	1	1	
Gas turbine	1	1	1	1	1	1	1	
Gas turbine	1	1	1	1	1	1	1	
Gas turbine	1	1	1	0	0	0	0	target-dependent
Electrical heater 120 MW	0	0	0	0	0	1	1	investments
Seasonal Storage, heating station, electrical heater, heat pump, etc.	0	0	0	0	0	0	0	

BEW

Algorithm 1: Fixed grid epsilon-constraint method Problem operation (Mavrotas et al., 2009) optimization Objectives costs, emissions, emissions CHP-heat Method epsilon-constraint method (fixed grid) - efficiency

costs

Algorithm 2: Dynamic grid epsilon-constraint method (Laumanns et al., 2006)

Problem	operation optimization
Objectives	costs, emissions, CHP-heat
Method	epsilon-constraint method (dynamic grid)

Algorithm 2: Dynamic grid epsilon-constraint method (Laumanns et al., 2006)

Problem	operation optimization	
Objectives	costs, emissions, CHP-heat	
Method	epsilon-constraint method (dynamic grid)	

Model: singular district of Berlin, Germany (about 17,000 connected households)

- Heat generation (share of total capacity):
 - Gas heating plant 81.6%
 - Biomass CHP 16.8%
 - Gas CHP (CHP1) 1.3%
 - Biogas CHP (CHP2) 0.2% (CHP = combined heat and power plant)
- Small heat storage

Time horizon: 1 month of different heating periods (high season, conclusion) with a 4h time step.

Problem	operation optimization
Objectives	costs, emissions, CHP heat
Method	epsilon-constraint methods (fixed and dynamic grid)

Simplified model structure:

conclusion month Algorithm 1 Algorithm 2 CHP 1 0 • $+1\sigma$ +2σ +20 +2σ +10 +1σ 1 CO2 Emissions Cost -10 -1o

high season month

	fixed grid	dynamic grid
grid	fixed	 dynamic depends on the shape of the feasible space
runtime	grid can be adapted to runtime needs	computational efficiency not known before runtime, depends on feasible space
works best, when the feasible space is	ense dense	Image: sparse
coverage	overview of the shape of the Pareto front	finds solutions clustered in small regions
termination	after all grid cells have been searched	 after given size or number of cells for large regions when infeasible
parallelization	🕂 yes	limited

Model: Berlin, Germany

- Heat generation: ۰
 - Gas heating plants (43%)
 - CHP (= combined heat and power plant)
 - CCGT (= combined cycle gas turbine)
 - P2H
 - Heatpump
- heat storages ٠

Time horizon: 1 year with a 24h time step

Problem	operation + design optimization
Objectives	costs, emissions, CHP-heat
Method	epsilon-constraint method (fixed grid)

- Graph with 2.9K nodes and 3.8K edges
- 3.0M variables and 2.9M constraints

Berlin 2020 Pareto Front - Normalized

- ✓ formulation of integrated design and operation optimization problem in one mixed integer program
- ✓ generating solutions with reasonable trade-offs is possible by lexicographic optimization with iterative relaxations
- ✓ computing a relevant subset of Pareto-optimal solutions for operation optimization is possible by versions of epsilon-constraint method

<u>but</u>:

- X not efficiently solvable (e.g. the computation of a cost optimal solution takes >50h)
- X solvable only under restrictions in time granularity and increased MIP-gap
- X solving integrated design and operation optimization for three objectives for complete Berlin and complete time horizon still open

EnergyLab

We're on it: TrU-5 Multi-Objective Optimization for Sustainable Energy System Planning Berlin Mathematics Research Center