
Optimal decision-making with trained NN embedded
Shiqiang Zhang, Juan S Campos, Christopher Hojny, Francesco Ceccon, Jordan Jalving,

Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird, Ruth Misener

Funding EPSRC EP/P016871/1 & EP/T001577/1
Sandia LDRD program

Institute for the Design of Advanced Energy Systems

13 September 2024

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Papers

1 Botoeva, Kouvaros, Kronqvist, Lomuscio, Misener, AAAI, 2000.
2 Kronqvist, Misener, Tsay, CPAIOR, 2021. Best Paper
3 Tsay, Kronqvist, Thebelt, Misener, NeurIPS, 2021.
4 Ceccon∗, Jalving∗, Haddad, Thebelt, Tsay, Laird†, Misener†, JMLR MLOSS, 2022.
5 Zhang, Campos, Feldmann, Walz, Sandfort, Mathea, Tsay, Misener, NeurIPS, 2023.
6 Hojny∗, Zhang∗, Campos, Misener, ICML, 2024.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Optimization challenges to analyze trained neural networks
Example: Classification of MNIST digits [Tsay et al., 2021]

`1 `∞

Given
Trained NN
Image x̄
Label j = 9
Adversary? k = 4

‖x − x̄‖1 = 4 ‖x − x̄‖∞ = 0.05

Verification [Feasibility] Is there an
adversary labeled k within a given
perturbation (e.g., by `1- or `∞-norm)?
Optimal adversary [Anderson et al., 2020]
What image within a perturbation radius
maximizes the prediction difference?
Minimally distorted adversary [Croce and
Hein, 2020] Smallest perturbation over
which NN can predict adversarial label k?
Lossless compression [Serra et al., 2020]
Can I safely remove NN nodes or layers?

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Optimization challenges to analyze trained neural networks
Example: Classification of MNIST digits [Tsay et al., 2021]

`1

`∞

Given
Trained NN
Image x̄
Label j = 9
Adversary? k = 4

‖x − x̄‖1 = 4

‖x − x̄‖∞ = 0.05

Verification [Feasibility] Is there an
adversary labeled k within a given
perturbation (e.g., by `1- or `∞-norm)?
Optimal adversary [Anderson et al., 2020]
What image within a perturbation radius
maximizes the prediction difference?
Minimally distorted adversary [Croce and
Hein, 2020] Smallest perturbation over
which NN can predict adversarial label k?
Lossless compression [Serra et al., 2020]
Can I safely remove NN nodes or layers?

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Optimization challenges to analyze trained neural networks
Example: Classification of MNIST digits [Tsay et al., 2021]

`1 `∞

Given
Trained NN
Image x̄
Label j = 9
Adversary? k = 4

‖x − x̄‖1 = 4 ‖x − x̄‖∞ = 0.05

Verification [Feasibility] Is there an
adversary labeled k within a given
perturbation (e.g., by `1- or `∞-norm)?
Optimal adversary [Anderson et al., 2020]
What image within a perturbation radius
maximizes the prediction difference?
Minimally distorted adversary [Croce and
Hein, 2020] Smallest perturbation over
which NN can predict adversarial label k?
Lossless compression [Serra et al., 2020]
Can I safely remove NN nodes or layers?

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Verification [sign check only] & Optimal Adversary

max fk(xL)− fj(xL)

s.t. x`
i = max

(
0,
((

w`−1
i

)T
x`−1 + b

))
∀` ∈ {1, . . . ,L} = Layer, i ∈ Node`

x ∈ X

Here, fk and fj correspond to the k- and j-th elements of the neural network output layer L,
respectively. X defines the domain of perturbations.

International Verification of Neural Networks Competition
Specialized codes win • Branch & bound on GPUs (α-β CROWN) • Thoughtful heuristics

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Software tools?
Neural network verification

MIP MIPVerify [Tjeng et al., 2017] • NSVerify [Akintunde et al., 2018]
SMT Reluplex [Katz et al., 2017] • marabou [Katz et al., 2019]
CP + MIP + Other CROWN & Variants [Zhang et al., 2018, Xu et al., 2020, Salman
et al., 2019, Xu et al., 2021, Wang et al., 2021, Zhang et al., 2022b,a]

Optimization over ML models
MeLOn [Schweidtmann and Mitsos, 2019] dense sigmoid NNs, reduced-space formulation,
JANOS [Bergman et al., 2022] dense ReLU NNs & logistic regression, Gurobi formulation,
reluMIP [Lueg et al., 2021] dense ReLU NNs, Pyomo big-M formulation,
OptiCL [Maragno et al., 2021] mixed-integer formulations of its own surrogates,
OMLT Dense & convolutional NNs, Gradient-boosted trees, Competing formulations

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Software tools?
Neural network verification

MIP MIPVerify [Tjeng et al., 2017] • NSVerify [Akintunde et al., 2018]
SMT Reluplex [Katz et al., 2017] • marabou [Katz et al., 2019]
CP + MIP + Other CROWN & Variants [Zhang et al., 2018, Xu et al., 2020, Salman
et al., 2019, Xu et al., 2021, Wang et al., 2021, Zhang et al., 2022b,a]

Optimization over ML models
MeLOn [Schweidtmann and Mitsos, 2019] dense sigmoid NNs, reduced-space formulation,
JANOS [Bergman et al., 2022] dense ReLU NNs & logistic regression, Gurobi formulation,
reluMIP [Lueg et al., 2021] dense ReLU NNs, Pyomo big-M formulation,
OptiCL [Maragno et al., 2021] mixed-integer formulations of its own surrogates,
OMLT Dense & convolutional NNs, Gradient-boosted trees, Competing formulations

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Solve inverse problems over trained neural networks

Computational Optimization Group Optimization over trained surrogates 13 September 2024

nPlan: Construction Start-Up

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Finance

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Computer-aided molecular design [with BASF] [Zhang et al., 2023]

molecules

NH2

NH2

N

N

N

GNN properties

quantum mechanics
physical chemistry

biophysics
physiology

. . .

prediction (forward)

optimization (backward)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

OMLT: Optimization & Machine Learning Toolkit [Ceccon et al., 2022]
https://github.com/cog-imperial/OMLT

Why represent trained machine learning models as Pyomo formulations?
Adversarial examples Verification, optimal adversary, minimally-distorted adversary,
lossless compression
Machine learning Maximize a neural acquisition function, Bayesian optimization
Engineering Machine learning models may replace complicated constraints or serve as
surrogates in larger design & operations problems.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT

OMLT: Optimization & Machine Learning Toolkit [Ceccon et al., 2022]
https://github.com/cog-imperial/OMLT

Why represent trained machine learning models as Pyomo formulations?
Adversarial examples Verification, optimal adversary, minimally-distorted adversary,
lossless compression
Machine learning Maximize a neural acquisition function, Bayesian optimization
Engineering Machine learning models may replace complicated constraints or serve as
surrogates in larger design & operations problems.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT

What type of optimization problem do we want to solve?
Hybridize mechanistic, model-based optimization with surrogate models learned from data

min
x,y

f0(x,y)
fi(x,y) ≤ 0 ∀i ∈ {1, 2, . . . ,C}

xN

...

x2

x1

...
... ...

yM

yM−1

y1

y1

Block [Bynum et al., 2021]

The OmltBlock abstraction encapsulates neural networks (NN) & trees
Dense NN • CNN • GNN (MPNN) • Gradient boosted trees (GBT) • Linear model trees

Computational Optimization Group Optimization over trained surrogates 13 September 2024

What type of optimization problem do we want to solve?
Hybridize mechanistic, model-based optimization with surrogate models learned from data

min
x,y

f0(x,y)
fi(x,y) ≤ 0 ∀i ∈ {1, 2, . . . ,C}

xN

...

x2

x1

...
... ...

yM

yM−1

y1

y1

Block [Bynum et al., 2021]

The OmltBlock abstraction encapsulates neural networks (NN) & trees
Dense NN • CNN • GNN (MPNN) • Gradient boosted trees (GBT) • Linear model trees

Computational Optimization Group Optimization over trained surrogates 13 September 2024

What type of optimization problem do we want to solve?
Hybridize mechanistic, model-based optimization with surrogate models learned from data

min
x,y

f0(x,y)
fi(x,y) ≤ 0 ∀i ∈ {1, 2, . . . ,C}

xN

...

x2

x1

...
... ...

yM

yM−1

y1

y1

Block [Bynum et al., 2021]

The OmltBlock abstraction encapsulates neural networks (NN) & trees
Dense NN • CNN • GNN (MPNN) • Gradient boosted trees (GBT) • Linear model trees

Computational Optimization Group Optimization over trained surrogates 13 September 2024

What type of optimization problem do we want to solve?
Hybridize mechanistic, model-based optimization with surrogate models learned from data

min
x,y

f0(x,y)
fi(x,y) ≤ 0 ∀i ∈ {1, 2, . . . ,C}

xN

...

x2

x1

...
... ...

yM

yM−1

y1

y1

Block [Bynum et al., 2021]

The OmltBlock abstraction encapsulates neural networks (NN) & trees
Dense NN • CNN • GNN (MPNN) • Gradient boosted trees (GBT) • Linear model trees

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

How NN activation functions map onto OMLT formulations . . .

x

y

ReLU

ReluBigMFormulation
ReluComplementarityFormulation
ReluPartitionFormulation

x

y

linear

FullSpaceSmoothNNFormulation
ReducedSpaceSmoothNNFormulation

x

y

tanh
x

y

softplus

Formulations [Schweidtmann and Mitsos, 2019, Anderson et al., 2020, Tsay et al., 2021, Yang et al., 2021]

Non-smooth [ReluBigMFormulation, ReluComplementarityFormulation, Relu
PartitionFormulation] ReLU • Smooth [{Full,Reduced}SpaceSmoothNNFormulation]
Linear • Tanh • Sigmoid • Softplus • Smooth monotonic

Optimization solver software EPL ≡ Eclipse Public License; Prop ≡ Proprietary
Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] •
Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full,Reduced}SpaceSmoothNNFormulation,
ReluComplementarityFormulation] Ipopt [EPL] • SNOPT [Prop] • MINOS [Prop]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Big-M formulation of a learned ReLU neural network
Lomuscio and Maganti [2017], Fischetti and Jo [2018]

...

...

...

...

b
y = max

(
0,wT x + b

)1

2

x1

w1

x2

xk wk

xη−1
xη

wη

y ≥ (wT x + b)
y ≤ (wT x + b)− (1− σ)LB0

0 ≤ y ≤ σUB0

σ ∈ {0, 1}

Big-M coefficients LB0,UB0 ∈ R

(wT x + b) ∈ [LB0,UB0]

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

w
(l)
0→0x

(l−1)
0

w
(l)
1→0x

(l−1)
1

w
(l)
2→0x

(l−1)
2

w
(l)
3→0x

(l−1)
3

w
(l)
5→0x

(l−1)
5

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
1

w
(l)
0→1x

(l−1)
0

w
(l)
1→1x

(l−1)
1

w
(l)
2→1x

(l−1)
2

w
(l)
6→1x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
2

w
(l)
0→2x

(l−1)
0

w
(l)
1→2x

(l−1)
1

w
(l)
2→2x

(l−1)
2

w
(l)
3→2x

(l−1)
3

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
3

w
(l)
0→3x

(l−1)
0

w
(l)
2→3x

(l−1)
2

w
(l)
3→3x

(l−1)
3

w
(l)
4→3x

(l−1)
4

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
4

w
(l)
3→4x

(l−1)
3

w
(l)
4→4x

(l−1)
4

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
5

w
(l)
0→5x

(l−1)
0

w
(l)
5→5x

(l−1)
5

w
(l)
6→5x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
6

w
(l)
1→6x

(l−1)
1

w
(l)
5→6x

(l−1)
5

w
(l)
6→6x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with unknown graph structure

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈V

Au,vw
(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

A0,0w
(l)
0→0x

(l−1)
0

A1,0w
(l)
1→0x

(l−1)
1

A2,0w
(l)
2→0x

(l−1)
2

A3,0w
(l)
3→0x

(l−1)
3

A4,0w
(l)
4→0x

(l−1)
4

A5,0w
(l)
5→0x

(l−1)
5

A6,0w
(l)
6→0x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

MIP encoding of MPNNs

x(l)
v = max{ x̄(l)

v︸︷︷︸y
,0} ←−−−−−−−−−−−−−−−−−−−−−→



x(l)
v,f ≥ 0

x(l)
v,f ≥ x̄(l)

v,f

x(l)
v,f ≤ x̄(l)

v,f − lb(x̄(l)
v,f) · (1− σ

(l)
v,f)

x(l)
v,f ≤ ub(x̄(l)

v,f) · σ
(l)
v,f

x̄(l)
v =

∑
u∈V

w(l)
u→vx(l−1)

u→v + b(l)
v

x︷ ︸︸ ︷
x(l−1)

u→v = Au,vx(l−1)
u ↔



x(l−1)
u→v,f ≥ lb(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ ub(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ x(l−1)

u,f − lb(x(l−1)
u,f) · (1−Au,v)

x(l−1)
u→v,f ≥ x(l−1)

u,f − ub(x(l−1)
u,f) · (1−Au,v)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

OMLT puts optimization formulations in competition [Ceccon et al., 2022]

Key idea One optimization formulation may be more effective than another
Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
OMLT makes switching formulations as easy as changing a couple lines of code

...

...

b
y

1

2

x1

w1

x2

xk wk

xN−1
xN

wN

Big-M formulation [Anderson et al., 2020]

formulation = ReluBigMFormulation(net_relu)

Partition-based formulation [Tsay et al., 2021]

P = 3
split_func = lambda w: partition_split_func(w, P)
formulation = ReluPartitionFormulation(

net_relu, split_func=split_func)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

OMLT puts optimization formulations in competition [Ceccon et al., 2022]

Key idea One optimization formulation may be more effective than another
Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
OMLT makes switching formulations as easy as changing a couple lines of code

...

...

b
y

1

2

x1

w1

x2

xk wk

xN−1
xN

wN

Big-M formulation [Anderson et al., 2020]

formulation = ReluBigMFormulation(net_relu)

Partition-based formulation [Tsay et al., 2021]

P = 3
split_func = lambda w: partition_split_func(w, P)
formulation = ReluPartitionFormulation(

net_relu, split_func=split_func)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

OMLT puts optimization formulations in competition [Ceccon et al., 2022]

Key idea One optimization formulation may be more effective than another
Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
OMLT makes switching formulations as easy as changing a couple lines of code

...

...

b
y

1

2

3

x1

w1

x2

xk wk

xN−1
xN

wN

Big-M formulation [Anderson et al., 2020]

formulation = ReluBigMFormulation(net_relu)

Partition-based formulation [Tsay et al., 2021]

P = 3
split_func = lambda w: partition_split_func(w, P)
formulation = ReluPartitionFormulation(

net_relu, split_func=split_func)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

What’s next? Embedding trained ML models into optimal decision-making

Wish list
Algorithms Addressing nonconvexity • Managing problem size • Proposing formulations
Applications Lots more!
Models Skip connections for NN? • Recurrent NN
Software OMLT back-end to other algebraic modeling languages • Tree input

Challenges & opportunities
Nonconvexity Nonconvex activation functions • Discrete on/off adjacency matrix
Size Activation function at every node? At every edge?

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Adversarial attack v.s. Certifiable robustness

Machine learning models are vulnerable: small input changes could lead to wrong predictions.

Denote f as a model, assume P(X∗) is the admissible perturbations on input X∗.

Adversarial attack
∃X ∈ P(X∗), s.t., f (X) 6= f (X∗)

Certifiable robustness
f (X) = f (X∗), ∀X ∈ P(X∗)

Besides input features, the graph structure involved in graph neural networks (GNNs) provides
more options to attack, while makes it harder to be verified (certified robustness).

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Problem definition

Given a trained GNN f for graph/node classification task, where the predicted label
corresponds to the maximal logit. Given an input (X∗,A∗) consisting of features X∗ and
adjacency matrix A∗, denote its predictive label as c∗. The worst case margin between
predictive label c∗ and attack label c under perturbations P(·) is:

m(c∗, c) := min
(X ,A)

fc∗(X ,A)− fc(X ,A)

s.t. X ∈ P(X∗), A ∈ P(A∗).
(1)

A positive m(c∗, c) means that the logit of class c∗ is always larger than class c.

Let C be the set of all classes. If m(c∗, c) > 0, ∀c ∈ C\{c∗}, then any admissible perturbation
can not change the predictive label, i.e., this GNN is robust at (X∗,A∗).

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Admissible perturbations
Perturbations on features, i.e., P(X∗), are usually defined as a lp norm ball around X∗. The
choice of norm is quite flexible for attack since one feasible attack is sufficient. For verification,
l∞ norm is most commonly used since it defines bounds for each feature separately.

Remark: If only feature perturbations are allowed, then verifying a GNN is equivalent to
verifying a NN since the connections between layers are fixed.

New challenges for GNN verification:
Perturbations on graph structure, e.g., add edges/remove edges/inject nodes, directly
change the connections between layers.
Perturbations on one node indirectly attack other nodes via message passing or graph
convolution.
Computational Optimization Group Optimization over trained surrogates 13 September 2024

Verification of message passing neural networks (MPNNs)
Motivation: classic and general GNN framework, but few certificates.

Tool: a recently developed mixed-integer programming (MIP) formulation for MPNNs.

Definition: consider a MPNN with l-th layer defined as:

x(l)
v = ReLU

∑
u∈V

Au,vw(l)
u→vx(l−1)

u + b(l)
v

 , ∀v ∈ V (2)

where V = {0, 1, . . . ,N − 1} is the node set, N is the number of nodes, Au,v ∈ {0, 1} denotes
the existence of edge u → v.

Perturbations:
Graph classification: remove/add edges with global/local budgets.
Node classification: remove edges with global/local budgets.Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

w
(l)
0→0x

(l−1)
0

w
(l)
1→0x

(l−1)
1

w
(l)
2→0x

(l−1)
2

w
(l)
3→0x

(l−1)
3

w
(l)
5→0x

(l−1)
5

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
1

w
(l)
0→1x

(l−1)
0

w
(l)
1→1x

(l−1)
1

w
(l)
2→1x

(l−1)
2

w
(l)
6→1x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
2

w
(l)
0→2x

(l−1)
0

w
(l)
1→2x

(l−1)
1

w
(l)
2→2x

(l−1)
2

w
(l)
3→2x

(l−1)
3

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
3

w
(l)
0→3x

(l−1)
0

w
(l)
2→3x

(l−1)
2

w
(l)
3→3x

(l−1)
3

w
(l)
4→3x

(l−1)
4

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
4

w
(l)
3→4x

(l−1)
3

w
(l)
4→4x

(l−1)
4

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
5

w
(l)
0→5x

(l−1)
0

w
(l)
5→5x

(l−1)
5

w
(l)
6→5x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with fixed graph structure [Hojny et al., 2024]

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈N(v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
6

w
(l)
1→6x

(l−1)
1

w
(l)
5→6x

(l−1)
5

w
(l)
6→6x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Message passing with unknown graph structure

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈V

Au,vw
(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

A0,0w
(l)
0→0x

(l−1)
0

A1,0w
(l)
1→0x

(l−1)
1

A2,0w
(l)
2→0x

(l−1)
2

A3,0w
(l)
3→0x

(l−1)
3

A4,0w
(l)
4→0x

(l−1)
4

A5,0w
(l)
5→0x

(l−1)
5

A6,0w
(l)
6→0x

(l−1)
6

Computational Optimization Group Optimization over trained surrogates 13 September 2024

MIP encoding of MPNNs

x(l)
v = max{ x̄(l)

v︸︷︷︸y
,0} ←−−−−−−−−−−−−−−−−−−−−−→



x(l)
v,f ≥ 0

x(l)
v,f ≥ x̄(l)

v,f

x(l)
v,f ≤ x̄(l)

v,f − lb(x̄(l)
v,f) · (1− σ

(l)
v,f)

x(l)
v,f ≤ ub(x̄(l)

v,f) · σ
(l)
v,f

x̄(l)
v =

∑
u∈V

w(l)
u→vx(l−1)

u→v + b(l)
v

x︷ ︸︸ ︷
x(l−1)

u→v = Au,vx(l−1)
u ↔



x(l−1)
u→v,f ≥ lb(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ ub(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ x(l−1)

u,f − lb(x(l−1)
u,f) · (1−Au,v)

x(l−1)
u→v,f ≥ x(l−1)

u,f − ub(x(l−1)
u,f) · (1−Au,v)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Basic bounds tightening (basic)
Assume that there are N = 6 nodes with only one input and output feature. For simplicity,
assume all weights equal to 1 and all biases equal to 0.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

To get the bounds for node 0 in l-th layer, basic considers all possibilities of input nodes:
lb = min(0, 1) + min(0, 2) + min(0, 3) + min(0,−4) + min(0,−3) + min(0,−2) = −9.
ub = max(0, 2) + max(0, 3) + max(0, 4) + max(0,−3) + max(0,−2) + max(0,−1) = 9.
Computational Optimization Group Optimization over trained surrogates 13 September 2024

Static bounds tightening (sbt)
Given that the budget, i.e., the maximal number of modified edges of node 0, is 3. Denote the
set of input nodes as N ′(0), then we need to make sure that |N ′(0)∆N (0)| ≤ 3.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Comparing all possible options gives the sbt bounds:
lb = 1 + 243 = 4: N ′(0) = {0, 1, 3, 4}, i.e., remove node 2 + add node 3 and 4.
ub = 2 + 3 + 4 = 9: N ′(0) = N (0).
Computational Optimization Group Optimization over trained surrogates 13 September 2024

Aggressive bounds tightening (abt)
Assume that 4 decisions have been made in current branch-and-bound (B&B) tree node,
which are A1,0 = 0,A2,0 = 1,A3,0 = 0,A4,0 = 1. Then we only have 1 budget left.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Au,0 = 0

Au,0 = 1

Au,0 ∈ {0, 1}

We can (i) change nothing, or (ii) remove node 0, or (iii) add node 5. The abt bounds are:
lb = 1 + 3− 3− 2 = −1: add node 5.
ub = 2 + 4− 2 = 4: change nothing.
Computational Optimization Group Optimization over trained surrogates 13 September 2024

abt extends sbt to each B&B tree node
abt can be interpreted as applying sbt to a modified graph with reduced budgets at each B&B
tree node. At root node, abt = sbt.

A1,0 = 0 A1,0 = 1

A2,0 = 0 A2,0 = 1

A3,0 = 0 A3,0 = 1

A4,0 = 0 A4,0 = 1

abt : [−4, 9], budget=3

abt : [−3, 6], budget=2

abt : [−3, 6], budget=2

abt : [−1, 6], budget=2

abt : [−1, 4], budget=1

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Numerical results

benchmark method all instances robust instances
avg-time(s) # solved # avg-time(s) # solved

ENZYMES
SCIPbasic 5915 605.97 5579 3549 278.58 3444
SCIPsbt 5915 230.59 5831 3549 82.89 3528
SCIPabt 5915 246.02 5817 3549 88.95 3522

MUTAG
SCIPbasic 1589 679.86 1575 44 798.47 40
SCIPsbt 1589 196.07 1589 44 336.41 44
SCIPabt 1589 207.50 1589 44 238.10 44

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Conclusion

Based on the results of our SCIP implementation, we have the following observations:
For moderate robust instances, basic < sbt ≈ abt.
For hard robust instances, basic < sbt < abt.
For non-robust instances, basic < abt < sbt.

For a non-robust instance, the target is not verification but finding an attack. In such cases,
tighter bounds derived from more cutting planes could result in slower solving times.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Data
neural_network_formulations.ipynb

Read in the data 1 input x, 1 output y, 104 samples, Scaled has mean 0 & stdev 1

df = pd.read_csv("../data/sin_quadratic.csv",index_col=[0]);

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with ReLU activation

nn = Sequential(name='sin_wave_relu')
nn.add(Input(1))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=75)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with sigmoid activation

nn = Sequential(name='sin_wave_sigmoid')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=75)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Trained Neural Networks
neural_network_formulations.ipynb

Build a Keras NN with mixed (sigmoid/ReLU) activation

nn = Sequential(name='sin_wave_mixed')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],

verbose=1, epochs=150)

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Set up the optimization problem
net_sigmoid = keras_reader.load_keras_sequential(nn,scaler,input_bounds)
model = pyo.ConcreteModel()
model.x = pyo.Var(initialize = 0)
model.y = pyo.Var(initialize = 0)
model.obj = pyo.Objective(expr=(model.y))
model.nn = OmltBlock()
formulation = FullSpaceSmoothNNFormulation(net_sigmoid) #or ReducedSpaceSmoothNNFormulation
model.nn.build_formulation(formulation)

@model.Constraint()
def connect_inputs(mdl):

return mdl.x == mdl.nn.inputs[0]

@model.Constraint()
def connect_outputs(mdl):

return mdl.y == mdl.nn.outputs[0]

status = pyo.SolverFactory('ipopt').solve(model, tee=True)
solution = (pyo.value(model.x),pyo.value(model.y))

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Neural Network Formulation Example: Optimization results
neural_network_formulations.ipynb

FullSpaceSmoothNNFormulation [Ipopt]
variables: 209, # constraints: 208
x = −0.28, y = −0.86
Solve Time: 0.14s

ReducedSpaceSmoothNNFormulation [Ipopt]
variables: 6, # constraints: 5
x = −1.44, y = 1.36
Solve Time: 0.08s

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Other notebook examples . . .
https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks

auto-thermal-reformer{-
relu}.ipynb

develops an NN surrogate with data from
a process model built using IDAES-PSE
[Lee et al., 2021]

Even more notebook examples . . .
import_network.ipynb imports NN models directly from Keras & ONNX. Using ONNX interoperability,
it imports a NN model from PyTorch.
build_network.ipynb builds a NetworkDefinition manually.
mnist_example_{dense, cnn}.ipynb train fully dense and convolutional NNs on MNIST [LeCun et al.,
2010] and find adversarial examples [Tjeng et al., 2017].
bo_with_trees.ipynb optimizes the Rosenbrock function.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks

Other notebook examples . . .
https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks

auto-thermal-reformer{-
relu}.ipynb

develops an NN surrogate with data from
a process model built using IDAES-PSE
[Lee et al., 2021]

Even more notebook examples . . .
import_network.ipynb imports NN models directly from Keras & ONNX. Using ONNX interoperability,
it imports a NN model from PyTorch.
build_network.ipynb builds a NetworkDefinition manually.
mnist_example_{dense, cnn}.ipynb train fully dense and convolutional NNs on MNIST [LeCun et al.,
2010] and find adversarial examples [Tjeng et al., 2017].
bo_with_trees.ipynb optimizes the Rosenbrock function.
Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks

OMLT v 1.0 Summary
https://github.com/cog-imperial/OMLT

Key Contributions

Automatically translate a trained machine learning model (neural network or gradient
boosted tree) into Pyomo optimization constraints
Achieve interoperability via the ONNX interface
Easily switch and compare optimization formulations

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT

Team members https://github.com/cog-imperial/OMLT

Francesco Ceccon Jordan Jalving Joshua Haddad Alexander Thebelt
Imperial Sandia Sandia Imperial

Calvin Tsay Carl D Laird Ruth Misener You?
Imperial CMU Imperial Join us on GitHub!

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/cog-imperial/OMLT

References I
Michael Akintunde, Alessio Lomuscio, Lalit Maganti, and Edoardo Pirovano. Reachability analysis for neural

agent-environment systems. In KR, pages 184–193, 2018.
Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong

mixed-integer programming formulations for trained neural networks. Mathematical Programming, pages
1–37, 2020.

David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. Janos: an integrated
predictive and prescriptive modeling framework. INFORMS Journal on Computing, 34(2):807–816, 2022.

Michael L Bynum, Gabriel A Hackebeil, William E Hart, Carl D Laird, Bethany L Nicholson, John D Siirola,
Jean-Paul Watson, and David L Woodruff. PyomoOptimization Modeling in Python, volume 67. Springer
Nature, 2021.

F. Ceccon, J. Jalving, J. Haddad, A. Thebelt, C. Tsay, C. D Laird, and R. Misener. OMLT: Optimization &
machine learning toolkit. Journal of Machine Learning Research, 23(349):1–8, 2022.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In International Conference on Machine Learning, pages 2196–2205. PMLR, 2020.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):
296–309, 2018.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

References II
Christopher Hojny, Shiqiang Zhang, Juan S Campos, and Ruth Misener. Verifying message-passing neural

networks via topology-based bounds tightening. In ICML, 2024.
Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient SMT

solver for verifying deep neural networks. In International Conference on Computer Aided Verification, pages
97–117. Springer, 2017.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu
Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework for verification and analysis of deep
neural networks. In International Conference on Computer Aided Verification, pages 443–452. Springer, 2019.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Andrew Lee, Jaffer H Ghouse, John C Eslick, Carl D Laird, John D Siirola, Miguel A Zamarripa, Dan Gunter,
John H Shinn, Alexander W Dowling, Debangsu Bhattacharyya, et al. The IDAES process modeling
framework and model libraryFlexibility for process simulation and optimization. Journal of Advanced
Manufacturing and Processing, page e10095, 2021.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward ReLU neural
networks. arXiv preprint arXiv:1706.07351, 2017.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

References III
Laurens Lueg, Bjarne Grimstad, Alexander Mitsos, and Artur M. Schweidtmann. reluMIP: Open source tool for

MILP optimization of ReLU neural networks, 2021. URL https://github.com/ChemEngAI/ReLU_ANN_MILP.
Donato Maragno, Holly Wiberg, Dimitris Bertsimas, S Ilker Birbil, Dick den Hertog, and Adejuyigbe Fajemisin.

Mixed-integer optimization with constraint learning. arXiv preprint arXiv:2111.04469, 2021.
Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation barrier to

tight robustness verification of neural networks. Advances in Neural Information Processing Systems, 32:
9835–9846, 2019.

Artur M Schweidtmann and Alexander Mitsos. Deterministic global optimization with artificial neural networks
embedded. Journal of Optimization Theory and Applications, 180(3):925–948, 2019.

Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression of deep neural networks. In
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages 417–430.
Springer, 2020.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer
programming. arXiv preprint arXiv:1711.07356, 2017.

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks. NeurIPS, 2021.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

https://github.com/ChemEngAI/ReLU_ANN_MILP

References IV
Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-CROWN:

Efficient bound propagation with per-neuron split constraints for complete and incomplete neural network
verification. Advances in Neural Information Processing Systems, 34, 2021.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin,
and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified robustness and beyond. Advances
in Neural Information Processing Systems, 33, 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast and
Complete: Enabling complete neural network verification with rapid and massively parallel incomplete
verifiers. In International Conference on Learning Representations, 2021.

Dominic Yang, Prasanna Balaprakash, and Sven Leyffer. Modeling design and control problems involving neural
network surrogates. arXiv preprint arXiv:2111.10489, 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. Advances in Neural Information Processing
Systems, 31:4939–4948, 2018.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. General
cutting planes for bound-propagation-based neural network verification. Advances in Neural Information
Processing Systems, 2022a.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

References V

Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A branch and
bound framework for stronger adversarial attacks of ReLU networks. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, pages 26591–26604, 2022b.

Shiqiang Zhang, Juan S. Campos, Christian Feldmann, David Walz, Frederik Sandfort, Miriam Mathea, Calvin
Tsay, and Ruth Misener. Optimizing over trained GNNs via symmetry breaking. In NeurIPS, 2023.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

Optimal decision-making with trained NN embedded
Shiqiang Zhang, Juan S Campos, Christopher Hojny, Francesco Ceccon, Jordan Jalving,

Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird, Ruth Misener

Funding EPSRC EP/P016871/1 & EP/T001577/1
Sandia LDRD program

Institute for the Design of Advanced Energy Systems

13 September 2024

Paper Ceccon∗, Jalving∗, Haddad, Thebelt, Tsay, Laird†, Misener†, arXiv, 2022.

Computational Optimization Group Optimization over trained surrogates 13 September 2024

	References

