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Basic Definitions

Recall:

. Let M ∈ Rn×n be a symmetric matrix.

. Note: All matrices in this talk will be symmetric.

. M is positive semidefinite (psd), denoted M � 0, if x>Mx ≥ 0 for all x ∈ Rn.

. This is equivalent to M having nonnegative eigenvalues.

. M � 0 if and only if there exists S ∈ Rr×n with M = S>S.

. Sn
+ := {M ∈ Rn×n : M symmetric and M � 0} is a closed convex cone.

. For two matrices A, B ∈ Rn×n, 〈A, B〉 :=
∑

ij AijBij is the inner product.

. If A, B � 0 then 〈A, B〉 ≥ 0.

. M is positive definite, denoted A � 0, if x>Mx > 0 for all x ∈ Rn \ {0}.

. [m] := {1, ... , m} for m ∈ N.
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From Linear to Semidefinite Programs

Let a0, ... , am ∈ Rn and b ∈ Rm.
Primal/dual pair of linear program:

(P) max (a0)>x

s.t. (ak )>x = bk ∀k ∈ [m]

x ≥ 0.

(D) min b>y

s.t.
∑

k∈[m]

ak yk − a0 ≥ 0,

y ∈ Rm.

Generalize to matrices: Let A0, ... , Am ∈ Rn×n be (symmetric) matrices, b ∈ Rm.
Primal/dual Pair of semidefinite program (SDP):

(P) sup 〈A0, X〉
s.t. 〈Ak , X〉 = bk ∀k ∈ [m],

X � 0.

(D) inf b>y

s.t.
∑

k∈[m]

Ak yk − A0 � 0,

y ∈ Rm.
LPs are a special case of SDPs for diagonal matrices.
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Duality for Semidefinite Programs

primal (P) : sup {〈A0, X〉 : 〈Ak , X〉 = bk , ∀k ∈ [m], X � 0},

dual (D) : inf {b>y :
∑

k∈[m]

Ak yk − A0 � 0, y ∈ Rm}.

. Weak duality: X̂ and ŷ feasible for (P) and (D), resp. Then

0 ≤ 〈
∑

k∈[m]

Ak ŷk − A0, X̂〉 =
m∑

k∈[,]

bk ŷk − 〈A0, X̂〉 = b>ŷ − 〈A0, X̂〉,

which is equivalent to 〈A0, X̂〉 ≤ b>ŷ .
. Strong Duality holds if Slater condition holds for (P) or (D):
∃X � 0 feasible for (P) or y such that

∑
k∈[m] Ak yk − A0 � 0 in (D).

. If Slater condition holds for (P), optimal objective of (D) is attained and vice
versa.
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Solving Semidefinite Programs

. SDPs can be solved in polynomial time up to a given accuracy ε > 0, e.g., by
interior point solvers.

. Existence of a KKT-point is guaranteed if Slater condition holds for (P) and (D).
This is assumed by most interior-point SDP-solvers.

. No “combinatorial algorithm” is known for SDPs.

. Restarting interior point solvers is notoriously hard as compared to hot starting
the simplex algorithm.

. As a consequence, the solution of SDPs is much more time consuming
(currently a factor of 10 to 100 slower).
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Mixed-Integer Semidefinite Programming

Mixed-Integer Semidefinite Program (MISDP)

inf b>y

s.t.
m∑

k=1

Ak yk − A0 � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m],

yi ∈ Z ∀ i ∈ I,

. symmetric matrices Ak ∈ Rn×n for k ∈ [m]0 := {0, ... , m}, b ∈ Rm,

. bounds: `i ∈ R ∪ {−∞}, ui ∈ R ∪ {∞} for all i ∈ [m],

. integer variables: I ⊆ [m].

Mixed Integer Programs (MIPs) are a special case.
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Robust Truss Topology Design

. n nodes V ⊂ Rd

. nf free nodes Vf ⊂ V

. m possible bars E

. force f ∈ Rdf for df = d · nf

. Cross-sectional areas x ∈ Rm
+ for

bars minimizing volume
while creating a “stable” truss

. Stability is measured by the
compliance 1

2 f T u with node
displacements u.

ground structure 3x3

optimal structure

. Use uncertainty set {f ∈ Rdf : f = Qg : ‖g‖2 ≤ 1} instead of single force f .

. Instead of arbitrary cross-sections x ∈ Rm
+ restrict them to discrete set A.
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Robust Truss Topology Design

Elliptic Robust Discrete TTD [Ben-Tal/Nemirovski 1997; Mars 2013]

inf
∑
e∈E

`e

∑
a∈A

a xa
e

s.t.
(

2CmaxI QT

Q A(x)

)
� 0,∑

a∈A
xa

e ≤ 1 ∀e ∈ E ,

xa
e ∈ {0, 1} ∀e ∈ E , a ∈ A,

with bar lengths `e, upper bound Cmax on compliance and stiffness matrix

A(x) =
∑
e∈E

∑
a∈A

Ae a xa
e

for positive semidefinite, rank-one single bar stiffness matrices Ae.
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Cardinality Constrained Least Squares

. Sample points as rows of A ∈ Rm×d with measurements b1,. . . , bm ∈ R

. Find x ∈ Rd minimizing 1
2‖Ax − b‖2

2 + ρ
2‖x‖

2
2 for a regularization parameter ρ.

. Further restrict x to at most k non-zero components.

Cardinality Constrained Least Squares
[Pilanci/Wainwright/El Ghaoui 2015]

inf τ

s.t.
(

I + 1
ρ A Diag(z) A> b

b> τ

)
� 0,

d∑
j=1

zj ≤ k , z ∈ {0, 1}d .
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Minimum k-Partitioning

. Given undirected graph G = (V , E), edge costs c and number of parts k ∈ N.

. Find partitioning of V into k disjoint sets V1, ... , Vk minimizing the total cost
within the parts

k∑
i=1

∑
e∈E [Vi ]

c(e).

1

2

3

4

51

3

4

2

2

2 2

5

3

. Applications in, e.g., frequency planning and layout of electronic circuits.
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Minimum k-Partitioning

Minimum k -Partitioning [Eisenblätter 2001]

inf
∑

1≤i<j≤n

cij Yij

s.t. −1
k−1 J + k

k−1 Y � 0,

Yii = 1, Yij ∈ {0, 1},

where J is the all-one matrix.

Constraints on the size of the partitions can be added as

` ≤
n∑

j=1

wj Yij ≤ u ∀i ≤ n,

with wj weight of node j and ` and u bounds on total weight of each partition.
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Further Applications

. Computing restricted isometry constants in compressed sensing

. Optimal transmission switching problem in AC power flow

. Robustification of physical parameters in gas networks

. Subset selection for eliminating multicollinearity

. . . .
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Solving Methods for MISDPs

1. SDP-based branch-and-bound: Solve SDP-relaxations
(special case of NLP-based B&B [Dakin 1965])

2. LP-based branch-and-bound: Cutting plane method based on LP-relaxations
[Sherali and Fraticelli 2002]; [Krishnan and Mitchell 2006]

3. Outer approximation: Solve MIP-relaxations
[Duran and Grossmann 1986].

Implementations:

1. YALMIP [Löfberg 2004] and SCIP-SDP

2. YALMIP and SCIP-SDP

3. Pajarito [Coey, Lubin, and Vielma 2020]
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SDP-based Branch-and-Bound

. Relax integrality.

. Branch on integral y -variables.

. Need to solve a continuous SDP in each branch-and-bound node.

. Relaxations can be solved by problem-specific approaches (e.g. conic bundle
or low-rank methods) or interior-point solvers.

. Convergence assumptions of SDP-solvers should be satisfied.

. Usually much slower than solving LPs and no warmstart.
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LP-based Approach

For LP-based approach and outer approximation:

. Usual approach for convex MINLP:
g(Z ) = −λmin(Z ). Then Z � 0⇔ g(Z ) ≤ 0. Use gradient cuts

g(Z ) +∇g(Z )>(Z − Z ) ≤ 0.

. But function of smallest eigenvalue is not differentiable everywhere.

. Instead use characterization Z � 0 ⇔ u>Z u ≥ 0 for all u ∈ Rn.

. If Z :=
∑m

k=1 Ak y∗k − A0 6� 0, compute eigenvector v to smallest eigenvalue.
Then

v>Z v =
m∑

k=1

v>Ak v yk − v>A0v ≥ 0

is valid and cuts off y∗ → Eigenvector cut.
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Cutting Planes: MISOCP vs. MISDP

. Cutting planes are often used by solvers for mixed-integer second-order cone
problems (MISOCPs).

. Approximation for SOCPs possible with polynomial number of cuts
[Ben-Tal/Nemirovski 2001].

. Approximation for SDPs needs exponential number of cuts:

Theorem ([Braun, Fiorini, Pokutta, Steurer 2015])

There are SDPs of dimension n × n for which any polyhedral approximation is of
size 2Ω(n).
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SCIP-SDP

Our solver: SCIP-SDP
. Based on SCIP (www.scipopt.org)
. Supports both SDP-based B&B and LP-based branch-and-cut.
. Introduced by [Mars 2013], continued by [Gally 2019] and Matter [2022], . . .
. Apache 2.0 license.
. Current version 4.3: wwwopt.mathematik.tu-darmstadt.de/scipsdp,
https://github.com/scipopt/SCIP-SDP

. Approximately 50 000 lines of C-code

. SDP-solvers: interfaces to Mosek, DSDP, SDPA

. Matlab-Interface: github.com/scipopt/MatlabSCIPInterface

. File formats: SDPA-format and CBF

. Parallelized version available as UG-MISDP.

. Supports rank 1 constraints.
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Components (Plugins) of SCIP-SDP

. Constraint handler for dual form:
∑m

k∈[m] Ak yk − A0 � 0.
. Two MISDP heuristics: SDP-based diving, SDP-based randomized rounding
. Several presolving methods: Add linear constraints implied by SDP-constraint

during presolving, e.g., non-negativity of diagonal entries. (See below.)
. Several MISDP propagators: dual fixing, minor propagation. (See below.)
. Relaxator solves trivial relaxations (e.g., all variables fixed), otherwise calls

SDP interface (SDPI).
. Upper level SDPI does some local presolving important for SDP-solvers, e.g.,

removing fixed variables and removing zero rows/columns.
. Lower level SDPI brings SDP into the form needed by the solver (e.g., primal

instead of dual SDP for MOSEK) and solves it.
. In case SDP-solver failed to converge (e.g., because of failure of constraint

qualification), upper level SDPI can apply penalty formulation and call lower
level SDPI for adjusted problem.
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For Computations . . .

. Use SCIP developer version (8.0.3).

. Use Mosek 9.2.40 for solving SDP-relaxations.

. Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs.

. Nodes and times are shifted geometric means, time limit 1 h.
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Comparison of SDP and LP-based Approach

Testset: 185 instances from different sources.

type # solved # nodes time

SDP 167 1066.1 132.2
LP 109 419.2 336.5

all optimal (106):
SDP 605.0 93.2
LP 507.0 63.2

Conclusions:
. LP-based approach solves significantly less instances.
. On the instances solved by both, it is faster by 32 % and uses less nodes.
. Open question: Predict which method is faster and explain why.
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Comparison of MISDP Solvers I

A bit older comparison:

solver TTD CLS Mk -P Total
opt time opt time opt time opt time

SCIP-SDP (NL-BB) 57 64.4 63 94.3 69 36.4 189 60.4
SCIP-SDP (Cut-LP) 44 143.6 65 9.0 35 640.3 144 117.5
YALMIP (BNB) 52 203.0 62 132.0 68 25.2 182 88.1
YALMIP (CUTSDP) 22 1026.8 58 33.1 27 657.2 107 295.5
Pajarito 43 190.9 65 54.3 13 1503.5 121 271.2

run on 8-core Intel i7-4770 CPU with 3.4 GHz and 16GB memory over 196 instances of CBLIB; time limit of 3600
seconds, times as shifted geometric means, SDPs solved using MOSEK 8.1.0.54, MIPs/LPs using CPLEX 12.6.1; all
solvers single-threaded; SCIP-SDP 3.1.1 (LP-based cutting planes), YALMIP-CUTSDP R20180926, Pajarito 0.5.0
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Comparison of MISDP Solvers I
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Dual Fixing

. Extension of reduced-cost fixing to general MINLPs by [Ryoo and Sahinidis
1996] and primal MISDPs by [Helmberg 2000].

. Our approach uses conic duality and only requires feasibility.

Theorem [Gally, P., Ulbrich 2018]
. (X , W , V ): Primal feasible solution, where W , V are primal variables

corresponding to variable bounds `, u in the dual,

. f : Corresponding primal objective value,

. U: Upper bound on the optimal objective value of the MISDP.

Then for every optimal solution y? of the MISDP

y?j ≤ `j +
U − f

Wjj
if `j > −∞ and y?j ≥ uj −

U − f
Vjj

if uj <∞.

. For binary yj : If U − f < Wjj , then y?j = 0, if U − f < Vjj , then y?j = 1.

. 9% reduction of B&B-nodes, 23% speedup.
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Bound Tightening

For an index k ∈ [m], define

Pk := {i ∈ [m] \ {k} : Ai � 0}, Nk := {i ∈ [m] \ {k} : Ai � 0},

as well as

µ
k

:= inf
{
µ : Ak µ +

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj `j − A0 � 0
}

,

µk := sup
{
µ : Ak µ +

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj `j − A0 � 0
}

or ±∞ if ±∞ occurs in bounds (`, u).

Lemma (Tighten Bounds (TB))

Let all matrices be (positive or negative) semidefinite. Then, µ
k
≤ yk ≤ µk is valid

for all k ∈ [m]. We can round bounds for integral variables.
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One-Variable SDPs

. For computing bound tightenings, need to solve one-variable SDPs.

inf {µ : µA− B � 0, ` ≤ µ ≤ u}.

for symmetric A, B ∈ Rn×n.
. Can easily see: µ 7→ λmin(µA− B) is concave.
. Let v̂ be a unit eigenvector for λmin(µ̂A− B) for µ̂ ∈ R. Then v̂>Av̂ is a

supergradient, i.e.,

λmin(µA− B) ≤ λmin(µ̂A− B) + (µ− µ̂) v̂>Av̂

for all µ ∈ R.

. Goal: Want increase µ from ` until
λmin(µA− B) = 0.

. Yields semismooth Newton algorithm . . .
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One-Variable SDPs

vk = eigenvector for λk := λmin(Aµk − B)
µk+1 = µk − λk

(vk )>Avk

Handle easy cases, e.g., infeasible if
λmin(A u − B) < 0, supergradient positive.

. Always converges.

. Converges Q-superlinearly to a zero µ? of f (µ) = λmin(µA− B), given that
∂f (µ?) is nonsingular and the starting point lies near µ? [Qi and Sun, 1993].

. Very fast in practice; bottleneck: eigenvector computation . . .
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Condensed Computational Results

Testset with 185 instances, results from [Matter and P. 2023]:

Setting # solved # nodes time

nopresol 168 1405.3 180.23
bound tightening 167 1297.6 152.43
MIX 167 1085.2 139.52

. Bound tightening applied in every node produces a speed-up of about 7 %.

. MIX includes bound tightening and several other methods.
It produces a speed-up of about 22 %.

. Some techniques do not do anything on some instances.

. The methods are effective if they can be applied and induce a small time
overhead.
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Conflict Analysis I

. The original idea is to learn from infeasible nodes in a branch-and-bound-tree.

. Idea transferred from SAT-solving to MIPs by [Achterberg 2007].

. More generally, can be seen as a way to learn cuts from solutions of the duals
→ similar to “dual ray/solution analysis” [Witzig et al. 2017, Witzig 2021].
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Conflict Analysis II

Consider

inf {b>y : A(y ) :=
m∑

k=1

Ak yk − A0 � 0, Dy ≥ d , ` ≤ y ≤ u}

and X̂ � 0, ẑ ≥ 0. Aggregation yields:

〈A(y ), X̂〉 + ẑ>Dy ≥ ẑ>d .

Idea: Do not add this (redundant) inequality, but perform bound propagation, taking
integrality conditions into account.
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Conflict Analysis III

The dual can provide (X̂ , ẑ, r̂ `, r̂u):

sup 〈A0, X〉 + z>d + `>r ` − u>ru

s.t. 〈Aj , X〉 + (D>z)j + r `j − ru
j = bj ∀ j ∈ [m],

X � 0, z, r `, ru ≥ 0.

Similarly for a primal ray satisfying:

〈Aj , X〉 + (D>z)j + r `j − ru
j = 0 ∀ j ∈ [m],

〈A0, X〉 + d>z + `>r ` − u>ru > 0,

X � 0, z, r `, ru ≥ 0.

Lemma
Let (X̂ , ẑ, r̂ `, r̂u) be a primal ray. Then the aggregated inequality is infeasible with
respect to the local bounds ` and u.
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Conflict Analysis – Computations

Generate a conflict constraint for each feasible or infeasible node. Store them as
constraints and perform bound propagation.

type # solved # nodes time

default 167 1066.1 132.2
conflicts 168 989.6 122.2

all optimal (167):
default 788.7 94.2
conflicts 726.3 86.4

. Using conflicts provides a speed-up and node-reduction of about 8 %.

. Average number of conflict constraints per node: 1.25
(Note that we also run in heuristics and we do not count nodes of heuristics).
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Symmetry Detection

Goal: apply known symmetry handling methods.

For a permutation σ of [n]:

σ(A)ij = Aσ−1(i),σ−1(j) ∀i , j ∈ [n].

Definition
A permutation π ∈ Sm of variables is a formulation symmetry if there exists a
permutation σ ∈ Sn such that

1. π(I) = I, π(`) = `, π(u) = u, and π(b) = b
(π leaves integer variables, variable bounds, and the objective coefficients
invariant),

2. σ(A0) = A0 and, for all i ∈ [m], σ(Ai ) = Aπ
−1(i).

Such symmetries can be detected by using graph automorphism algorithms.
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Symmetry: Computed Symmetries

instance symmetry group

0+-115305C_MISDPld000010 S2
0+-115305C_MISDPrd000010 S2
band60605D_MISDPld000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band60605D_MISDPrd000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band70704A_MISDPld000010 S2 × S2 × S2 × S3 × S3
band70704A_MISDPrd000010 S2 × S2 × S2 × S3 × S3
clique_60_k10_6_6, clique_60_k15_4_4,
clique_60_k20_3_3, clique_60_k4_15_15,
clique_60_k5_12_12, clique_60_k6_10_10,
clique_60_k7_8_9, clique_60_k8_7_8,
clique_60_k9_6_7, clique_70_k3_23_24

S2

diw_34 S2 × S2 × S2 × S2 ×D4 × S4 × S4
diw_37 S2 × S4 × S3 × S4
diw_38 S2 × S2 × S2 × S3
diw_43 S3
diw_44 S3

Sk = full symmetric group on k elements; Dk = dihedral group.
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Symmetry: Computational Results

Results from [Hojny and P. 2023]:

all (184) all optimal (168) only symmetric (21)

time (s) symtime (s) # gens time (s) #nodes time (s)

without 130.6 – – 95.0 778.3 45.07
with 125.3 0.44 99 90.8 760.6 29.84

. Speed-up of about 4 % for all instances;

. Speed-up of about 34 % for the 21 instances that contain symmetry.

. Number of generators is quite small.

. Note that we do not exploit symmetries in the solutions of the SDPs (yet).
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Conclusion & Outlook

. Framework for solving general MISDPs

. Several methods help to improve performance.

. Solving SDPs is still one bottleneck, but often yields strong bounds.

. Future: follow development path for MIP-solvers for MISDP-solvers as well.
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SCIP-SDP is available in source code at

http://www.opt.tu-darmstadt.de/scipsdp/

Thank you for your attention!
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