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Different models for uncertain input
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Information Information (e.g. machine-learned)
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Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?
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n elements

» Binary search: worst-case # queries is ©(log n)

» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|
— from h(q) use doubling to find other limit of search interval
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predictions

O(log n)
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» Assume access to predictions (e.g. ML)
» Prediction is imperfect

» No information about their quality

© Adobe Stock

Desired algorithm properties

» Consistency: better than worst case if the prediction errors are small

» Robustness: bounded worst case for arbitrary predictions

» Error-dependency: graceful degradation with the error

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al.
(SIGMOD 2018)] — became an extremely vibrant area
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Suppose processing times are unknown! (non-clairvoyant scheduling)



Non-Clairvoyant Min-Sum Scheduling

Processing times are unknown.

We cannot expect to find the optimal solution.

Competitive analysis (worst-case analysis)

An online algorithm is p-competitive if it achieves, for any input instance,
a solution of cost within a factor p of the optimal cost:

Avrg(l) < p-Opx(l), for any input /.
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Non-Clairvoyant Min-Sum Scheduling
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machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

CC Ce Ca Cb Cd

Further Time-Sharing algorithms for more general problems:

» Individual job weights: \Weighted Round-Robin (2-competitive)
[Kim, Chwa 2003]

» Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

» Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jager 2024]
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Predict job lengths Y [Kumar, Purohit, Svitkina, NIPS 2018]
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Error: {1 =3 _1|pj — jl

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma

SPF achieves scheduling cost SPF(y;, pj) < OpT(p;) +n- 41

Consistent but not robust (against bad predictions).
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[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]
Input:

— prediction-clairvoyant alg. .A“ (“follow the prediction”) with some
error-dependent competitive ratio

— non-clairvoyant alg. A" with error-independent competitive ratio

— confidence parameter A € (0,1)

Preferential Time Sharing (), A, AV): run both A€ and AN

(1-A
A

Motivation: A gives consistency, A" gives robustness, trade-off by A

- ; 1 1
Analysis: slowed down execution by factors ;= resp.
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Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

PTS(A, A, A") has competitive ratio min {ﬁ ( ) , X}' if
> is monotone and ( )—competitive and
> is monotone and //-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive

ratio of min{X;(1 + 6';111), 2} for A € (0,1).

A small A large

comp. ratio
N w
comp. ratio
Now

0 2 4 0 2 4
rel. error /OPT rel. error n/OPT
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Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

» Proving error-dependent bounds seems difficult with ¢1-error
(linear error vs. quadratic objective)
— alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

» Do we really need to predict all the job lengths?

10



Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

Motivation: knowing WSPT order is often sufficient for good approximations:
— optimal for 1|(pmtn)|>_ w;C; [Smith 1956]
— 2-competitive for P|r;, pmtn|y_ w;C; [M. & Schulz 2004]
— 5.83-competitive for R|r;, pmtn|d_ w; G [Lindermayr & M. 2022]
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Permutation predictions: predict an order of jobs: & : [n] — [n]

p1 P2 P3 (W)SPT order p3 < p1 < p2
Y1 Y2 y3

Indicate correct order y3 < y3 < y», but £1,v >0
Y1 Y2 ¥3

Error measure: quantifies effect of inversions Z between & and true
WSPT order on list scheduling according to predicted order:

n° = > (wipj — wp;)
(ij)eT

> For 1|3 w; G this is exactly n° = Op1(6) — OPT(0).

» 1 captures structure instead of irrelevant numerical values.

11
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Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|>° w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in predicted order

|
2. non-clairvoyant AN: (2-competitive) [Kim, Chwa 2003]
. 1 n°
mm{l—)\ ( + OPT) ’)\}
WSPT order also useful for more general scheduling settings.
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PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in predicted order

~

: schedule m first jobs
3 :‘:

at any time

N

2. non-clairvoyant AN: WDEQ (3-competitive) [Beaumont et al. 2012]

. 1 n° 3
m'”{l—A<2+m-0pT>’X}
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Scheduling on Unrelated Machines

on unrelated machines R|r;, pmtn|> w;C;

1. prediction-clairvoyant A€

Known algorithms may not always work!

— prove error-dependent competitive ratio for alg. that trusts the prediction
We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN: (4.62-competitive)
[Lindermayr, M., Jager 2024]
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Sensitivity Experiments

» Single machine, unweighted jobs

» Synthetic instances sampled from Pareto-distribution with shape 1.1
Many small jobs and few very large jobs! (common)

4.5
= PTS (A =0.1) ===+ MultiStage (¢ = 0.25)
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Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Q(n)!

: n

[y

a [

Wp_1 = 0
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Full Input Prediction — PTS Framework

[Lassota, Lindermayr, M., Schlster, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 4 n)-competitive (1 permutation error)
2. Robustness via Round Robin for front jobs: w-competitive (w width)

Hidden successors of job 1

Initial front jobs

Theorem. Preferential Time Sharing is O(min{1 + n, w})-competitive.
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Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input
Total successor weight Avg. successor weight
Static Adaptive Static Adaptive
Weight order
Static Adaptive

. results for different topologies — not today.
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Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

hldden successors of job 1

initial front jobs
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Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

» Decompose DAG G into out-trees rooted at the front jobs

» Algorithm: run front jobs v at a rate proportional to the total
weight w(T(v)) of jobs in v's tree T(v)

Theorem (Jager & Warode 2024). This algorithm is 2-competitive.

» Prediction: the total weight w(T(v)) of successors of job v in T

Theorem. The time sharing framework is O(min{2 + 7, w }-competitive.
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Summary and Outlook

This talk
» Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

» Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ¢; error, and more

Outlook:

» More sophisticated technigies to leverage imperfect predictions

» Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy

(mechanism design), etc.

» Minimalistic, parsimonious predictions
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