OECODOEST VIDAA

Bundesministerium für Rildung und Forschung

öffentlich-private Partnerschaft für Innovationen

Quota Steiner Tree Problem and its application on Wind Farm Planning

Jaap Pedersen

CO@Work 2024 - Computational Optimization at Work

- \triangleright Steps in designing wind farms
- ▶ Steiner tree problem and its quota-constrained variant
- ▶ Advantages of a problem-specific approach
- ▶ Open problems
- ▶ Onshore wind low-cost renewable electricity option
- ▶ In recent years targets have not been reached
- Need for accelerating wind power expansion
- \blacktriangleright The planning involves many decisions

[https://www.cleanenergywire.org/factsheets/](https://www.cleanenergywire.org/factsheets/german-onshore-wind-power-output-business-and-perspectives) [german-onshore-wind-power-output-business-and-perspectives](https://www.cleanenergywire.org/factsheets/german-onshore-wind-power-output-business-and-perspectives)

[^{//}www.diw.de/de/diw_01.c.841560.de/ampel-monitor_energiewende.html](https://www.diw.de/de/diw_01.c.841560.de/ampel-monitor_energiewende.html)

Large-scale Wind Farm Planning

- 1. Finding suitable areas
	- ▶ Onshore vs. offshore
	- \blacktriangleright Detailed wind analysis
	- ▶ Distances to, e.g., settlements or other wind farms
	- \blacktriangleright Acceptance of the population
	- ▶ . . .
- 2. Designing the wind farm itself:
	- ▶ How many turbines? costs vs. revenue or epxansion targets
	- ▶ Where to place the turbines? Interference problem, minimum distance
	- ▶ How to route the cables to connect the turbines?
- 3. Building and operating the wind farm

▶ . . .

Large-scale Wind Farm Planning

- \blacktriangleright Usually a two step approach:
	- 1. Wind farm layout problem: Placing the turbines
	- 2. Wind farm cable routing: Routing the power cables
- ▶ A good overview can be found in [\[Fischetti, 2021\]](#page-39-1)
- \triangleright Single wind farm: exact and highly detailed, but small [\[Fischetti and Pisinger, 2018\]](#page-39-2), or large size, but heuristically [\[Cazzaro et al., 2023\]](#page-39-3)
- ▶ Regional planning: large size, but no routing [\[Weinand et al., 2022\]](#page-40-0)
- \blacktriangleright Expansion targets instead of only maximizing profits
- ▶ To increase acceptance other objectives than only costs are of interest, e.g., visual impact

Goal: Choose a subset of potential wind turbines to fulfill an expansion target while minimizing costs and visual impact of the turbines and the cable routing

icons: Flaticon.com

icons: Flaticon.com

- \blacktriangleright Set of potential turbines
- \blacktriangleright Set of substations
- \blacktriangleright Set of intermediate nodes
- \blacktriangleright Set of cable connections

- \blacktriangleright Set of potential turbines
- \blacktriangleright Set of substations
- \blacktriangleright Set of intermediate nodes
- \blacktriangleright Set of cable connections
- ▶ Find cheapest connection between a subset of turbines and the substation to fulfill expansion target

- \triangleright Set of potential turbines
- \blacktriangleright Set of substations
- Set of intermediate nodes
- Set of cable connections
- ▶ Find cheapest connection between a subset of turbines and the substation to fulfill expansion target

- \triangleright Set of potential terminals
- \blacktriangleright Set of fixed terminals
- ▶ Set of Steiner nodes
- ▶ Set of edges
- ▶ Find a tree connecting all fixed terminals and a subset of potential terminals to fulfill a quota with minimal costs

- \triangleright Set of potential turbines
- \blacktriangleright Set of substations
- Set of intermediate nodes
- Set of cable connections
- ▶ Find cheapest connection between a subset of turbines and the substation to fulfill expansion target

- \triangleright Set of potential terminals
- \blacktriangleright Set of fixed terminals
- ▶ Set of Steiner nodes
- ▶ Set of edges
- ▶ Find a tree connecting all fixed terminals and a subset of potential terminals to fulfill a quota with minimal costs

This problem is called the Quota Steiner tree problem in graphs (QSTP)

What is the Steiner Tree Problems in Graphs?

- ▶ The Steiner Tree Problem in Graphs (STP) is a classical combinatorial optimization problem
- ▶ Some history: The **STP** goes back to the 17th century, when Pierre de Fermat formulated the problem:

Given 3 points in the plane, find the intermediate node such that the interconnecting distance is minimal

 \blacktriangleright The STP is formulated as follows: Given an undirected graph $G = (V, E)$, with edge costs $c : E \to \mathbb{R}_{\geq 0}$, and terminal nodes $T \subseteq V$, find a tree $S = (V', E') \subseteq G$ that contains all terminals such that the costs $\mathcal{C}(S) \coloneqq \sum_{e \in E} c_e$ are minimized

Complexity

The STP is NP-hard in general. [\[Karp, 1972\]](#page-39-4)

Fermat-Torrecilli Problem

1

2

2

2

Steiner tree problems in graphs

- MODAI
- **Special cases of** $|T| = 2$ **and** $|T| = V$ **are the shortest-path problem and minimum-spanning** tree problem, which are solvable in polynomial time
- ▶ There exists a number of variants to the STP, e.g.:
	- ▶ Euclidean Steiner tree problem
	- ▶ node-weighted Steiner tree problem
	- ▶ prize-collecting Steiner tree problem
	- ▶ maximum-weight connected subgraph problem
	- \blacktriangleright . . .
	- ▶ and the quota Steiner tree problem
- ▶ Recent surveys can be found in [Ljubić, 2021] and [\[Rehfeldt, 2021\]](#page-39-6)
- ▶ SCIP-Jack [\[Rehfeldt and Koch, 2023\]](#page-40-1):
	- ▶ world-wide fastest exact STP solver
	- ▶ Extension to open-source solver SCIP
	- ▶ branch-and-cut to deal with the exponential number of constraint
	- ▶ 16 variations of STP
- \triangleright The directed cut formulation is most-used in practical exact solving

$$
\begin{array}{c}\n\cdot \\
\cdot \\
\cdot \\
\cdot\n\end{array}
$$

A cut $C = (S, T)$ is a partition of V of a graph $G = (V, E)$ into two subsets S and T. The **cut-set** of a cut $C = (S, T)$ is the set $\{(u, v) \in E | u \in S, v \in T\}$

In an directed graph $G = (V, A)$, let the set of incoming arcs into $T \subset V$ be denoted as:

$$
\delta^-(T) := \{(u,v) \in A \mid u \notin T, v \in T\}
$$

- \blacktriangleright Given a graph $G = (V, E)$
- ▶ A set of existing substations \Rightarrow set of fixed terminals $T_f \subset V$
- ▶ A set of potential wind turbines \Rightarrow set of **potential terminals** $T_p \subset V$
- Each turbine is associated with costs $w > 0$ and an energy yield (quota profit) $q > 0$
- ▶ A set of possible cable connection \Rightarrow set of edges E
- Each edge is associated with costs $c > 0$
- ▶ An expansion target \Rightarrow a quota $Q > 0$

MODAI

Given an undirected graph $G = (V, E)$, a set of fixed terminals $T_f \subset V$, and a set of potential terminals $T_p \subset V$ with $T_f \cap T_p = \emptyset$, where each edge $(i, j) \in E$ is associated with costs $c: E \to \mathbb{R}_{\geq 0}$, and each potential terminal $v \in T_p$ with costs $w: T_p \to \mathbb{R}_{\geq 0}$ and **quota profits** $q: T_p \to \mathbb{R}_{>0}$.

The goal is to find a Steiner tree $\mathcal{S}=(E',V')\subseteq G$ that contains all terminals \mathcal{T}_f such that the total cost

is minimized

M Q D A I

Given an undirected graph $G = (V, E)$, a set of fixed terminals $T_f \subset V$, and a set of potential terminals $T_p \subset V$ with $T_f \cap T_p = \emptyset$, where each edge $(i, j) \in E$ is associated with costs $c: E \to \mathbb{R}_{\geq 0}$, and each potential terminal $v \in T_p$ with costs $w: T_p \to \mathbb{R}_{\geq 0}$ and **quota profits** $q: T_p \to \mathbb{R}_{>0}$.

The goal is to find a Steiner tree $\mathcal{S}=(E',V')\subseteq G$ that contains all terminals \mathcal{T}_f such that the total cost

terminals in red, potential terminals in blue

- \blacktriangleright Transform original graph G into a **directed graph** $D = (V, A)$
- \triangleright Shifting the costs¹ of a vertex v onto the costs of its incoming arcs

$$
c(i,j) = \begin{cases} c_e + w_j & \text{if } j \in T_p, \\ c_e & \text{otherwise} \end{cases} \qquad \forall a = (i,j) \in A
$$

 1 [Ljubić et al., 2006]

- \blacktriangleright Transform original graph G into a **directed graph** $D = (V, A)$
- \triangleright Shifting the costs¹ of a vertex v onto the costs of its incoming arcs

$$
c(i,j) = \begin{cases} c_e + w_j & \text{if } j \in T_p, \\ c_e & \text{otherwise} \end{cases} \qquad \forall a = (i,j) \in A
$$

- \blacktriangleright Transform original graph G into a **directed graph** $D = (V, A)$
- \triangleright Shifting the costs¹ of a vertex v onto the costs of its incoming arcs

$$
c(i,j) = \begin{cases} c_e + w_j & \text{if } j \in T_p, \\ c_e & \text{otherwise} \end{cases} \qquad \forall a = (i,j) \in A
$$

s.t. $x(\delta^{-}(W)) > 1$ $\forall W \subset V, r \notin W, |W \cap T_f| \geq 1$

 I_{Q} : min $c^T x$ s.t. $x(\delta^-(W)) \ge 1$ $\forall W \subset V, r \notin W, |W \cap T_f| \ge 1$ $x(\delta^-(W)) \ge y_i \quad \forall W \subset V, r \notin W, |W \cap T_p| \ge 1, i \in T_p$

I_{Q} : min $c^T x$ s.t. $x(\delta^{-1}(W)) > 1$ $\forall W \subset V, r \notin W, |W \cap T_f| \geq 1$ $x(\delta^-(W)) \geq y_i \quad \forall W \subset V, r \notin W, |W \cap T_p| \geq 1, i \in T_p$ $\sum q_i y_i \geq Q$ $i \in \mathcal{T}_p$ $x_{ii} \in \{0, 1\}$ $\forall (i, j) \in A$ $y_k \in \{0, 1\}$ $\forall k \in \mathcal{T}_p$

Exponentially many constraints due to Steiner-cut constraints

Integer programming formulation of the QSTP

- Cut-separation one of essential features in SCIP-Jack [\[Rehfeldt, 2021\]](#page-39-6)
- \triangleright Cut inequalities are separated using a maximum-flow algorithm

- I_{Q} : min $c^T x$ s.t. $x(\delta^{-1}(W)) > 1$ $\forall W \subset V, r \notin W, |W \cap T_f| \geq 1$ $x(\delta^-(W)) \geq y_i \quad \forall W \subset V, r \notin W, |W \cap T_p| \geq 1, i \in T_p$ $\sum q_i y_i \geq Q$ $i \in \mathcal{T}_p$ $x_{ii} \in \{0, 1\}$ $\forall (i, j) \in A$ $y_k \in \{0, 1\}$ $\forall k \in \mathcal{T}_p$
- Exponentially many constraints due to Steiner-cut constraints
- ▶ Cut-separation one of essential features in SCIP-Jack [\[Rehfeldt, 2021\]](#page-39-6)
- Cut inequalities are separated using a maximum-flow algorithm
- **Problem:** Binaries y prevent the direct usage
- **Solution:** Transform the problem

Transformation

Original

Transformation

Transformation

 I_{QT} : min $c^T x$ s.t. $x(\delta^{-}(W)) \geq 1$ $\forall W \subset V$

$$
\forall W \subset V', r \notin W, |W \cap T'| \geq 1
$$

I_{QT} : min $c^T x$ s.t. $x(\delta^{-}(W)) \geq 1$ $\forall W \subset V', r \notin W, |W \cap T'| \geq 1$ \sum $q_{i'}x_{r,i'}\leq \sum$ $q_{i'}-Q$ $i' \in T'_f$ $i' \in T'_f$ r $x_{ij} \in \{0, 1\}$ $\forall (i, j) \in A'$ 2 0 $q=20$ X) 02 5 $\mathcal{L}^{\mathcal{L}}$ 1 0 q=40 $q=10$

Directed cut formulation of the transformed QSTP

$$
I_{\mathrm{QT}}: \min \quad c^{\mathsf{T}} x
$$
\n
$$
\text{s.t.} \quad x(\delta^-(W)) \ge 1 \qquad \qquad \forall W \subset V', r \notin W, |W \cap T'| \ge 1
$$
\n
$$
\sum_{i' \in \mathsf{T}'_i} q_{i'} x_{r,i'} \le \sum_{i' \in \mathsf{T}'_i} q_{i'} - Q
$$
\n
$$
x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A
$$

Proposition [P., Weinand, Syranidou, Rehfeldt (2024)]

$$
proj_{xy}(\mathcal{P}_{LP}(\overline{I_{\mathrm{QT}}})) = \mathcal{P}_{LP}(I_{\mathrm{Q}}).
$$

 $\mathbf 1$

Goal

Install a subset of possible wind turbines to fulfill a given expansion target with minimum costs of turbine layout and cable routing on regional level.

Computational Study - Input

- ▶ Open-source German data by [\[Ryberg et al., 2019,](#page-40-2) [Roth, 2018\]](#page-40-3)
- ▶ Potential positions based on state-of-the-art methods
- ▶ Energy yield covers stochastic effects, such as wake effects and turbine availability
- ▶ Additional regions A and B with a high number of Steiner nodes
- ▶ Objective based on costs and visual impact using weighted-sum approach

 $Coll$ 256: $|T_n| = 54$

Cell 140: $|T_P| = 923$ Cell 87: $|T_P| = 1012$ Cell 203: $|T_P| = 989$

- ▶ Integrate transformed QSTP (TransQSTP) into SCIP-JACK
- Shortest path reduction and shortest path heuristic ($TransQSTP+$ and $TransQSTP++$)
- Verify against the flow-based MIP formulation (FLOW) solved by GUROBI 9.5
- We use SCIP-JACK in SCIP 8.0.1 using CPLEX 12.10 as LP solver.
- ▶ SCIP-JACK is run single-threaded, GUROBI 9.5 is run 32-threaded Intel XeonGold 6342 CPUs running at 2.8 GHz, where five CPUs and 32 GB of RAM are reserved, time limit of six hours

Computational Study - Results

Advantages of a problem-specific solver:

- ▶ Problem-specific reduction techniques using the structure of the underlying graph
- ▶ Problem-related cut-separation algorithm depending on the structure of the combinatorial problem
- ▶ Problem-specific primal heuristic to find fast and good solutions
- ▶ Efficient usage of memory due to construct cutting planes on the fly

- ▶ Comparison of sequential to integrated approach
- ▶ Previous Germany-wide study for optimal location to reach target of 200 GW in 2050
- ▶ Expansion target for a selected region by Germany-wide study
- \triangleright Compare position assigned by that study with our integrated approach
- ▶ Compare costs and visual impact of these

Computational Study - Results <u>ZIB</u> Costs = 133.34; Scenic = 433.65; $\sum a_i = 136.78$; $\alpha = 1.0$ Costs = 110.44; Scenic = 310.98; $\sum a_i = 137.44$; $\alpha = 1.0$ MODAL \mathcal{L} и. ∵ Substation ×. r Substation Windturbine built Windturbine built Windturhine not built Windturhine not built Steiner node used Steiner node used (a) Minimize costs: Sequential (b) Minimize costs: Combined Costs = 141.61; Scenic = 420.13; $\sum q_i = 124.08$; $\alpha = 0.0$ Costs = 109.33; Scenic = 257.92; $\sum q_i = 125.30$; $\alpha = 0.0$ \sim ster i Sa 5. IN Substation Substation

(c) Minimize landscape impact: Sequential

Windturbine built

Steiner node used

Windturbine not built

Windturbine built

Steiner node used

Windturbine not built

P., J.-M. Weinand, C. Syranidou, D. Rehfeldt (2024); "An efficient solver for large-scale onshore wind farm siting including cable routing", European Journal of Operational Research, $https://doi.org/10.1016/j.ejor.2024.04.026$

Jaap Pedersen, pedersen@zib.de Quota Steiner Tree Problem and its Application on Wind Farm Planning 22

SCIP-Jack is getting wings

Lessons learned:

- \triangleright Glimpse into designing wind farms
- \triangleright STP and QSTP Maybe think a little about how these problems relate to each other...
- ▶ Using specialized QSTP approach highly effecient for large-scale onshore wind farm planning
- ▶ Integrated approach is vital to avoid excessive costs and landscape impact

What next?

- ▶ Preprocessing is vital for STP-related problems. Investigate techniques in terms of the QSTP.
- ▶ Extending classical QSTP towards single wind farm planning by introducing interference constraint:

$$
\sum_{i\in\mathcal{T}_p}(q_i-\sum_{\mathbf{j}\neq\mathbf{i}\in\mathcal{T}_p}\mathbf{I}_{\mathbf{ij}}\mathbf{y}_{\mathbf{j}})y_i\geq Q
$$

Photo: Vattenfall

References I

- ▶ Cazzaro, D., Koza, D. F., and Pisinger, D. (2023). Combined layout and cable optimization of offshore wind farms. European Journal of Operational Research, 311(1):301–315.
- ▶ Cazzaro, D. and Pisinger, D. (2022). Variable neighborhood search for large offshore wind farm layout optimization. Computers & Operations Research, 138.
- ▶ Fischetti, M. (2021). On the optimized design of next-generation wind farms. European Journal of Operational Research, 291(3):862–870.
- ▶ Fischetti, M. and Pisinger, D. (2018). Optimizing wind farm cable routing considering power losses. European Journal of Operational Research, 270(3):917–930.
- ▶ Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E., Thatcher, J. W., and Bohlinger, J. D., editors, Complexity of Computer Computations, The IBM Research Symposia Series, pages 85-103. Springer, Boston, MA.
- ▶ Ljubi´c, I. (2021). Solving Steiner trees: Recent advances, challenges, and perspectives. Networks, 77(2):177–204.
- Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G. W., Mutzel, P., and Fischetti, M. (2006). An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem. Mathematical Programming, 105(2):427–449.
- ▶ Pedersen, J., Weinand, J. M., Syranidou, C., and Rehfeldt, D. (2024). An efficient solver for large-scale onshore wind farm siting including cable routing. European Journal of Operational Research, 317(2):616–630.
	- ▶ Rehfeldt, D. (2021). Faster Algorithms for Steiner Tree and Related Problems: From Theory to Practice. PhD thesis, Technische Universität Berlin.

▶ Rehfeldt, D. and Koch, T. (2023). Implications, conflicts, and reductions for steiner trees. Mathematical Programming, 197:903 – 966.

▶ Roth, M. (2018). Landschaftsplanung meets energiewende. In Marschall, I., editor, Landschaftsplanung im Prozess und Dialog, BfN Skript, pages 114–126.

▶ Ryberg, D. S., Caglayan, D. G., Schmitt, S., Linßen, J., Stolten, D., and Robinius, M. (2019). The future of european onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy, 182:1222–1238.

▶ Weinand, J. M., Sörensen, K., San Segundo, P., Kleinebrahm, M., and McKenna, R. (2022). Research trends in combinatorial optimization. International Transactions in Operational Research, 29(2).