
Algorithms with Predictions
Learning-Augmented Algorithms for Scheduling Problems

Nicole Megow

Faculty of Mathematics and Computer Science
University of Bremen

CO@Work 2024, Berlin

Optimziation under Uncertain Inputs

Different models for uncertain input

Online
Information

Stochastic
Information

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

1

Optimziation under Uncertain Inputs

Different models for uncertain input

Online
Information

Stochastic
Information

Uncertainty
sets

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

1

Optimziation under Uncertain Inputs

Different models for uncertain input

Online
Information

Stochastic
Information

Uncertainty
sets

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

1

Optimziation under Uncertain Inputs

Different models for uncertain input

Online
Information

Stochastic
Information

Predictions
(e.g. machine-learned)

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

1

Optimziation under Uncertain Inputs

Different models for uncertain input

Online
Information

Stochastic
Information

Predictions
(e.g. machine-learned)

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

1

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)

▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|

− from h(q) use doubling to find other limit of search interval
(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Motivating Example: Binary Search [Kraska et al. SIGMOD 2018]

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

▶ Binary search: worst-case # queries is Θ(log n)
▶ Prediction: position h(q) of target q

− might be wrong; error η = |h(q) − index(q)|
− from h(q) use doubling to find other limit of search interval

(Θ(log η)) and apply binary search within it (Θ(log η))

Θ(log n) Θ(log η)
predictions

2

Learning-Augmented Algorithms
▶ Assume access to predictions (e.g. ML)
▶ Prediction is imperfect
▶ No information about their quality

© Adobe Stock

Desired algorithm properties
▶ Consistency: better than worst case if the prediction errors are small
▶ Robustness: bounded worst case for arbitrary predictions
▶ Error-dependency: graceful degradation with the error

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al.
(SIGMOD 2018)] − became an extremely vibrant area

3

Learning-Augmented Algorithms
▶ Assume access to predictions (e.g. ML)
▶ Prediction is imperfect
▶ No information about their quality

© Adobe Stock

Desired algorithm properties
▶ Consistency: better than worst case if the prediction errors are small
▶ Robustness: bounded worst case for arbitrary predictions
▶ Error-dependency: graceful degradation with the error

prediction quality

wo
rs

t-
ca

se
pe

rfo
rm

.

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al.
(SIGMOD 2018)] − became an extremely vibrant area

3

Learning-Augmented Algorithms
▶ Assume access to predictions (e.g. ML)
▶ Prediction is imperfect
▶ No information about their quality

© Adobe Stock

Desired algorithm properties
▶ Consistency: better than worst case if the prediction errors are small
▶ Robustness: bounded worst case for arbitrary predictions
▶ Error-dependency: graceful degradation with the error

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al.
(SIGMOD 2018)] − became an extremely vibrant area

3

Paper Repository https://algorithms-with-predictions.github.io/

hosted by Alex Lindermayr and M.

4

https://algorithms-with-predictions.github.io/

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj

∑
j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) w1

p1
≥ . . . ≥ wn

pn
(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

5

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj

∑
j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) w1

p1
≥ . . . ≥ wn

pn
(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

5

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj

∑
j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT)

w1
p1

≥ . . . ≥ wn
pn

(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

5

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj
∑

j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) w1

p1
≥ . . . ≥ wn

pn
(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

5

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj
∑

j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) w1

p1
≥ . . . ≥ wn

pn
(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

5

Min-Sum Scheduling
Input: set of jobs with processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj
∑

j wjCj

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) w1

p1
≥ . . . ≥ wn

pn
(WSPT)

Unrelated machines (R|rj , pmtn|
∑

wjCj): 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)
5

Non-Clairvoyant Min-Sum Scheduling

Processing times are unknown.
We cannot expect to find the optimal solution.

Competitive analysis (worst-case analysis)
An online algorithm is ρ-competitive if it achieves, for any input instance,
a solution of cost within a factor ρ of the optimal cost:

Alg(I) ≤ ρ · Opt(I), for any input I.

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ca CeCb Cd

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]

▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ca CeCb Cd

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]

▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]

▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.

C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj

= 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Proof. Let p1 ≤ p2 ≤ . . . ≤ pn.
C1 = n · p1

C2= n · p1 + (n − 1) · (p2 − p1) = p1 + (n − 1) · p2

C3= n · p1 + (n − 1) · (p2 − p1) + (n − 2) · (p3 − p2 − p1) ≤ p1 + p2 + (n − 2) · p3

. . .
n∑

j=1
Cj ≤

n∑
j=1

(∑j−1
ℓ=1 pℓ + (n − j + 1) · pj

)

=
n−1∑
j=1

(n − j) · pj +
n∑

j=1
(n − j + 1) · pj

≤ 2 ·
n∑

j=1
(n − j + 1) · pj = 2 · SPT

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]
▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]
▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)

[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing
∑

j Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ce Ca Cb Cd

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]

▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

6

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Prediction Model

Predict job lengths yj [Kumar, Purohit, Svitkina, NIPS 2018]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

i=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma
SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1

Consistent but not robust (against bad predictions).

7

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]

Input:
− prediction-clairvoyant alg. AC (“follow the prediction”) with some

error-dependent competitive ratio
− non-clairvoyant alg. AN with error-independent competitive ratio
− confidence parameter λ ∈ (0, 1)

Preferential Time Sharing (λ, AC , AN): run both AC and AN

AC AN AC AN AC AN AC AN AC AN

(1 − λ) λ

AC

AN

(1 − λ)

λ

Motivation: AC gives consistency, AN gives robustness, trade-off by λ

Analysis: slowed down execution by factors 1
1−λ resp. 1

λ

8

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]

Input:
− prediction-clairvoyant alg. AC (“follow the prediction”) with some

error-dependent competitive ratio
− non-clairvoyant alg. AN with error-independent competitive ratio
− confidence parameter λ ∈ (0, 1)

Preferential Time Sharing (λ, AC , AN): run both AC and AN

AC AN AC AN AC AN AC AN AC AN

(1 − λ) λ

AC

AN

(1 − λ)

λ

Motivation: AC gives consistency, AN gives robustness, trade-off by λ

Analysis: slowed down execution by factors 1
1−λ resp. 1

λ

8

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]

Input:
− prediction-clairvoyant alg. AC (“follow the prediction”) with some

error-dependent competitive ratio
− non-clairvoyant alg. AN with error-independent competitive ratio
− confidence parameter λ ∈ (0, 1)

Preferential Time Sharing (λ, AC , AN): run both AC and AN

AC AN AC AN AC AN AC AN AC AN

(1 − λ) λ

AC

AN

(1 − λ)

λ

Motivation: AC gives consistency, AN gives robustness, trade-off by λ

Analysis: slowed down execution by factors 1
1−λ resp. 1

λ

8

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(
α + η

Opt
)
-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive
ratio of min{ 1

1−λ(1 + n·ℓ1
Opt), 2

λ}, for λ ∈ (0, 1).

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ large

9

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(
α + η

Opt
)
-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive
ratio of min{ 1

1−λ(1 + n·ℓ1
Opt), 2

λ}, for λ ∈ (0, 1).

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ large

9

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(
α + η

Opt
)
-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive
ratio of min{ 1

1−λ(1 + n·ℓ1
Opt), 2

λ}, for λ ∈ (0, 1).

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error η/Opt

co
m

p.
ra

tio

λ large

9

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

Roadmap
1. develop monotone prediction-clairvoyant alg. AC and

error-dependent competitive ratio
2. select a monotone non-clairvoyant algorithm AN

▶ Proving error-dependent bounds seems difficult with ℓ1-error
(linear error vs. quadratic objective)
→ alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

▶ Do we really need to predict all the job lengths?

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

Roadmap
1. develop monotone prediction-clairvoyant alg. AC and

error-dependent competitive ratio
2. select a monotone non-clairvoyant algorithm AN

▶ Proving error-dependent bounds seems difficult with ℓ1-error
(linear error vs. quadratic objective)

→ alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

▶ Do we really need to predict all the job lengths?

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

Roadmap
1. develop monotone prediction-clairvoyant alg. AC and

error-dependent competitive ratio
2. select a monotone non-clairvoyant algorithm AN

▶ Proving error-dependent bounds seems difficult with ℓ1-error
(linear error vs. quadratic objective)
→ alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

▶ Do we really need to predict all the job lengths?

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

Roadmap
1. develop monotone prediction-clairvoyant alg. AC and

error-dependent competitive ratio
2. select a monotone non-clairvoyant algorithm AN

▶ Proving error-dependent bounds seems difficult with ℓ1-error
(linear error vs. quadratic objective)
→ alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

▶ Do we really need to predict all the job lengths?

10

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

Motivation: knowing WSPT order is often sufficient for good approximations:
− optimal for 1|(pmtn)|

∑
wjCj [Smith 1956]

− 2-competitive for P|rj , pmtn|
∑

wjCj [M. & Schulz 2004]

− 5.83-competitive for R|rj , pmtn|
∑

wjCj [Lindermayr & M. 2022]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).
▶ ηS captures structure instead of irrelevant numerical values.

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).
▶ ηS captures structure instead of irrelevant numerical values.

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).
▶ ηS captures structure instead of irrelevant numerical values.

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).

▶ ηS captures structure instead of irrelevant numerical values.

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).
▶ ηS captures structure instead of irrelevant numerical values.

11

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

1. prediction-clairvoyant AC : WSPT (optimal) [Smith56]

Schedule jobs in WSPT orderSchedule jobs in predicted order
3 4 2 1 1

2. non-clairvoyant AN : WRR (2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

(
1 + ηS

Opt

)
,

2
λ

}

WSPT order also useful for more general scheduling settings.

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

1. prediction-clairvoyant AC : WSPT (optimal) [Smith56]

Schedule jobs in WSPT orderSchedule jobs in predicted order
3 4 2 1 1

2. non-clairvoyant AN : WRR (2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

(
1 + ηS

Opt

)
,

2
λ

}

WSPT order also useful for more general scheduling settings.

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

1. prediction-clairvoyant AC : WSPT (optimal) [Smith56]

Schedule jobs in WSPT orderSchedule jobs in predicted order
3 4 2 1 1

2. non-clairvoyant AN : WRR (2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

(
1 + ηS

Opt

)
,

2
λ

}

WSPT order also useful for more general scheduling settings.

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

1. prediction-clairvoyant AC : WSPT (optimal) [Smith56]

Schedule jobs in WSPT orderSchedule jobs in predicted order
3 4 2 1 1

2. non-clairvoyant AN : WRR (2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

(
1 + ηS

Opt

)
,

2
λ

}

WSPT order also useful for more general scheduling settings.

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

1. prediction-clairvoyant AC : WSPT (optimal) [Smith56]

Schedule jobs in WSPT orderSchedule jobs in predicted order
3 4 2 1 1

2. non-clairvoyant AN : WRR (2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

(
1 + ηS

Opt

)
,

2
λ

}

WSPT order also useful for more general scheduling settings.

12

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Identical Machines

PTS for multiple machines and release dates P|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC : P-WSPT (2-competitive) [M., Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order

schedule m first jobs

2. non-clairvoyant AN : WDEQ (3-competitive) [Beaumont et al. 2012]

min
{

1
1 − λ

(
2 + ηS

m · Opt

)
,

3
λ

}

13

Scheduling on Unrelated Machines

PTS on unrelated machines R|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC :

Known algorithms may not always work!
→ prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN : Proportional Fairness (4.62-competitive)
[Lindermayr, M., Jäger 2024]

14

Scheduling on Unrelated Machines

PTS on unrelated machines R|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC :

Known algorithms may not always work!
→ prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN : Proportional Fairness (4.62-competitive)
[Lindermayr, M., Jäger 2024]

14

Scheduling on Unrelated Machines

PTS on unrelated machines R|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC :

Known algorithms may not always work!
→ prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN : Proportional Fairness (4.62-competitive)
[Lindermayr, M., Jäger 2024]

14

Scheduling on Unrelated Machines

PTS on unrelated machines R|rj , pmtn|
∑

wjCj

1. prediction-clairvoyant AC :

Known algorithms may not always work!
→ prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN : Proportional Fairness (4.62-competitive)
[Lindermayr, M., Jäger 2024]

14

Sensitivity Experiments

▶ Single machine, unweighted jobs
▶ Synthetic instances sampled from Pareto-distribution with shape 1.1

Many small jobs and few very large jobs! (common)

0 100 101 102 103 104

Noise parameter

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

PTS (= 0.1)
PTS (= 0.66)
TwoStage (= 0.1)
TwoStage (= 0.66)

MultiStage (= 0.25)
MultiStage (= 10.0)
Round-Robin

15

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1

2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2

n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2

n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1

3 • • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3

• • • n − 2 n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2

n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2

n
∑n

j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n

∑n
j=1 wjCj = nn − 2 n 1 2 n − 1 3 • • •

∑n
j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = n

n − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = n

n − 2 n 1 2 n − 1 3 • • •

∑n
j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = n

n − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Online Precedence Constraints (min ∑
j wjCj)

▶ We “see” only jobs without
unfinished predecessors

▶ Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Ω(n)!

1

2

3
•
•
•

n − 2
wi = 0

wn−1 = 0
n − 1

wn = 1
n

1 2 n − 1 3 • • • n − 2 n
∑n

j=1 wjCj = n

n − 2 n 1 2 n − 1 3 • • •
∑n

j=1 wjCj = 2

16

Full Input Prediction – PTS Framework
[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs

1. “Follow-the-Prediction” is (1 + η)-competitive (η permutation error)
2. Robustness via Round Robin for front jobs: ω-competitive (ω width)

1

2

3

Initial front jobs

Hidden successors of job 1

Theorem. Preferential Time Sharing is O(min{1 + η, ω})-competitive.

17

Full Input Prediction – PTS Framework
[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 + η)-competitive (η permutation error)

2. Robustness via Round Robin for front jobs: ω-competitive (ω width)

1

2

3

Initial front jobs

Hidden successors of job 1

Theorem. Preferential Time Sharing is O(min{1 + η, ω})-competitive.

17

Full Input Prediction – PTS Framework
[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 + η)-competitive (η permutation error)
2. Robustness via Round Robin for front jobs: ω-competitive (ω width)

1

2

3

Initial front jobs

Hidden successors of job 1

Theorem. Preferential Time Sharing is O(min{1 + η, ω})-competitive.

17

Full Input Prediction – PTS Framework
[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 + η)-competitive (η permutation error)
2. Robustness via Round Robin for front jobs: ω-competitive (ω width)

1

2

3

Initial front jobs

Hidden successors of job 1

Theorem. Preferential Time Sharing is O(min{1 + η, ω})-competitive.
17

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.

18

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.

18

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.

18

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.

18

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.

18

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?
→ exact information!

Full input

Total successor weight

Weight order

Avg. successor weight

Static Adaptive Static Adaptive

Static Adaptive

... results for different topologies – not today.
18

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs
▶ Algorithm: run front jobs v at a rate proportional to the total

weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

initial front jobs

hidden successors of job 1

▶ Prediction: the total weight w(T (v)) of successors of job v in T
Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs

▶ Algorithm: run front jobs v at a rate proportional to the total
weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

▶ Prediction: the total weight w(T (v)) of successors of job v in T
Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs
▶ Algorithm: run front jobs v at a rate proportional to the total

weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

▶ Prediction: the total weight w(T (v)) of successors of job v in T
Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs
▶ Algorithm: run front jobs v at a rate proportional to the total

weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

▶ Prediction: the total weight w(T (v)) of successors of job v in T
Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs
▶ Algorithm: run front jobs v at a rate proportional to the total

weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

▶ Prediction: the total weight w(T (v)) of successors of job v in T

Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Weight Prediction based on Graph Decomposition
[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs
▶ Algorithm: run front jobs v at a rate proportional to the total

weight w(T (v)) of jobs in v ’s tree T (v)

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

1

2

3

▶ Prediction: the total weight w(T (v)) of successors of job v in T
Theorem. The time sharing framework is O(min{2 + η, ω}-competitive.

19

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:

▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions

20

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:

▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions

20

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:

▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions

20

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:
▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions

20

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:
▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions

20

Summary and Outlook
This talk
▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework
admits (blackbox) algorithms with error-dependent performance guarantee

▶ Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ℓ1 error, and more

Outlook:
▶ More sophisticated techniqies to leverage imperfect predictions

▶ Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy
(mechanism design), etc.

▶ Minimalistic, parsimonious predictions
20

