

From Energy Systems to Material Science: Optimization as a Common Denominator for a Sustainable Future

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

<u>Milena Petkovic^{1,2}</u>, Janina Zittel², Thorsten Koch², Natasa Dropka¹ Leibniz Institute for Crystal Growth Zuse Institute Berlin

CO@WORK, 25.09.2024, Berlin, Germany

Zuse Institute Berlin

- An interdisciplinary research institute for **applied mathematics** and **data-intensive HPC**
- Focuses on modeling, simulation and optimization with scientific cooperation partners from academia and industry
- Priority application areas: the life and materials sciences, logistics, infrastructure planning, and OR
- Approx. 230 employees

Research Departments:

Modeling and Simulation of Complex Processes Visual and Data-Centric Computing Al in Society, Science, and Technology **Applied Algorithmic Intelligence Methods** Network Optimization Distributed Algorithms Supercomputing

Research Service Units: IT and Data Services Digital Data and Information for Society, Science, and Culture (digiS) NHR Center

Pedersen, Jaap

Petkovic, Dr. Milena

Zakiyeva, Dr. Nazgul

Zittel, Dr. Janina

- solutions for real-world problems. Our research is concerned, in particular, with
 - better planning, extension, and control of vital and complex infrastructure networks.

German Gas Network: The Heart of European Gas Transport

Critical infrastructure to supply Central, Southern and Western Europe with natural gas

Impact on decision making process:

- Experience from the past is obsolete
- Not sufficient historical data for new scenarios

Modal EnergyLab & 💭 OGE

- Operates the longest network of pipelines in Germany ~ 12,000 km
- More than 450 customers
- 120 billion kWh of energy transported every month
- ~ 25% of the total energy demand in Germany/Europe is supplied by natural gas
- In order to guarantee a secure supply in the future, further IT systems are needed to support the dispatcher

Full Network				
1,194	Entries+Exits			
6,247	Pipes			
3,403	Valves			
291	Control valves			
22	Resistors			
100	Compressors			

The Unbounded European Gas Market since 2009

Gas Trading Companies ∩ Transport System Operators = Ø REGULATION (EC) No 715/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Traders buy and sell gas | transmission system operators transport it.

- Capacity products are typically either
 firm = sure deliver or flexible = best effort
- The traders give transport orders to the TSO within the limits of the acquired capacity.
- The TSO then has to fulfill the order accordingly.

Milena Petkovic | Optimization as a Common Denominator for a Sustainable Future

Determine Transient Gas Flows with Network Optimization

The Combinatorics of Gernsheim

 30,000,000,000,000 mathematically possible combinations of valve and compressor states

- 200,000 feasible operation modes identified based on practitioners knowledge
- 1,285 relevant operation modes extracted using analytical evaluation of historical data

Energy Network Time Series

Petkovic, M., Chen, Y., Gamrath, I. *et al.* A hybrid approach for high precision prediction of gas flows. *Energy Syst* (2021). <u>https://doi.org/10.1007/s12667-021-00466-4</u> Petkovic, M. Koch T., Zittel, J. Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks, Energy Science and Engineering (2021). <u>https://doi.org/10.1002/ese3.932</u> Zakiyeva, N., Petkovic, M. (2022). Modeling and Forecasting Gas Network Flows with Multivariate Time Series and Mathematical Programming Approach. In: Operations Research Proceedings 2021.

Milena Petkovic | Optimization as a Common Denominator for a Sustainable Future

Energy Network Time Series: Nominations

Forecasting energy time series – OPT method

Preprocessing

Solve the most relevant points with sophisticated forecast model, use computationally less expensive model for less important points.

Step 1 (offline computation): Solve a MIP to compute sparse solutions leading to optimal feature sets for each node at each hour

Step 2 (online 24/7 at OGE): Solve a LP to forecast hourly supply and the demand based on these feature sets

- training set $\{1, \ldots, T\}$
- features $\rho_i(*) \in \mathbb{R}, i = 1, \ldots, p$
- flow values $F_t, t \in \{1, \ldots, T\}$
- historical data $*_t, t \in \{1, \ldots, T\}$
- $\bullet\,$ max. number of chosen features B
- weights w_i
- $\bullet\,$ over- and under-estimator $e_t^+,\;e_t^-$
- decision variables x_i

$$\min \sum_{t=1}^{T} e_t^+ + e_t^-$$
s.t.
$$\sum_{i=1}^{p} w_i \rho_i(*_t) - F_t = e_t^+ - e_t^- \qquad \forall t \in \{1, \dots, T\}$$

$$-2 * x_i <= w_i <= 2 * x_i \qquad \forall i \in \{1, \dots, p\}$$

$$\sum_{i=1}^{p} x_i <= B$$

$$w_i \in [-2, 2] \qquad \forall i \in \{1, \dots, p\}$$

$$w_i \in \{0, 1\} \qquad \forall i \in \{1, \dots, p\}$$

$$e_t^+, e_t^- \ge 0 \qquad \forall t \in \{1, \dots, T\}$$

$$\min \sum_{t=1}^{T} e_t^+ + e_t^-$$
s.t.
$$\sum_{i=1}^{p} w_i \rho_i(*_t) - F_t = e_t^+ - e_t^- \qquad \forall t \in \{1, \dots, T\}$$

$$w_i \in [-2, 2] \qquad \forall i \in \{1, \dots, p\}$$

$$e_t^+, e_t^- \ge 0 \qquad \forall t \in \{1, \dots, T\}$$

Milena Petkovic | Optimization as a Common Denominator for a Sustainable Future

Features

Forecast quality evaluation

Energy Network Time Series

- Additional constraints arising from the application area
- Resilience
- Unknown and/or changing network topology

Milena Petkovic | Optimization as a Common Denominator for a Sustainable Future

HNR-RB: Hierarchical Network Regression model with Relaxed Balance constraint

Objective

- A comprehensive understanding of the network dynamic
- Detects influential nodes in the network that demonstrate a strong effect on the future flows of other nodes

Challenges

- High dimensionality
- Unknown spatial-temporal dependence structure
- Constraints: demand and supply should be balanced

- Natural gas transmission network with N nodes
- Flow values $q_{t,i}, i = 1, ..., N, t = 1, ..., T$
- Features $f_{t,j,k}$
- Weights $w_{j,i,k}$

$$\hat{q}_{t,i} = \sum_{j=1}^{N} \sum_{k=1}^{F_k} f_{t,j,k} \cdot w_{j,i,k}, \quad i = 1, ..., N, t = 1, ..., T$$
$$e_{t,i} = q_{t,i} - \sum_{j=1}^{N} \sum_{k=1}^{F_k} f_{t,j,k} \cdot w_{j,i,k}, \quad i = 1, ..., N, t = 1, ..., T$$

HNR-RB: Idea

- Max number of selected features L
- Allowed flow disbalance B(t)
- Over- and under- estimation errors $e_{t,i}^+, e_{t,i}^-$

s.t.

• Decision variables $z_{i,j,k}$

- $F_k \cdot N^2$ binary variables
- $F_k \cdot N^2 + 2 \cdot T \cdot N$ continuous variables
- $2F_k \cdot N^2 + N \cdot T + T + N$ constraints

$$\begin{split} \min_{w} \sum_{t=1}^{T} \sum_{i=1}^{N} (e_{t,i}^{+} + e_{t,i}^{-}) \\ q_{i,t} &- \sum_{j=1}^{N} \sum_{k=1}^{F_{k}} f_{t,j,k} \cdot w_{j,i,k} = e_{t,i}^{+} - e_{t,i}^{-}, \quad i = 1, ..., N, t = 1, ..., T \\ \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{F_{k}} f_{t,j,k} \cdot w_{j,i,k} \leq B(t), \quad t = 1, ..., T \\ lb \cdot z_{i,j,k} \leq w_{i,j,k} \leq ub \cdot z_{i,j,k}, \quad i, j = 1, ..., N, k = 1, ..., Fk \\ \sum_{j=1}^{N} \sum_{k=1}^{F_{k}} z_{i,j,k} \leq L, \quad i = 1, ..., N \\ z_{i,j,k} \in \{0, 1\}, \quad i, j = 1, ..., N, k = 1, ..., F_{k} \\ e_{t,i}^{+}, e_{t,i}^{-} \geq 0, \quad i = 1, ..., N, t = 1, ..., T, \end{split}$$

HNR-RB: Multistep model

$$\hat{q}_{i,t+h} = \sum_{j=1}^{N} \sum_{k=1}^{S} f_{t+h,j,k} \cdot w_{i,j,k}$$

Data and experimental setting

- Out-of-sample forecast from 06:00 am for 1 to 24 hours ahead
- Test period: September to December 2022
- DATA:
 - natural gas demand and supply flows (hourly time resolution)
 - network of **9 supply**, **91 demand** nodes + artificial node
- MODEL setup:
 - 3 steps with 3 features:
 - previous hour
 - same hour yesterday.
 - mean flow yesterday
 - Allowed disbalance 5% of hourly mean of total flow
 - Historical window 120 hours
 - Lower and upper bound are set to -2 and 2 respectively.

Benchmarks:

۲

٠

- MAPE .
- **Skill Score:**

$$Skill_{HNR-RB} = 1 - \frac{MAPE_{HNR-RB}}{MAPE_{Benchmark}},$$

RMSE				MAPE			Skill Score				
Η	HNR-RB	ARIMA	LSTM	NAC	HNR-RB	ARIMA	LSTM	NAC	ARIMA	LSTM	NAC
1	117	701	3034	136	0.131	0.351	0.197	0.138	0.628	0.335	0.051
6	224	762	6662	988	0.160	0.322	0.210	0.219	0.503	0.238	0.269
12	384	954	8353	2346	0.188	0.361	0.287	0.349	0.479	0.345	0.461
24	581	1417	9810	5552	0.218	0.342	0.348	0.592	0.380	0.374	0.632

[1] Zakiyeva, N., Petkovic, M. (2022). Modeling and Forecasting Gas Network Flows with Multivariate Time Series and Mathematical Programming Approach. In: Operations Research Proceedings 2021.

HNR-RB: Results

Estimated network dependencies

Milena Petkovic | Optimization as a Common Denominator for a Sustainable Future

The Leibniz Institute for Crystal Growth (IKZ) in Berlin-Adlershof is an international competence center for science & technology as well as service & transfer in the field of crystalline materials.

The R&D spectrum ranges from basic and applied research topics to pre-industrial research tasks.

ikz Crystal Materials

Electronics	Optics	Scientific Instruments	Energy Storage:
 Semiconductors: Silicon crystals are fundamental in making microchips and transistors. Piezoelectric Devices: Quartz crystals are used in watches, sensors, and oscillators 	• Lenses and Lasers: Crystals like sapphire and ruby are used in high-precision optical instruments and lasers.	• X-ray Crystallography: Used to determine the structure of complex molecules like proteins.	• Battery Materials: Crystalline structures are essential in the development of high-capacity batteries.

Milena Petkovic * Leibniz Institute for Crystal Growth * milena.petkovic@ikz-berlin.de

***ikz** Challanges of crystal growth

Large furnaces and grown crystals	 multicrystalline (mc) silicon ingot weighting up to 1600kg, single crystalline silicon ingot of 300 mm diameter, few meters long 				
Several simultaneously acting driving forces	 buoyancy, rotational force, Lorentz force, surface tension, viscous force etc. 				
Long transient processes	• mc Si crystal growth lasts ca. 1 week				
Numerous temporally changing process parameters	 heating power, gas flow etc. 				
High operating temperature	• melting temperatures Tm(Si) = 1683 K				
Contamination restrictions	The real alternative for deeper insight into the c	complex transport phenomena			
Can be hardly studied by costly plant trials	novel processes can be obtained only by CFD sin	d only by CFD simulations and optimization			

🔅 ikz 🛛 New Kilogram

The international system of units (SI system) was revolutionized over the last years by connecting all SI units to fundamental natural constants instead of artificial objects.

The last missing unit was the kilogram (kg) mass unit.

"Big K", the Platin-Iridium block in the French Museum Louvre in Paris defining the kg for around 130 years, had lost weight.

For this purpose, the PTB (Physikalisch-Technische Bundesanstalt) pursued an approach of "counting" atoms in a silicon sphere.

Within the scope of the international Avogadro Project and national Kg projects, the by the <u>Float-Zone</u> technique defect-free bulk crystals of highly enriched (up to 99.999 %) silicon-28.

Only the IKZ with its expertise in crystal growth is able to achieve this precision in isotopically pure silicon crystal growth today.

Cz-Si crystal growth

The Czochralski method, is a crystal growth method used to obtain single crystals:

- semiconductors (e.g. silicon, germanium and gallium arsenide)
- salts
- synthetic gemstones

Monocrystalline silicon (mono-Si) grown by the *Cz* method is the basic material in the production of integrated circuits and semiconductor devices.

Mono-Si is widely used in solar cells due to its nearly perfect crystal structure, offering the highest light-toelectricity conversion efficiency.

Advantages

High purity and uniformity of crystals.

Can produce large-diameter crystals, reducing costs in mass production.

Challenges

Equipment cost and energy-intensive process. Risk of introducing defects during crystal growth.

Definition of variables

different growth recipes in different furnace geometries were simulated

N. Dropka, K. Böttcher, G.K. Chappa, M. Holena, Crystal Research and Technology(2024) 23003422300342.

ikz SyMO: A hybrid approach for multi-objective optimisation of crystal growth processes

ikz SyMO: Symbolic regression

Milena Petkovic 🔹 Leibniz Institute for Crystal Growth 🗞 milena.petkovic@ikz-berlin.de

Impact of process parameters via Gr/Re_{cry}² and Ste numbers

$$\begin{split} &\text{Re}_{cru}\text{=-8.15}\cdot\text{10}^3\text{, w}\text{=32.6 kg, w}_\text{s}\text{=}50.96\%\text{,} \\ &\text{TiC radiation shield with } \lambda\text{=38.8W/mK and } \epsilon\text{=}0.65\text{,} \\ &\text{R}_{SH}/\text{R}_{cru}\text{=}1.19\text{, } \text{H}_{BH}/\text{H}_{m}\text{=}3.35\text{, } \text{H}_{SH}/\text{H}_{m}\text{=}2.63\text{ and } \text{H}_{shield}/\text{H}_{cry}\text{=}0.06 \end{split}$$

ikz SyMO: Multiobjective Optimization

Let us assume an optimization problem with n decision variables $x_1, x_2, \cdots x_n$. The standard form of a multi-objective optimization problem is:

$$\min \mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}) \cdots f_k(\mathbf{x}))$$

s.t. $h_i(\mathbf{x}) = 0$ $i = 1, \cdots, l$
 $g_j(\mathbf{x}) \le 0$ $j = 1, \cdots, s$
 $lb_m \le x_m \le ub_m$ $m = 1, \cdots, n$

where:

- k: number of objectives
- l: number of equality constraints $h_i(\mathbf{x})$
- s: number of inequality constraints $g_i(\mathbf{x})$
- $\mathbf{F}(\mathbf{x})$: vector of objective functions $f_i(\mathbf{x})$.
- \forall decision variable x_m is bounded $[lb_m, ub_m]$

ikz SyMO: Results

We employ hierarchical MOO model with three objectives:

- Minimizing Δz
- Minimizing $\Delta \Gamma$
- Maximizing x11, e.g. Maximizing crystal growth speed where Δz and $\Delta \Gamma$ are given as constraints from SR equations
- X1 X10 fixed
- X11 X15 optimized

For fixed geometry parameters $x_1, ..., x_{10}$ we optimize process parameters to minimize Δz and $\Delta \Gamma$ while maximizing pulling rate x_{11} :

> $\min_{\substack{x_{11}, x_{12}, x_{13}, x_{14}, x_{15}}} [\Delta z, \Delta \Gamma, -x_{11}]$ s.t. $\Delta z = \text{Equation 1.3}$ $\Delta \Gamma = \text{Equation 2.3}$

Additional constraint: $x_{14} + x_{14} \ge H$

Original parameters

Model1: Optimal parameters

Model2: Optimal parameters

N. Dropka, M. Petkovic, K. Böttcher, M. Holena, Unraveling conditions for W-shaped interface and undercooled melts in Cz-Si growth: a smart approach, Journal of Crystal Growth, 2024, <u>https://doi.org/10.1016/j.jcrysgro.2024.127897</u>

Milena Petkovic * Leibniz Institute for Crystal Growth * milena.petkovic@ikz-berlin.de

From Energy Systems to Material Science: Optimization as a Common Denominator for a Sustainable Future

GEFÖRDERT VOM

Bundesministerium und Forschung

MODAL

FORSCHUNGSCAMPUS

CO@WORK, 25.09.2024, Berlin, Germany