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Formulating the ML Problem

x y t
`

f

p

input x ∈ Rd

target t ∈ R
data distribution p(x, t)

predictions f(x) ∈ R
loss ℓ(f(x), t) (cost of outputing f(x) given target t)

Minimization of expected cost:

argmin
f

{∫
ℓ(f(x), t)dp(x, t)

}
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Formulating the ML Problem (cont.)

argmin
f

{∫
ℓ(f(x), t)dp(x, t)

}

Caveat:

▶ This problem cannot be fully specified, because we do not know the true
distribution p, and we only have access to a finite dataset:

D = {(x1, t1), . . . , (xN , tN )}

.
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Formulating the ML Problem (cont.)

Addressing limited data:

▶ Replace p with the empirical data distribution.

▶ This gives the objective:

argmin
f

{ 1

N

N∑
k=1

ℓ(f(xk), tk)
}

Problem:

▶ The model f may only memorize the data and fail to
make truthful predictions on the rest of p. (overfitting)
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Formulating the ML Problem (cont.)

Addressing limited data (improved):

▶ Make a distinction between functions f ∈ F that are immune to overfitting (e.g.
functions with few variations, classifiers with large margin) and functions that do
not.

▶ One can then formulate the optimization problem as:

argmin
f

{ 1

N

N∑
k=1

ℓ(f(xk), tk) ; f ∈ F
}

Question:

▶ How to specify F ?
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Special Case of iid. Data

Scenario 1: Data sampled iid. according to the underlying distri-
bution p(x, t).

Restrict F to the space of functions that cannot overfit, e.g.
large-margin classifiers

F = {f : f(x) = w⊤x ; ∥w∥ ≤ 1/M}.

▶ Often reduces the gap between training and true error
significantly (e.g. as measured by holdout validation).

▶ Also comes with theory (e.g. VC-theory) [Vapnik 2000].
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More General Case

Scenario 2: Data sampled from a different distribution q(x) ̸=
p(x).

Observation: Restricting F to large-margin classifiers may fail
to approximate the true decision boundary (here based on x1).

Hard to choose F without human intervention.
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More General Case

Image source: Li et al. A Whac-A-Mole Dilemma (2022)

Hard to choose F at all.
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Part 2: Explainable AI
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Attribution of a Prediction to Input Features

1. The data point x ∈ Rd is fed to the ML model and we get a prediction f(x) ∈ R.
2. We explain the prediction by identifying the additive contribution of each input

feature.

3. Important property of attribution: conservation (
∑d

i=1Ri = f(x)).
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Layer-Wise Relevance Propagation [Bach et al. PLOS 2015]

Image of 'bicycle' Local Features GMM fitting Fisher Vector Normalization + Linear SVM
(Hellinger's kernel SVM) 

Layer 2Layer 1 Layer 3 Layer 4

[Lapuschkin et al. CVPR 2016]
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Layer-Wise Relevance Propagation

[Lapuschkin et al. CVPR 2016]

▶ Predictions are accurate but based on the wrong features
(aka. the Clever Hans effect, cf. [Lapuschkin et al. NatComm

2019]).

The model may start making errors when wrong
features are missing.
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Limits of ‘Classical’ Explanations

Observation:

▶ Several concepts (including valid and
invalid ones) are entangled in the
same explanation.

Question:

▶ Can we disentangle explanations into
multiple distinct components (aka.
concepts) so that they become more
actionable? [Chormai et al. TPAMI 2024]
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Explanation Subspaces [Chormai et al. TPAMI 2024]

Ideas:

▶ Extend the neural network with a ‘virtual layer’, which transforms the
representation and back using an orthogonal matrix U .

▶ Decompose U into blocks U = (U1| . . . |UK), where each block represents a
subspace (one component of the explanation).

y y

=
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Optimizing Subspaces (DRSA) [Chormai et al. TPAMI 2024]

Notation:

▶ Neurons indexed by i

▶ Data points indexed by n

▶ Concepts indexed by k

▶ Activations vector a

▶ Response vector c

▶ Mapping to concept Uk

Relevance of neuron i:

Ri = ai ⊙ ci

Relevance of concept k:

Rk =
(
(U⊤

k a)⊤(U⊤
k c)

)+

DRSA optimization objective:

max
(Uk)k

{
smin

k

{
smax

n

{
Rkn

}}}

Focuses on what is relevant (̸= representation learning).
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Explanation Subspaces [Chormai et al. TPAMI 2024]

Recap:

y y

=
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Inspecting Models with DRSA [Chormai et al. TPAMI 2024]
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Fixing Models with DRSA [Chormai et al. TPAMI 2024]
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Summary

▶ Machine learning comes with a well-defined cost-minimization formulation.

argmin
f

{∫
ℓ(f(x), t)dp(x, t)

}
▶ In practice, the minimization problem cannot be fully specified, because we do not

have access to the true distribution p(x, t). An empirical approximation is:

argmin
f

{ 1

N

N∑
k=1

ℓ(f(xk), tk)
}

▶ Many functions f can fit the available data. Some may generalize better than
others. Choosing a set of possible functions F is crucial, but difficult.

▶ Explainable AI (cf. [Samek et al. Proc IEEE 2021]) places the user in the loop. Doing so
in an actionable way can be formulated as an own optimization (e.g. DRSA).
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Our Review Paper
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Check our Website

Online demos, tutorials, code examples, software, etc.
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