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Optimization challenges to analyze trained neural networks
Example: Classification of MNIST digits [Tsay et al., 2021]

`1 `∞

Given . . . . . . . . . . . .
Trained NN
Image x̄
Label j = 9
Adversary? k = 4

‖x − x̄‖1 = 4 ‖x − x̄‖∞ = 0.05

Verification [Feasibility] Is there an
adversary labeled k within a given
perturbation (e.g., by `1- or `∞-norm)?
Optimal adversary [Anderson et al., 2020]
What image within a perturbation radius
maximizes the prediction difference?
Minimally distorted adversary [Croce and
Hein, 2020] Smallest perturbation over
which NN can predict adversarial label k?
Lossless compression [Serra et al., 2020]
Can I safely remove NN nodes or layers?
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Verification [sign check only] & Optimal Adversary

max fk(xL)− fj(xL)

s.t. x`
i = max

(
0,
((

w`−1
i

)T
x`−1 + b

))
∀` ∈ {1, . . . ,L} = Layer, i ∈ Node`

x ∈ X

Here, fk and fj correspond to the k- and j-th elements of the neural network output layer L,
respectively. X defines the domain of perturbations.

International Verification of Neural Networks Competition
Specialized codes win • Branch & bound on GPUs (α-β CROWN) • Thoughtful heuristics
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Software tools?
Neural network verification

MIP MIPVerify [Tjeng et al., 2017] • NSVerify [Akintunde et al., 2018]
SMT Reluplex [Katz et al., 2017] • marabou [Katz et al., 2019]
CP + MIP + Other CROWN & Variants [Zhang et al., 2018, Xu et al., 2020, Salman
et al., 2019, Xu et al., 2021, Wang et al., 2021, Zhang et al., 2022b,a]

Optimization over ML models
MeLOn [Schweidtmann and Mitsos, 2019] dense sigmoid NNs, reduced-space formulation,
JANOS [Bergman et al., 2022] dense ReLU NNs & logistic regression, Gurobi formulation,
reluMIP [Lueg et al., 2021] dense ReLU NNs, Pyomo big-M formulation,
OptiCL [Maragno et al., 2021] mixed-integer formulations of its own surrogates,
OMLT Dense & convolutional NNs, Gradient-boosted trees, Competing formulations
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Solve inverse problems over trained neural networks
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nPlan: Construction Start-Up
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Finance
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Computer-aided molecular design [with BASF] [Zhang et al., 2023]

molecules

NH2

NH2

N

N

N

GNN properties

quantum mechanics
physical chemistry

biophysics
physiology

. . .

prediction (forward)

optimization (backward)
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OMLT: Optimization & Machine Learning Toolkit [Ceccon et al., 2022]
https://github.com/cog-imperial/OMLT

Why represent trained machine learning models as Pyomo formulations?
Adversarial examples Verification, optimal adversary, minimally-distorted adversary,
lossless compression
Machine learning Maximize a neural acquisition function, Bayesian optimization
Engineering Machine learning models may replace complicated constraints or serve as
surrogates in larger design & operations problems.
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What type of optimization problem do we want to solve?
Hybridize mechanistic, model-based optimization with surrogate models learned from data

min
x,y

f0(x,y)
fi(x,y) ≤ 0 ∀i ∈ {1, 2, . . . ,C}

xN

...

x2

x1

... ... . . .
... ...

yM

yM−1

y1

y1

Block [Bynum et al., 2021]

The OmltBlock abstraction encapsulates neural networks (NN) & trees
Dense NN • CNN • GNN (MPNN) • Gradient boosted trees (GBT) • Linear model trees
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How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]
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Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]
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Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

( ∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

w
(l)
0→0x

(l−1)
0

w
(l)
1→0x

(l−1)
1

w
(l)
2→0x

(l−1)
2

w
(l)
3→0x

(l−1)
3

w
(l)
5→0x

(l−1)
5
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with unknown graph structure
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MIP encoding of MPNNs

x(l)
v = max{ x̄(l)

v︸︷︷︸y
,0} ←−−−−−−−−−−−−−−−−−−−−−→



x(l)
v,f ≥ 0

x(l)
v,f ≥ x̄(l)

v,f
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v

x︷ ︸︸ ︷
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u→v = Au,vx(l−1)
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u→v,f ≥ lb(x(l−1)

u,f ) ·Au,v
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u→v,f ≤ ub(x(l−1)

u,f ) ·Au,v

x(l−1)
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u,f − lb(x(l−1)
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u→v,f ≥ x(l−1)

u,f − ub(x(l−1)
u,f ) · (1−Au,v)
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OMLT puts optimization formulations in competition [Ceccon et al., 2022]

Key idea One optimization formulation may be more effective than another
Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
OMLT makes switching formulations as easy as changing a couple lines of code

...

...

b
y

1

2

x1

w1

x2

xk wk

xN−1
xN

wN

Big-M formulation [Anderson et al., 2020]

formulation = ReluBigMFormulation(net_relu)

Partition-based formulation [Tsay et al., 2021]

P = 3
split_func = lambda w: partition_split_func(w, P)
formulation = ReluPartitionFormulation(

net_relu, split_func=split_func)
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What’s next? Embedding trained ML models into optimal decision-making

Wish list
Algorithms Addressing nonconvexity • Managing problem size • Proposing formulations
Applications Lots more!
Models Skip connections for NN? • Recurrent NN
Software OMLT back-end to other algebraic modeling languages • Tree input

Challenges & opportunities
Nonconvexity Nonconvex activation functions • Discrete on/off adjacency matrix
Size Activation function at every node? At every edge?
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Adversarial attack v.s. Certifiable robustness

Machine learning models are vulnerable: small input changes could lead to wrong predictions.

Denote f as a model, assume P(X∗) is the admissible perturbations on input X∗.

Adversarial attack
∃X ∈ P(X∗), s.t., f (X) 6= f (X∗)

Certifiable robustness
f (X) = f (X∗), ∀X ∈ P(X∗)

Besides input features, the graph structure involved in graph neural networks (GNNs) provides
more options to attack, while makes it harder to be verified (certified robustness).
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Problem definition

Given a trained GNN f for graph/node classification task, where the predicted label
corresponds to the maximal logit. Given an input (X∗,A∗) consisting of features X∗ and
adjacency matrix A∗, denote its predictive label as c∗. The worst case margin between
predictive label c∗ and attack label c under perturbations P(·) is:

m(c∗, c) := min
(X ,A)

fc∗(X ,A)− fc(X ,A)

s.t. X ∈ P(X∗), A ∈ P(A∗).
(1)

A positive m(c∗, c) means that the logit of class c∗ is always larger than class c.

Let C be the set of all classes. If m(c∗, c) > 0, ∀c ∈ C\{c∗}, then any admissible perturbation
can not change the predictive label, i.e., this GNN is robust at (X∗,A∗).
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Admissible perturbations
Perturbations on features, i.e., P(X∗), are usually defined as a lp norm ball around X∗. The
choice of norm is quite flexible for attack since one feasible attack is sufficient. For verification,
l∞ norm is most commonly used since it defines bounds for each feature separately.

Remark: If only feature perturbations are allowed, then verifying a GNN is equivalent to
verifying a NN since the connections between layers are fixed.

New challenges for GNN verification:
Perturbations on graph structure, e.g., add edges/remove edges/inject nodes, directly
change the connections between layers.
Perturbations on one node indirectly attack other nodes via message passing or graph
convolution.
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Verification of message passing neural networks (MPNNs)
Motivation: classic and general GNN framework, but few certificates.

Tool: a recently developed mixed-integer programming (MIP) formulation for MPNNs.

Definition: consider a MPNN with l-th layer defined as:

x(l)
v = ReLU

∑
u∈V

Au,vw(l)
u→vx(l−1)

u + b(l)
v

 , ∀v ∈ V (2)

where V = {0, 1, . . . ,N − 1} is the node set, N is the number of nodes, Au,v ∈ {0, 1} denotes
the existence of edge u → v.

Perturbations:
Graph classification: remove/add edges with global/local budgets.
Node classification: remove edges with global/local budgets.Computational Optimization Group Optimization over trained surrogates 13 September 2024



Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with fixed graph structure [Hojny et al., 2024]
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Message passing with unknown graph structure
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MIP encoding of MPNNs

x(l)
v = max{ x̄(l)

v︸︷︷︸y
,0} ←−−−−−−−−−−−−−−−−−−−−−→
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
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u→v,f ≥ lb(x(l−1)

u,f ) ·Au,v

x(l−1)
u→v,f ≤ ub(x(l−1)

u,f ) ·Au,v

x(l−1)
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Basic bounds tightening (basic)
Assume that there are N = 6 nodes with only one input and output feature. For simplicity,
assume all weights equal to 1 and all biases equal to 0.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

To get the bounds for node 0 in l-th layer, basic considers all possibilities of input nodes:
lb = min(0, 1) + min(0, 2) + min(0, 3) + min(0,−4) + min(0,−3) + min(0,−2) = −9.
ub = max(0, 2) + max(0, 3) + max(0, 4) + max(0,−3) + max(0,−2) + max(0,−1) = 9.
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Static bounds tightening (sbt)
Given that the budget, i.e., the maximal number of modified edges of node 0, is 3. Denote the
set of input nodes as N ′(0), then we need to make sure that |N ′(0)∆N (0)| ≤ 3.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Comparing all possible options gives the sbt bounds:
lb = 1 + 243 = 4: N ′(0) = {0, 1, 3, 4}, i.e., remove node 2 + add node 3 and 4.
ub = 2 + 3 + 4 = 9: N ′(0) = N (0).
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Aggressive bounds tightening (abt)
Assume that 4 decisions have been made in current branch-and-bound (B&B) tree node,
which are A1,0 = 0,A2,0 = 1,A3,0 = 0,A4,0 = 1. Then we only have 1 budget left.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Au,0 = 0

Au,0 = 1

Au,0 ∈ {0, 1}

We can (i) change nothing, or (ii) remove node 0, or (iii) add node 5. The abt bounds are:
lb = 1 + 3− 3− 2 = −1: add node 5.
ub = 2 + 4− 2 = 4: change nothing.
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abt extends sbt to each B&B tree node
abt can be interpreted as applying sbt to a modified graph with reduced budgets at each B&B
tree node. At root node, abt = sbt.

A1,0 = 0 A1,0 = 1

A2,0 = 0 A2,0 = 1

A3,0 = 0 A3,0 = 1

A4,0 = 0 A4,0 = 1

abt : [−4, 9], budget=3

abt : [−3, 6], budget=2

abt : [−3, 6], budget=2

abt : [−1, 6], budget=2

abt : [−1, 4], budget=1
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Numerical results

benchmark method all instances robust instances
# avg-time(s) # solved # avg-time(s) # solved

ENZYMES
SCIPbasic 5915 605.97 5579 3549 278.58 3444
SCIPsbt 5915 230.59 5831 3549 82.89 3528
SCIPabt 5915 246.02 5817 3549 88.95 3522

MUTAG
SCIPbasic 1589 679.86 1575 44 798.47 40
SCIPsbt 1589 196.07 1589 44 336.41 44
SCIPabt 1589 207.50 1589 44 238.10 44
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Conclusion

Based on the results of our SCIP implementation, we have the following observations:
For moderate robust instances, basic < sbt ≈ abt.
For hard robust instances, basic < sbt < abt.
For non-robust instances, basic < abt < sbt.

For a non-robust instance, the target is not verification but finding an attack. In such cases,
tighter bounds derived from more cutting planes could result in slower solving times.
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Neural Network Formulation Example: Data
neural_network_formulations.ipynb

Read in the data 1 input x, 1 output y, 104 samples, Scaled has mean 0 & stdev 1

df = pd.read_csv("../data/sin_quadratic.csv",index_col=[0]);
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Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with ReLU activation

nn = Sequential(name='sin_wave_relu')
nn.add(Input(1))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=75)
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Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with sigmoid activation

nn = Sequential(name='sin_wave_sigmoid')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=75)
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Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with mixed (sigmoid/ReLU) activation

nn = Sequential(name='sin_wave_mixed')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=150)
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Neural Network Formulation Example: Set up the optimization problem
net_sigmoid = keras_reader.load_keras_sequential(nn,scaler,input_bounds)
model = pyo.ConcreteModel()
model.x = pyo.Var(initialize = 0)
model.y = pyo.Var(initialize = 0)
model.obj = pyo.Objective(expr=(model.y))
model.nn = OmltBlock()
formulation = FullSpaceSmoothNNFormulation(net_sigmoid) #or ReducedSpaceSmoothNNFormulation
model.nn.build_formulation(formulation)

@model.Constraint()
def connect_inputs(mdl):

return mdl.x == mdl.nn.inputs[0]

@model.Constraint()
def connect_outputs(mdl):

return mdl.y == mdl.nn.outputs[0]

status = pyo.SolverFactory('ipopt').solve(model, tee=True)
solution = (pyo.value(model.x),pyo.value(model.y))
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Neural Network Formulation Example: Optimization results
neural_network_formulations.ipynb

FullSpaceSmoothNNFormulation [Ipopt]
# variables: 209, # constraints: 208
x = −0.28, y = −0.86
Solve Time: 0.14s

ReducedSpaceSmoothNNFormulation [Ipopt]
# variables: 6, # constraints: 5
x = −1.44, y = 1.36
Solve Time: 0.08s
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Other notebook examples . . .
https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks

auto-thermal-reformer{-
relu}.ipynb

develops an NN surrogate with data from
a process model built using IDAES-PSE
[Lee et al., 2021]

Even more notebook examples . . .
import_network.ipynb imports NN models directly from Keras & ONNX. Using ONNX interoperability,
it imports a NN model from PyTorch.
build_network.ipynb builds a NetworkDefinition manually.
mnist_example_{dense, cnn}.ipynb train fully dense and convolutional NNs on MNIST [LeCun et al.,
2010] and find adversarial examples [Tjeng et al., 2017].
bo_with_trees.ipynb optimizes the Rosenbrock function.
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OMLT v 1.0 Summary
https://github.com/cog-imperial/OMLT

Key Contributions

Automatically translate a trained machine learning model (neural network or gradient
boosted tree) into Pyomo optimization constraints
Achieve interoperability via the ONNX interface
Easily switch and compare optimization formulations
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Team members https://github.com/cog-imperial/OMLT

Francesco Ceccon Jordan Jalving Joshua Haddad Alexander Thebelt
Imperial Sandia Sandia Imperial

Calvin Tsay Carl D Laird Ruth Misener You?
Imperial CMU Imperial Join us on GitHub!
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