

# Solving Mixed-Integer Semidefinite Programs

Marc Pfetsch, TU Darmstadt



CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 1

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDP
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### **Basic Definitions**



#### Recall:

- ▷ Let  $M \in \mathbb{R}^{n \times n}$  be a symmetric matrix.
- ▷ Note: All matrices in this talk will be symmetric.
- ▷ *M* is positive semidefinite (psd), denoted  $M \succeq 0$ , if  $x^{\top} M x \ge 0$  for all  $x \in \mathbb{R}^n$ .
- ▷ This is equivalent to *M* having nonnegative eigenvalues.
- ▷  $M \succeq 0$  if and only if there exists  $S \in \mathbb{R}^{r \times n}$  with  $M = S^{\top}S$ .
- ▷  $S_{+}^{n} \coloneqq \{M \in \mathbb{R}^{n \times n} : M \text{ symmetric and } M \succeq 0\}$  is a closed convex cone.
- ▷ For two matrices  $A, B \in \mathbb{R}^{n \times n}$ ,  $\langle A, B \rangle := \sum_{ij} A_{ij} B_{ij}$  is the inner product.
- ▷ If  $A, B \succeq 0$  then  $\langle A, B \rangle \ge 0$ .
- ▷ *M* is positive definite, denoted  $A \succ 0$ , if  $x^{\top}Mx > 0$  for all  $x \in \mathbb{R}^n \setminus \{0\}$ .
- ▷  $[m] \coloneqq \{1, ..., m\}$  for  $m \in \mathbb{N}$ .

#### From Linear to Semidefinite Programs



Let  $a^0, ..., a^m \in \mathbb{R}^n$  and  $b \in \mathbb{R}^m$ . Primal/dual pair of linear program:

 $(P) \max (a^0)^\top x$ s.t.  $(a^k)^\top x = b_k \quad \forall k \in [m]$  $x \ge 0.$ 

(D) min 
$$b^{\top} y$$
  
s.t.  $\sum_{k \in [m]} a^k y_k - a^0 \ge 0,$   
 $y \in \mathbb{R}^m.$ 

#### From Linear to Semidefinite Programs



Let  $a^0, ..., a^m \in \mathbb{R}^n$  and  $b \in \mathbb{R}^m$ . Primal/dual pair of linear program:

$$(P) \max (a^0)^\top x \qquad (D) \min b^\top y$$
  
s.t.  $(a^k)^\top x = b_k \quad \forall k \in [m]$   
 $x \ge 0.$   
$$(D) \min b^\top y$$
  
s.t.  $\sum_{k \in [m]} a^k y_k - a^0 \ge 0,$   
 $y \in \mathbb{R}^m.$ 

Generalize to matrices: Let  $A^0, ..., A^m \in \mathbb{R}^{n \times n}$  be (symmetric) matrices,  $b \in \mathbb{R}^m$ . Primal/dual Pair of semidefinite program (SDP):

$$(P) \sup \langle A^{0}, X \rangle$$
s.t.  $\langle A^{k}, X \rangle = b_{k} \quad \forall k \in [m],$ 
 $X \succeq 0.$ 

$$(D) \inf b^{\top} y$$
s.t.  $\sum_{k \in [m]} A^{k} y_{k} - A^{0} \succeq 0,$ 
 $y \in \mathbb{R}^{m}.$ 

LPs are a special case of SDPs for diagonal matrices.

CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 4

#### **Duality for Semidefinite Programs**



$$\begin{array}{ll} \text{brimal } (P): & \sup \left\{ \langle A^0, X \rangle \, : \, \langle A^k, X \rangle = b_k, \ \forall k \in [m], \ X \succeq 0 \right\} \\ \text{dual } (D): & \inf \left\{ b^\top y \, : \, \sum_{k \in [m]} A^k y_k - A^0 \succeq 0, \ y \in \mathbb{R}^m \right\}. \end{array}$$

▷ Weak duality:  $\hat{X}$  and  $\hat{y}$  feasible for (*P*) and (*D*), resp. Then

$$0 \leq \langle \sum_{k \in [m]} A^k \hat{y}_k - A^0, \hat{X} \rangle = \sum_{k \in [.]}^m b_k \hat{y}_k - \langle A^0, \hat{X} \rangle = b^\top \hat{y} - \langle A^0, \hat{X} \rangle,$$

which is equivalent to  $\langle A^0, \hat{X} \rangle \leq b^{\top} \hat{y}$ .

- ▷ Strong Duality holds if Slater condition holds for (P) or (D):  $\exists X \succ 0$  feasible for (P) or y such that  $\sum_{k \in [m]} A^k y_k - A^0 \succ 0$  in (D).
- If Slater condition holds for (P), optimal objective of (D) is attained and vice versa.

#### Solving Semidefinite Programs



- ▷ SDPs can be solved in polynomial time up to a given accuracy  $\varepsilon$  > 0, e.g., by interior point solvers.
- Existence of a KKT-point is guaranteed if Slater condition holds for (P) and (D). This is assumed by most interior-point SDP-solvers.
- ▷ No "combinatorial algorithm" is known for SDPs.
- Restarting interior point solvers is notoriously hard as compared to hot starting the simplex algorithm.
- As a consequence, the solution of SDPs is much more time consuming (currently a factor of 10 to 100 slower).

#### Mixed-Integer Semidefinite Programming



Mixed-Integer Semidefinite Program (MISDP)

$$\begin{array}{ll} \inf \quad \boldsymbol{b}^{\top}\boldsymbol{y} \\ \text{s.t.} \quad \sum_{k=1}^{m} \boldsymbol{A}^{k} \, \boldsymbol{y}_{k} - \boldsymbol{A}^{0} \succeq \boldsymbol{0}, \\ \ell_{i} \leq \boldsymbol{y}_{i} \leq \boldsymbol{u}_{i} \qquad \forall \, i \in [\boldsymbol{m}], \\ \boldsymbol{y}_{i} \in \mathbb{Z} \qquad \forall \, i \in \boldsymbol{I}, \end{array}$$

▷ symmetric matrices  $A^k \in \mathbb{R}^{n \times n}$  for  $k \in [m]_0 \coloneqq \{0, ..., m\}$ ,  $b \in \mathbb{R}^m$ ,

- ▷ bounds:  $\ell_i \in \mathbb{R} \cup \{-\infty\}$ ,  $u_i \in \mathbb{R} \cup \{\infty\}$  for all  $i \in [m]$ ,
- ▷ integer variables:  $I \subseteq [m]$ .

Mixed Integer Programs (MIPs) are a special case.

CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 7

#### **Overview**



#### Preliminaries

#### 2 Applications

- 3 Solution Methods
- 4 SCIP-SDF
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook



- $\triangleright$  *n* nodes  $V \subset \mathbb{R}^d$
- $\triangleright$  *n*<sub>f</sub> free nodes *V*<sub>f</sub>  $\subset$  *V*
- $\triangleright$  *m* possible bars *E*
- ▷ force  $f \in \mathbb{R}^{d_f}$  for  $d_f = d \cdot n_f$





- $\triangleright$  *n* nodes  $V \subset \mathbb{R}^d$
- ▷  $n_f$  free nodes  $V_f \subset V$
- ▷ m possible bars E
- $\triangleright$  force  $f \in \mathbb{R}^{d_f}$  for  $d_f = d \cdot n_f$

- ▷ Cross-sectional areas x ∈ ℝ<sup>m</sup><sub>+</sub> for bars minimizing volume while creating a "stable" truss
- ▷ Stability is measured by the compliance  $\frac{1}{2}f^T u$  with node displacements u.









o

- $\triangleright$  *n* nodes  $V \subset \mathbb{R}^d$
- $\triangleright$  *n*<sub>f</sub> free nodes *V*<sub>f</sub>  $\subset$  *V*
- ▷ m possible bars E
- $\triangleright$  force  $f \in \mathbb{R}^{d_f}$  for  $d_f = d \cdot n_f$

- ▷ Cross-sectional areas  $x \in \mathbb{R}^m_+$  for bars minimizing volume while creating a "stable" truss
- ▷ Stability is measured by the compliance  $\frac{1}{2}f^T u$  with node displacements u.



▷ Use uncertainty set { $f \in \mathbb{R}^{d_t}$  :  $f = Qg : ||g||_2 \le 1$ } instead of single force f. ▷ Instead of arbitrary cross-sections  $x \in \mathbb{R}^m_+$  restrict them to discrete set  $\mathcal{A}$ .



Elliptic Robust Discrete TTD [Ben-Tal/Nemirovski 1997; Mars 2013]

$$\begin{array}{ll} \inf & \sum_{e \in E} \ell_e \sum_{a \in \mathcal{A}} a \, x_e^a \\ \text{s.t.} & \begin{pmatrix} 2C_{\max} I & Q^T \\ Q & A(x) \end{pmatrix} \succeq 0, \\ & \sum_{a \in \mathcal{A}} x_e^a \leq 1 & \forall e \in E, \\ & x_e^a \in \{0, 1\} & \forall e \in E, a \in \mathcal{A}, \end{array}$$

with bar lengths  $\ell_e$ , upper bound  $C_{max}$  on compliance and stiffness matrix

$$A(x) = \sum_{e \in E} \sum_{a \in \mathcal{A}} A_e \, a \, x_e^a$$

for positive semidefinite, rank-one single bar stiffness matrices  $A_e$ .

CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 10

#### **Cardinality Constrained Least Squares**



- ▷ Sample points as rows of  $A \in \mathbb{R}^{m \times d}$  with measurements  $b_1, \ldots, b_m \in \mathbb{R}$
- ▷ Find  $x \in \mathbb{R}^d$  minimizing  $\frac{1}{2} ||Ax b||_2^2 + \frac{\rho}{2} ||x||_2^2$  for a regularization parameter  $\rho$ .
- > Further restrict x to at most k non-zero components.

# Cardinality Constrained Least Squares [Pilanci/Wainwright/El Ghaoui 2015]

$$\begin{array}{ll} \inf & \tau \\ \text{s.t.} & \left( \begin{matrix} I + \frac{1}{\rho} A \operatorname{Diag}(z) A^{\top} & b \\ b^{\top} & \tau \end{matrix} \right) \succeq & 0, \\ & \sum_{j=1}^{d} z_{j} \leq k, \ z \in \ \{0,1\}^{d}. \end{array}$$

#### Minimum k-Partitioning



- ▷ Given undirected graph G = (V, E), edge costs *c* and number of parts  $k \in \mathbb{N}$ .
- ▷ Find partitioning of *V* into *k* disjoint sets  $V_1, ..., V_k$  minimizing the total cost within the parts





▷ Applications in, e.g., frequency planning and layout of electronic circuits.

#### Minimum k-Partitioning



#### Minimum k-Partitioning [Eisenblätter 2001]

$$\begin{array}{ll} \inf & \sum_{1 \leq i < j \leq n} c_{ij} \; Y_{ij} \\ \text{s.t.} & \frac{-1}{k-1} \; J + \frac{k}{k-1} \; Y \succeq 0, \\ & Y_{ii} = 1, \; Y_{ij} \in \{0,1\}, \end{array}$$

where J is the all-one matrix.

Constraints on the size of the partitions can be added as

$$\ell \leq \sum_{j=1}^{n} w_j Y_{ij} \leq u \qquad \forall i \leq n,$$

with  $w_j$  weight of node j and  $\ell$  and u bounds on total weight of each partition.

#### **Further Applications**



- Computing restricted isometry constants in compressed sensing
- Optimal transmission switching problem in AC power flow
- Robustification of physical parameters in gas networks
- Subset selection for eliminating multicollinearity

▷ ...

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDI
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### Solving Methods for MISDPs



- 1. SDP-based branch-and-bound: Solve SDP-relaxations (special case of NLP-based B&B [Dakin 1965])
- LP-based branch-and-bound: Cutting plane method based on LP-relaxations [Sherali and Fraticelli 2002]; [Krishnan and Mitchell 2006]
- 3. Outer approximation: Solve MIP-relaxations [Duran and Grossmann 1986].

Implementations:

- 1. YALMIP [Löfberg 2004] and SCIP-SDP
- 2. YALMIP and SCIP-SDP
- 3. Pajarito [Coey, Lubin, and Vielma 2020]

#### SDP-based Branch-and-Bound



- Relax integrality.
- ▷ Branch on integral *y*-variables.
- ▷ Need to solve a continuous SDP in each branch-and-bound node.
- Relaxations can be solved by problem-specific approaches (e.g. conic bundle or low-rank methods) or interior-point solvers.
- ▷ Convergence assumptions of SDP-solvers should be satisfied.
- ▷ Usually much slower than solving LPs and no warmstart.

#### LP-based Approach



For LP-based approach and outer approximation:

▷ Usual approach for convex MINLP:  $g(Z) = -\lambda_{\min}(Z)$ . Then  $Z \succeq 0 \Leftrightarrow g(Z) \le 0$ . Use gradient cuts

$$g(\overline{Z}) + \nabla g(\overline{Z})^{\top}(Z - \overline{Z}) \leq 0.$$

- ▷ But function of smallest eigenvalue is not differentiable everywhere.
- ▷ Instead use characterization  $Z \succeq 0 \quad \Leftrightarrow \quad u^\top Z \, u \ge 0$  for all  $u \in \mathbb{R}^n$ .
- ▷ If  $Z := \sum_{k=1}^{m} A^k y_k^* A^0 \succeq 0$ , compute eigenvector v to smallest eigenvalue. Then

$$v^{\top}Z v = \sum_{k=1}^{m} v^{\top}A^{k}v y_{k} - v^{\top}A^{0}v \geq 0$$

is valid and cuts off  $y^* \rightarrow \text{Eigenvector cut.}$ 

#### Cutting Planes: MISOCP vs. MISDP



- Cutting planes are often used by solvers for mixed-integer second-order cone problems (MISOCPs).
- Approximation for SOCPs possible with polynomial number of cuts [Ben-Tal/Nemirovski 2001].
- Approximation for SDPs needs exponential number of cuts:

### Theorem ([Braun, Fiorini, Pokutta, Steurer 2015])

There are SDPs of dimension  $n \times n$  for which any polyhedral approximation is of size  $2^{\Omega(n)}$ .

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDP
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### SCIP-SDP



#### Our solver: SCIP-SDP

- Based on SCIP (www.scipopt.org)
- Supports both SDP-based B&B and LP-based branch-and-cut.
- ▷ Introduced by [Mars 2013], continued by [Gally 2019] and Matter [2022], ...
- Apache 2.0 license.
- ▷ Current version 4.3: wwwopt.mathematik.tu-darmstadt.de/scipsdp, https://github.com/scipopt/SCIP-SDP
- Approximately 50 000 lines of C-code
- SDP-solvers: interfaces to Mosek, DSDP, SDPA
- Matlab-Interface: github.com/scipopt/MatlabSCIPInterface
- File formats: SDPA-format and CBF
- Parallelized version available as UG-MISDP.
- Supports rank 1 constraints.

#### Components (Plugins) of SCIP-SDP



- ▷ Constraint handler for dual form:  $\sum_{k \in [m]}^{m} A^{k} y_{k} A^{0} \succeq 0$ .
- ▷ Two MISDP heuristics: SDP-based diving, SDP-based randomized rounding
- Several presolving methods: Add linear constraints implied by SDP-constraint during presolving, e.g., non-negativity of diagonal entries. (See below.)
- ▷ Several MISDP propagators: dual fixing, minor propagation. (See below.)
- Relaxator solves trivial relaxations (e.g., all variables fixed), otherwise calls SDP interface (SDPI).
- ▷ Upper level SDPI does some local presolving important for SDP-solvers, e.g., removing fixed variables and removing zero rows/columns.
- Lower level SDPI brings SDP into the form needed by the solver (e.g., primal instead of dual SDP for MOSEK) and solves it.
- In case SDP-solver failed to converge (e.g., because of failure of constraint qualification), upper level SDPI can apply penalty formulation and call lower level SDPI for adjusted problem.

#### For Computations ...



- ▷ Use SCIP developer version (8.0.3).
- ▷ Use Mosek 9.2.40 for solving SDP-relaxations.
- ▷ Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs.
- ▷ Nodes and times are shifted geometric means, time limit 1 h.

#### **Comparison of SDP and LP-based Approach**



Testset: 185 instances from different sources.

| type               | # solved | # nodes | time  |  |  |
|--------------------|----------|---------|-------|--|--|
| SDP                | 167      | 1066.1  | 132.2 |  |  |
| LP                 | 109      | 419.2   | 336.5 |  |  |
| all optimal (106): |          |         |       |  |  |
| SDP                |          | 605.0   | 93.2  |  |  |
| LP                 |          | 507.0   | 63.2  |  |  |
|                    |          |         |       |  |  |

Conclusions:

- LP-based approach solves significantly less instances.
- $\triangleright\,$  On the instances solved by both, it is faster by 32 % and uses less nodes.
- ▷ Open question: Predict which method is faster and explain why.

#### **Comparison of MISDP Solvers I**



#### A bit older comparison:

| solver            | TTD |        |     | CLS   |     | M <i>k</i> -P |     | Total |  |
|-------------------|-----|--------|-----|-------|-----|---------------|-----|-------|--|
|                   | opt | time   | opt | time  | opt | time          | opt | time  |  |
| SCIP-SDP (NL-BB)  | 57  | 64.4   | 63  | 94.3  | 69  | 36.4          | 189 | 60.4  |  |
| SCIP-SDP (Cut-LP) | 44  | 143.6  | 65  | 9.0   | 35  | 640.3         | 144 | 117.5 |  |
| YALMIP (BNB)      | 52  | 203.0  | 62  | 132.0 | 68  | 25.2          | 182 | 88.1  |  |
| YALMIP (CUTSDP)   | 22  | 1026.8 | 58  | 33.1  | 27  | 657.2         | 107 | 295.5 |  |
| Pajarito          | 43  | 190.9  | 65  | 54.3  | 13  | 1503.5        | 121 | 271.2 |  |

run on 8-core Intel i7-4770 CPU with 3.4 GHz and 16GB memory over 196 instances of CBLIB; time limit of 3600 seconds, times as shifted geometric means, SDPs solved using MOSEK 8.1.0.54, MIPs/LPs using CPLEX 12.6.1; all solvers single-threaded; SCIP-SDP 3.1.1 (LP-based cutting planes), YALMIP-CUTSDP R20180926, Pajarito 0.5.0



CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 26

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDF

#### 5 Dual Fixing

- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

# **Dual Fixing**



- Extension of reduced-cost fixing to general MINLPs by [Ryoo and Sahinidis 1996] and primal MISDPs by [Helmberg 2000].
- Our approach uses conic duality and only requires feasibility.

# Theorem [Gally, P., Ulbrich 2018]

- ▷ (X, W, V): Primal feasible solution, where W, V are primal variables corresponding to variable bounds  $\ell$ , u in the dual,
- ▷ *f*: Corresponding primal objective value,
- ▷ U: Upper bound on the optimal objective value of the MISDP.

Then for every optimal solution  $y^*$  of the MISDP

$$y_j^* \leq \ell_j + \frac{U-f}{W_{jj}}$$
 if  $\ell_j > -\infty$  and  $y_j^* \geq u_j - \frac{U-f}{V_{jj}}$  if  $u_j < \infty$ .

- ▷ For binary  $y_j$ : If  $U f < W_{jj}$ , then  $y_j^* = 0$ , if  $U f < V_{jj}$ , then  $y_j^* = 1$ .
- 9% reduction of B&B-nodes, 23% speedup.

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDF
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### **Bound Tightening**



For an index  $k \in [m]$ , define

$$P_k \coloneqq \{i \in [m] \setminus \{k\} : A^i \succeq 0\}, \qquad N_k \coloneqq \{i \in [m] \setminus \{k\} : A^i \preceq 0\},$$

as well as

$$\underline{\mu}_{k} \coloneqq \inf \left\{ \mu : A^{k} \mu + \sum_{i \in P_{k}} A^{i} u_{i} + \sum_{j \in N_{k}} A^{j} \ell_{j} - A^{0} \succeq 0 \right\},$$
$$\overline{\mu}_{k} \coloneqq \sup \left\{ \mu : A^{k} \mu + \sum_{i \in P_{k}} A^{i} u_{i} + \sum_{j \in N_{k}} A^{j} \ell_{j} - A^{0} \succeq 0 \right\}$$

or  $\pm\infty$  if  $\pm\infty$  occurs in bounds ( $\ell$ , u).

## Lemma (Tighten Bounds (TB))

Let all matrices be (positive or negative) semidefinite. Then,  $\underline{\mu}_k \leq y_k \leq \overline{\mu}_k$  is valid for all  $k \in [m]$ . We can round bounds for integral variables.

#### **One-Variable SDPs**



▷ For computing bound tightenings, need to solve one-variable SDPs.

$$\inf \{ \mu : \mu A - B \succeq 0, \ \ell \le \mu \le u \}.$$

for symmetric  $A, B \in \mathbb{R}^{n \times n}$ .

- ▷ Can easily see:  $\mu \mapsto \lambda_{\min}(\mu A B)$  is concave.
- ▷ Let  $\hat{v}$  be a unit eigenvector for  $\lambda_{\min}(\hat{\mu} A B)$  for  $\hat{\mu} \in \mathbb{R}$ . Then  $\hat{v}^{\top}A\hat{v}$  is a supergradient, i.e.,

$$\lambda_{\min}(\mu \, \pmb{A} - \pmb{B}) \leq \lambda_{\min}(\hat{\mu} \, \pmb{A} - \pmb{B})$$
 +  $(\mu - \hat{\mu}) \, \hat{\pmb{v}}^{ op} \pmb{A} \hat{\pmb{v}}$ 

for all  $\mu \in \mathbb{R}$ .

- ▷ Goal: Want increase  $\mu$  from  $\ell$  until  $\lambda_{\min}(\mu A B) = 0.$
- > Yields semismooth Newton algorithm ....



#### **One-Variable SDPs**



 $\begin{aligned} \mathbf{v}_k &= \text{eigenvector for } \lambda_k \coloneqq \lambda_{\min}(\mathbf{A}\mu_k - \mathbf{B}) \\ \mu_{k+1} &= \mu_k - \frac{\lambda_k}{(\mathbf{v}^k)^\top \mathbf{A}\mathbf{v}^k} \end{aligned}$ 

Handle easy cases, e.g., infeasible if  $\lambda_{\min}(A u - B) < 0$ , supergradient positive.

- Always converges.
- ▷ Converges Q-superlinearly to a zero  $\mu^*$  of  $f(\mu) = \lambda_{\min}(\mu A B)$ , given that  $\partial f(\mu^*)$  is nonsingular and the starting point lies near  $\mu^*$  [Qi and Sun, 1993].
- Very fast in practice; bottleneck: eigenvector computation ...

#### **Condensed Computational Results**



Testset with 185 instances, results from [Matter and P. 2023]:

| Setting          | # solved | # nodes | time   |
|------------------|----------|---------|--------|
| nopresol         | 168      | 1405.3  | 180.23 |
| bound tightening | 167      | 1297.6  | 152.43 |
| MIX              | 167      | 1085.2  | 139.52 |

- Bound tightening applied in every node produces a speed-up of about 7 %.
- MIX includes bound tightening and several other methods. It produces a speed-up of about 22%.
- ▷ Some techniques do not do anything on some instances.
- ▷ The methods are effective if they can be applied and induce a small time overhead.

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDF
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

### **Conflict Analysis I**



- ▷ The original idea is to learn from infeasible nodes in a branch-and-bound-tree.
- ▷ Idea transferred from SAT-solving to MIPs by [Achterberg 2007].
- ▷ More generally, can be seen as a way to learn cuts from solutions of the duals → similar to "dual ray/solution analysis" [Witzig et al. 2017, Witzig 2021].

#### **Conflict Analysis II**



#### Consider

$$\inf \left\{ \boldsymbol{b}^\top \boldsymbol{y} \ : \ \boldsymbol{A}(\boldsymbol{y}) \coloneqq \sum_{k=1}^m \boldsymbol{A}^k \ \boldsymbol{y}_k - \boldsymbol{A}^0 \succeq \boldsymbol{0}, \ \boldsymbol{D} \boldsymbol{y} \geq \boldsymbol{d}, \ \ell \leq \boldsymbol{y} \leq \boldsymbol{u} \right\}$$

and  $\hat{X} \succeq 0, \hat{z} \ge 0$ . Aggregation yields:

$$\langle A(y), \hat{X} \rangle + \hat{z}^{\top} Dy \geq \hat{z}^{\top} d.$$

Idea: Do not add this (redundant) inequality, but perform bound propagation, taking integrality conditions into account.

#### **Conflict Analysis III**



The dual can provide  $(\hat{X}, \hat{z}, \hat{r}^{\ell}, \hat{r}^{u})$ :

$$\sup \quad \langle A^{0}, X \rangle + z^{\top} d + \ell^{\top} r^{\ell} - u^{\top} r^{u}$$
  
s.t. 
$$\langle A^{j}, X \rangle + (D^{\top} z)_{j} + r_{j}^{\ell} - r_{j}^{u} = b_{j} \quad \forall j \in [m],$$
$$X \succeq 0, \ z, \ r^{\ell}, \ r^{u} \ge 0.$$

Similarly for a primal ray satisfying:

$$\langle A^{j}, X \rangle + (D^{\top} z)_{j} + r_{j}^{\ell} - r_{j}^{u} = 0 \qquad \forall j \in [m],$$
  
 
$$\langle A^{0}, X \rangle + d^{\top} z + d^{\top} r^{\ell} - u^{\top} r^{u} > 0,$$
  
 
$$X \succeq 0, \ z, \ r^{\ell}, \ r^{u} \ge 0.$$

#### Lemma

Let  $(\hat{X}, \hat{z}, \hat{r}^{\ell}, \hat{r}^{u})$  be a primal ray. Then the aggregated inequality is infeasible with respect to the local bounds  $\ell$  and u.

### **Conflict Analysis – Computations**



Generate a conflict constraint for each feasible or infeasible node. Store them as constraints and perform bound propagation.

| type      | # solved | # nodes | time  |
|-----------|----------|---------|-------|
| default   | 167      | 1066.1  | 132.2 |
|           | 168      | 989.6   | 122.2 |
| default   | (107).   | 788.7   | 94.2  |
| conflicts |          | 726.3   | 86.4  |

- ▷ Using conflicts provides a speed-up and node-reduction of about 8 %.
- Average number of conflict constraints per node: 1.25 (Note that we also run in heuristics and we do not count nodes of heuristics).

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDF
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### **Symmetry Detection**



Goal: apply known symmetry handling methods.

For a permutation  $\sigma$  of [*n*]:

$$\sigma(\boldsymbol{A})_{ij} = \boldsymbol{A}_{\sigma^{-1}(i),\sigma^{-1}(j)} \quad \forall i, j \in [n].$$

#### Definition

A permutation  $\pi \in S_m$  of variables is a formulation symmetry if there exists a permutation  $\sigma \in S_n$  such that

1.  $\pi(I) = I$ ,  $\pi(\ell) = \ell$ ,  $\pi(u) = u$ , and  $\pi(b) = b$ ( $\pi$  leaves integer variables, variable bounds, and the objective coefficients invariant),

2. 
$$\sigma(A^0) = A^0$$
 and, for all  $i \in [m]$ ,  $\sigma(A^i) = A^{\pi^{-1}(i)}$ .

Such symmetries can be detected by using graph automorphism algorithms.

#### Symmetry: Computed Symmetries



instance symmetry group S2 0+-115305C MISDPId000010 S2 0+-115305C MISDPrd000010 band60605D MISDPld000010  $S_2 \times S_2 \times S_2 \times S_2 \times S_2 \times S_2 \times S_{10} \times S_3 \times S_4$  $S_2 \times S_2 \times S_2 \times S_2 \times S_2 \times S_2 \times S_{10} \times S_3 \times S_4$ band60605D MISDPrd000010 band70704A MISDPId000010  $S_2 \times S_2 \times S_2 \times S_3 \times S_3$ band70704A MISDPrd000010  $S_2 \times S_2 \times S_2 \times S_3 \times S_3$ clique 60 k10 6 6. clique 60 k15 4 4. clique 60 k20 3 3, clique 60 k4 15 15, S2 clique 60 k5 12 12, clique 60 k6 10 10, clique 60 k7 8 9. clique 60 k8 7 8. clique 60 k9 6 7, clique 70 k3 23 24  $\mathcal{S}_2 \times \mathcal{S}_2 \times \mathcal{S}_2 \times \mathcal{S}_2 \times \mathcal{D}_4 \times \mathcal{S}_4 \times \mathcal{S}_4$ diw 34 diw 37  $S_2 \times S_4 \times S_3 \times S_4$ diw 38  $S_2 \times S_2 \times S_2 \times S_3$ diw 43  $S_3$ diw 44  $S_3$ 

 $S_k$  = full symmetric group on *k* elements;  $D_k$  = dihedral group.

CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 41

# Symmetry: Computational Results



Results from [Hojny and P. 2023]:

|         | all (184) |             |        | all optimal (168) |        | only symmetric (21) |
|---------|-----------|-------------|--------|-------------------|--------|---------------------|
|         | time (s)  | symtime (s) | # gens | time (s)          | #nodes | time (s)            |
| without | 130.6     | -           | _      | 95.0              | 778.3  | 45.07               |
| with    | 125.3     | 0.44        | 99     | 90.8              | 760.6  | 29.84               |

Speed-up of about 4 % for all instances;

- ▷ Speed-up of about 34% for the 21 instances that contain symmetry.
- ▷ Number of generators is quite small.
- ▷ Note that we do not exploit symmetries in the solutions of the SDPs (yet).

#### **Overview**



- 1 Preliminaries
- 2 Applications
- 3 Solution Methods
- 4 SCIP-SDP
- 5 Dual Fixing
- 6 Presolving MISDPs
- 7 Conflict Analysis
- 8 Symmetry
- 9 Conclusion & Outlook

#### **Conclusion & Outlook**



- ▷ Framework for solving general MISDPs
- Several methods help to improve performance.
- ▷ Solving SDPs is still one bottleneck, but often yields strong bounds.
- ▷ Future: follow development path for MIP-solvers for MISDP-solvers as well.



# SCIP-SDP is available in source code at http://www.opt.tu-darmstadt.de/scipsdp/

# Thank you for your attention!

CO@Work 2024 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 45

#### References



• T. Gally, M. E. Pfetsch, and S. Ulbrich.

A framework for solving mixed-integer semidefinite programs. *Optimization Methods and Software*, 33(3):594–632, 2018.

• C. Hojny and M. E. Pfetsch.

Handling symmetries in mixed-integer semidefinite programs.

In A. A. Cire, editor, *Integration of Constraint Programming, Artificial Intelligence, and Operations Research*, pages 69–78, Cham, 2023. Springer.

• F. Matter and M. E. Pfetsch.

Presolving for mixed-integer semidefinite optimization.

INFORMS J. Opt., 5(2):131-154, 2022.

M. E. Pfetsch.

Dual conflict analysis for mixed-integer semidefinite programs. Technical report, Optimization Online, 2023.