

Multi-Objective Design and Operation Optimization for District Heating Networks

Stephanie Riedmüller

(Zuse Institute Berlin | MODAL EnergyLab)

The energy transition needs both heat and power transformation

- \triangleright Heat sector including space heat, process heat & cooling adds up to 59% of the German end energy
- \triangleright Share of EE in power sector already > 45% while heat sector remains below 20%
- \triangleright District heating networks can play a significant role in the decarbonization
- ≥ 6 million German households (= 14%) are connected to DHNs

BEW Berliner Energie und Wärme

Exploring transformation pathways on an urban scale

https://wärme.vattenfall.de/energie-news/fahrplan-zur-dekarbonisierung/

- Exploring transformation pathways with reasonable trade-offs between economic and environmental targets
- Long-term investment planning of an energy provider on an urban scale

Input: demand/price forecast time series

The **operation optimization** is modeled as a **unit commitment problem**:

- **commitment decisions**: whether a unit is producing/storing energy at a time,
- **production decisions**: how much energy a unit is producing/storing at a time,
- **network flow decisions**: how much energy is flowing on each edge of the grid

Main Variables:

 $\mathbf{z}_{i,t} \in \{ \mathbf{0}, \mathbf{1} \}$ operation of unit i at time t $x_{t,i^{in}}^{r}$ $\hat{\bm{r}}_{t,i^{in}}^{r},\bm{x}_{t,i^{out}}^{r} \in \mathbb{R}_{\geq 0}$ incoming/outgoing flow of resource **r** at unit i at time t

 D^r

Objectives:

$$
\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t)
$$

MIP: operation optimization

Constraints

The **operation optimization** is modeled as a **unit commitment problem**:

- **commitment decisions**: whether a unit is producing/storing energy at a time,
- **production decisions**: how much energy a unit is producing/storing at a time,
- **network flow decisions**: how much energy is flowing on each edge of the grid

+

Design optimization or investment planning comprises:

• **design/investment decisions**: whether an investment is selected.

The **operation optimization** is modeled as a **unit commitment problem**: • **commitment decisions**: whether a unit is producing/storing energy at a time, • **production decisions**: how much energy a unit is producing/storing at a time, • **network flow decisions**: how much energy is flowing on each edge of the grid

Design optimization or investment planning comprises:

• **design/investment decisions**: whether an investment is selected.

The **operation optimization** is modeled as a **unit commitment problem**: • **commitment decisions**: whether a unit is producing/storing energy at a time, • **production decisions**: how much energy a unit is producing/storing at a time, • **network flow decisions**: how much energy is flowing on each edge of the grid

Design optimization or investment planning comprises:

• **design/investment decisions**: whether an investment is selected.

Main Variables:

 $z_{i,t} \in \{0,1\}$ operation of unit i at time t $x_{t,i}^r$ in $\hat{r}_{t,i^{in}}$, $x_{t,i^{out}}^r \in \mathbb{R}_{\geq 0}$ incoming/outgoing flow of resource r at unit i at time t $\hat{\mathbf{z}}_i \in \{0, 1\}$ **investment decision for unit i**
 $s_{i,t} \in \{0, 1\}$ activation of a unit i at time t activation of a unit i at time t $h_{t,k}^r \in \mathbb{R}_{\geq 0}$ level of resource r in storage k at time t $p_t^r \in \mathbb{R}_{\geq 0}$ purchased amount of resource r at time t $e_t^r \in \mathbb{R}_{\geq 0}$ sold amount of resource r at time t

 D^r

Objectives:

$$
\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t) + costs^{inv}(\hat{z})
$$

MIP: design and operation optimization

Constraints

Main Variables:

 D^r

Objectives:

$$
\min \sum_{t \in T} costs^{op}(z_t, s_t, h_t, p_t, e_t, x_t) + costs^{inv}(\hat{z})
$$

MIP: multi-objective design and operation optimization

Main Variables:

set of resources set of generating units K set of storage units T set of time steps demand of resource r a, c storage and capacity parameters

 D^r

$\min \left(f_{1}^{inv}\left(\hat{z}\right) +\ \right)$ $t \in T$ $f_1^{op}(z_t,s_t,h_t,p_t,e_t)$, x_t , $\Big)$, $\Big\}$ $t \in T$ $f_2(p_t, x_t)$, $\qquad \sum_{k=1}^{\infty}$ $t \in T$ $f_3(x_t)$ Objectives: costs emissions CHP heat (CHP = combined heat and power plants)

Let $f_i\colon X\to\mathbb R$, $i\in\{1,...,k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1,x_2\in X$, x_1 **dominates** x_2 if

 $\forall i \in \{1, ..., k\}$: $f_i(x_1) \leq f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

Let $f_i\colon X\to\mathbb R$, $i\in\{1,...,k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1,x_2\in X$, x_1 **dominates** x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \leq f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

Let $f_i\colon X\to\mathbb R$, $i\in\{1,...,k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1,x_2\in X$, x_1 **dominates** x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \leq f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

The set of Pareto-optimal solutions is called **Pareto-front**.

Let $f_i\colon X\to\mathbb R$, $i\in\{1,...,k\}$ be k objective functions of a minimization problem. Given two feasible solutions $x_1,x_2\in X$, x_1 **dominates** x_2 if $\forall i \in \{1, ..., k\}$: $f_i(x_1) \leq f_i(x_2)$ and $\exists i \in \{1, ..., k\}$: $f_i(x_1) < f_i(x_2)$.

A solution $x \in X$ is called **Pareto-optimal** if x is not dominated by any other solution.

The set of Pareto-optimal solutions is called **Pareto-front**.

 \rightarrow Compute a relevant subset of the Pareto-front.

→ Transform a multi-objective problem into a single-objective problem by combining the objectives *somehow*.

Weighted sum

$$
\begin{bmatrix}\n\min_{x} f_1(x), f_2(x), f_3(x) \\
s.t. \quad x \in X\n\end{bmatrix} + \begin{bmatrix}\n(w_1, w_2, w_3) \in [0, 1]^3 \\
\sum_i w_i = 1\n\end{bmatrix} \quad\n\begin{bmatrix}\n\min_{x} w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x) \\
s.t. \quad x \in X\n\end{bmatrix}
$$

Weighted sum

S.

$$
\min_{x} f_1(x), f_2(x), f_3(x) \mid + \left| (w_1, w_2, w_3) \in [0, 1]^3 \right| \quad \text{min } w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x)
$$
\n
$$
\text{s.t. } x \in X \quad \text{s.t. } x \in X
$$

Epsilon constraint

$$
\begin{array}{|l|l|}\n\hline\n\min_{x} f_1(x), f_2(x), f_3(x) \\
\text{s.t. } x \in X\n\end{array} + \begin{array}{|l|}\n\hline\n(\varepsilon_2, \varepsilon_3) \in \mathbb{R}^2 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{|l|}\n\min_{x} f_1(x) \\
\text{s.t. } x \in X \\
f_2(x) \le \varepsilon_2 \\
f_3(x) \le \varepsilon_3\n\end{array}
$$

Classical MOO approaches

Weighted sum

S.

$$
\min_{x} f_1(x), f_2(x), f_3(x) \mid \left\{ (w_1, w_2, w_3) \in [0,1]^3 \right\} \qquad \qquad \min_{x} w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x)
$$
\ns.t.

\n
$$
x \in X
$$
\ns.t.

\n
$$
x \in X
$$

Epsilon constraint

$$
\begin{array}{|l|l|}\n\hline\n\min_{x} f_1(x), f_2(x), f_3(x) \\
\text{s.t. } x \in X\n\end{array} + \begin{array}{|l|}\n\hline\n(\varepsilon_2, \varepsilon_3) \in \mathbb{R}^2 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{|l|}\n\min_{x} f_1(x) \\
\text{s.t. } x \in X \\
f_2(x) \le \varepsilon_2 \\
f_3(x) \le \varepsilon_3\n\end{array}
$$

Lexicographic optimization

min	$f_1(x), f_2(x), f_3(x)$	$f_1^{opt} = \min_{x} f_1(x)$	$f_2^{opt} = \min_{x} f_2(x)$	$f_3^{opt} = \min_{x} f_3(x)$			
s.t.	$x \in X$	$s.t.$	$x \in X$	$s.t.$	$x \in X$	$s.t.$	$x \in X$
$f_1(x) \leq f_1^{opt}$	$f_1(x) \leq f_1^{opt}$	$f_1(x) \leq f_1^{opt}$					

Lexicographic optimization

$$
\begin{array}{|l|l|}\n\hline\n\min_{x} & f_1(x), f_2(x) \\
\text{s.t. } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_1^{opt} = \min_{x} f_1(x) \\
\hline\n\text{if } f_2^{opt} = \min_{x} f_2(x) \\
\hline\n\text{s.t. } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_2(x) \\
\hline\n\text{if } x \in X \\
\hline\n\text{if } f_1(x) \le f_1^{opt} \\
\hline\n\end{array}
$$

Lexicographic optimization with iterative relaxation on objective 1

$$
\begin{array}{|l|}\n\hline\n\min_{x} & f_1(x), f_2(x) \\
\hline\n\text{s.t. } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_1(x) \\
\hline\n\text{if } f_1(x) \\
\hline\n\text{s.t. } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_1(x) \\
\hline\n\text{if } f_2(x) \\
\hline\n\text{if } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_2(x) \\
\hline\n\text{if } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_1(x) \\
\hline\n\text{if } x \in X\n\end{array}\n\qquad\n\begin{array}{|l|}\n\hline\n\text{if } f_1(x) \in (1 + p) * f_1^{opt} \\
\hline\n\end{array}
$$

 $p \in \{0.05, 0.1, 0.15, 0.2, 0.25, 0.3\}$

25.09.2024 - CO@Work 2024

Stephanie Riedmüller | Zuse Institute Berlin 26

Design and operation optimization for 2 objectives **Berliner** Energie und

Model: Berlin, Germany

• Heat generation:

BEW

Wärme

- Gas heating plants (43%)
- CHP (= combined heat and power plant)
- CCGT (= combined cycle gas turbine)
- P2H
- Heatpump
- heat storages
- + 38 strategically chosen potential investments

Time horizon: 25 years with a 24h time step

- Graph with 2.9K nodes and 3.8K edges
- 3.6M variables and 3.5M constraints

Simplified model structure:

BEW Berliner
Energie und
Wärme

Trade-offs including corrresponding pathways

Design and operation optimization for 2 objectives

Costs	CO ₂	No. of Investments
101%	100%	11
105%	90%	11
110%	82%	11
115%	78%	10
120%	73%	10
125%	70%	11
130%	67%	11

Trade-offs including corrresponding pathways 1.2 normalized CO₂ emissions normalized CO_2 emissions 1 0.8 0.6 difference solely in 0.4 operational decisions 0.2 0 1.01 1.05 1.10 1.15 1.20 1.25 1.30 normalized costs

 \rightarrow Integrating investment planning into unit commitment is important to make informed decisions!

BEW

Berliner Energie und Wärme

Design and operation optimization for 2 objectives Berliner
Energie und
Wärme

BEW

emissions - efficiency Algorithm 1: Fixed grid epsilon-constraint method (Mavrotas et al., 2009) **Problem** operation optimization **Objectives** costs, emissions, CHP-heat **Method** epsilon-constraint method (fixed grid)

costs

Algorithm 2: Dynamic grid epsilon-constraint method (Laumanns et al., 2006)

Algorithm 2: Dynamic grid epsilon-constraint method (Laumanns et al., 2006)

Model: singular district of Berlin, Germany (about 17,000 connected households)

- Heat generation (share of total capacity):
	- Gas heating plant 81.6%
	- Biomass CHP 16.8%
	- Gas CHP (CHP1) 1.3%
	- Biogas CHP (CHP2) 0.2% (CHP = combined heat and power plant)
- Small heat storage

Time horizon: 1 month of different heating periods (high season, conclusion) with a 4h time step.

Simplified model structure:

conclusion month high season month high season month Algorithm 1 \bullet Algorithm 2 CHP CHP CHP $\mathbf 1$ \bullet \bullet $+1\sigma$ $+2\sigma$ $+20$ $+2\sigma$ $+10$ $+1\sigma$ $\mathbf{1}$ $\frac{1}{2}$ Emissions $C_{O_{S_{\zeta}}},$ -10 -1σ

Model: Berlin, Germany

- Heat generation:
	- Gas heating plants (43%)
	- CHP (= combined heat and power plant)
	- CCGT (= combined cycle gas turbine)
	- P2H
	- Heatpump
- heat storages

Time horizon: 1 year with a 24h time step

- Graph with 2.9K nodes and 3.8K edges
- 3.0M variables and 2.9M constraints

Berlin 2020 Pareto Front - Normalized

- ✔ formulation of integrated design and operation optimization problem in one mixed integer program
- \vee generating solutions with reasonable trade-offs is possible by lexicographic optimization with iterative relaxations
- ✔ computing a relevant subset of Pareto-optimal solutions for operation optimization is possible by versions of epsilon-constraint method

but:

- ✗ not efficiently solvable (e.g. the computation of a cost optimal solution takes >50h)
- ✗ solvable only under restrictions in time granularity and increased MIP-gap
- ✗ solving integrated design and operation optimization for three objectives for complete Berlin and complete time horizon still open

EnergyLab

We're on it: TrU-5 Multi-Objective Optimization for Sustainable Energy System Planning

