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Formulating the ML Problem
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Formulating the ML Problem

L
input a € R? z— f >y ot
target te€R

data distribution  p(a,t)
S

predictions f(x) € R
loss E(f(ac), t) (cost of outputing f(x) given target t)

Minimization of expected cost:

argmm /E t)dp(x t)}
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Formulating the ML Problem (cont.)
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Formulating the ML Problem (cont.)

arg mln /f t)dp(x t)}

Caveat:

» This problem cannot be fully specified, because we do not know the true
distribution p, and we only have access to a finite dataset:

Ty

D = {(x1,t1),...,(ZN,tN)}
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Formulating the ML Problem (cont.)

Addressing limited data:
» Replace p with the empirical data distribution.

» This gives the objective:
N
argmin { - >t () )}

Problem:

» The model f may only memorize the data and fail to
make truthful predictions on the rest of p. (overfitting)
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Formulating the ML Problem (cont.)

Addressing limited data (improved):

» Make a distinction between functions f € F that are immune to overfitting (e.g.
functions with few variations, classifiers with large margin) and functions that do

2 R VR LV A TS

» One can then formulate the optimization problem as:
argmln{ ZE fef}

Question:
> How to specify F 7
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Scenario 1: Data sampled iid. according to the underlying distri-
bution p(x, t).

Restrict F to the space of functions that cannot overfit, e.g.
large-margin classifiers

F={f:flx)=w'a; |w| < 1/M}.

» Often reduces the gap between training and true error
significantly (e.g. as measured by holdout validation).

» Also comes with theory (e.g. VC-theory) [Vapnik 2000].
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More General Case

“Xx Scenario 2: Data sampled from a different distribution g(x) #
p().

Ty

Observation: Restricting F to large-margin classifiers may fail
to approximate the true decision boundary (here based on 7).

Hard to choose F without human intervention.
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More General Case

AS$-®

Image source: Li et al. A Whac-A-Mole Dilemma (2022)
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More General Case

AS$-®

Image source: Li et al. A Whac-A-Mole Dilemma (2022)

Hard to choose F at all
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Attribution of a Prediction to Input Features

, Xd)

f(Xl,...

1. The data point € R? is fed to the ML model and we get a prediction f(x) € R.
2. We explain the prediction by identifying the additive contribution of each input

feature.
3. Important property of attribution: conservation (Z?Zl R; = f(x)).
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Layer-Wise Relevance Propagation [sach et al. PLOS 2015]

Layer 1 Layer 2 Layer 3 Layer 4

Image of 'bicycle' || Local Features GMM fitting Fisher Vector Normalization +Linear SVM
(Hellinger's kemel SVM)

x= 1k 3 ()
€L

Ua(1) =

| S ) 0,0 0o, () || X 4 sign(x)[x|? et
) X =
U, (1) Wy (1) W (1) Il fx) = b+ 32, @ik(xi, x)

[Lapuschkin et al. CVPR 2016]
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Layer-Wise Relevance Propagation [sach et al. PLOS 2015]

Layer 1 Layer 2 Layer 3 Layer 4
Image of 'bicycle' || Local Features GMM fitting Fisher Vector Normalization +Linear SVM
(Hellinger's kerel SVM)
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Layer-Wise Relevance Propagation

Image

FV

[Lapuschkin et al. CVPR 2016]

» Predictions are accurate but based on the wrong features
(aka. the Clever Hans effect, cf. [Lapuschkin et al. NatComm
2019]).

12/22



Layer-Wise Relevance Propagation

Image

FV

[Lapuschkin et al. CVPR 2016]
» Predictions are accurate but based on the wrong features
(aka. the Clever Hans effect, cf. [Lapuschkin et al. NatComm

2019]). The model may start making errors when wrong
features are missing.
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Limits of ‘Classical’ Explanations
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Limits of ‘Classical’ Explanations

Standard Heatmap

Observation:

» Several concepts (including valid and
invalid ones) are entangled in the
same explanation.

Question:

» Can we disentangle explanations into
multiple distinct components (aka.
concepts) so that they become more
actionable? [Chormai et al. TPAMI 2024]
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Explanation Subspaces [chormai et al. TPAMI 2024]

Ideas:

» Extend the neural network with a ‘virtual layer', which transforms the
representation and back using an orthogonal matrix U.
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Explanation Subspaces [chormai et al. TPAMI 2024]

Ideas:

» Extend the neural network with a ‘virtual layer’, which transforms the
representation and back using an orthogonal matrix U.

» Decompose U into blocks U = (Uy]|...|Uk), where each block represents a
subspace (one component of the explanation).
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Optimizing Subspaces (DRSA) (chormai et al. TPAMI 2024]

Notation:
» Neurons indexed by 4
» Data points indexed by n
» Concepts indexed by k
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Optimizing Subspaces (DRSA) (chormai et al. TPAMI 2024]

Notation: Relevance of neuron i:

» Neurons indexed by 4

Data points indexed by n Ri=a;0¢

Concepts indexed by k Relevance of concept k:

Activations vector a

Response vector ¢ Ry = (UJG)T(UJC)
Mapping to concept Ug

vV YvyVvVYyyseyw
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Optimizing Subspaces (DRSA) (chormai et al. TPAMI 2024]

Notation:

| 2

vV YvyVvVYyyseyw

Neurons indexed by 7
Data points indexed by n
Concepts indexed by k
Activations vector a
Response vector ¢

Mapping to concept Ug

Relevance of neuron :
Ri=a; ©¢
Relevance of concept k:
Ry = (U/a) (U]

DRSA optimization objective:

(n[a]?)); { sngin { smax {R;m } }}

Focuses on what is relevant (# representation learning).
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Explanation Subspaces [chormai et al. TPAMI 2024]

Recap:

DA
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Inspecting Models with DRSA [chormai et al. TPAMI 2024]
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Fixing Models with DRSA (chormai et al. TPAMI 2024]
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Summary

» Machine learning comes with a well-defined cost-minimization formulation.
argmin { [ 6(7 (@), )dp(a.t)}

» In practice, the minimization problem cannot be fully specified, because we do not
have access to the true distribution p(a,t). An empirical approximation is:

1 N
argm}n{ﬁ E E(f(%k)?tk)}
k=1

» Many functions f can fit the available data. Some may generalize better than
others. Choosing a set of possible functions F is crucial, but difficult.

» Explainable Al (cf. [Samek et al. Proc IEEE 2021]) places the user in the loop. Doing so
in an actionable way can be formulated as an own optimization (e.g. DRSA).
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Our Review Paper

W Samek, G Montavon, S Lapuschkin, C Anders, KR Miller
Explaining Deep Neural Networks
and Beyond: A Review of Methods

and Applications
Proceedings of the IEEE, 109(3):247-278, 2021

‘h’oceedings IEEE]

With the broader and highly successful usage of machine learning (ML) in industry and
the sciences, there has been a growing demand for explainable artificial intelligence
(XAL). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and
strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this
work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “ post hoc ” explanations,
and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative
evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include
interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAl in a
representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this
exciting foundational field of ML.
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Check our Website

.heatmapping.org

Online demos, tutorials, code examples, software, etc.

DA
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