Algorithms with Predictions
Learning-Augmented Algorithms for Scheduling Problems

Nicole Megow

Faculty of Mathematics and Computer Science
University of Bremen

CO@Work 2024, Berlin

Optimziation under Uncertain Inputs

Optimziation under Uncertain Inputs

Different models for uncertain input

Online Stochastic Uncertainty
Information Information sets

fx) y /&‘F—
w2 A 1 4

t time _V

X

Optimziation under Uncertain Inputs

Different models for uncertain input

Online Stochastic Uncertainty
Information Information sets

f(x) 6 \|%_

m 7 .:. JT \

t time . _%/;k

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Optimziation under Uncertain Inputs

Different models for uncertain input

Online Stochastic Predictions
Information Information (e.g. machine-learned)
fx) 9
t time '

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Optimziation under Uncertain Inputs

Different models for uncertain input

Online Stochastic Predictions
Information Information (e.g. machine-learned)
fx) 9
t time '

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

63‘

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40 46‘49‘50‘53‘54‘56‘59‘60

63‘

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16 25‘30‘36‘40 46‘49‘50‘53‘54‘56‘59‘60

63‘

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

46‘49‘50‘53‘54‘56‘59‘60

63‘

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

46‘49‘50‘53‘54‘56‘59‘60

63‘

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

46‘49‘50‘53‘54‘56‘59‘60

63‘

» Binary search: worst-case # queries is ©(log n)

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

63‘

> Binary search: worst-case # queries is ©(log n)

» Prediction: position h(q) of target g

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

63‘

» Binary search: worst-case # queries is ©(log n)

» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

63‘

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

n 25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

—7 _A

63‘

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements
AN\

n d - Rl 25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59‘60

63‘

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56‘59

> Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53‘54‘56

W

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements
‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43‘46‘49‘50‘53

S

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11‘14‘16‘18‘25‘30‘36‘40‘43

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

‘8‘11 16‘18‘25‘30‘36‘40‘43

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

» Binary search: worst-case # queries is ©(log n)
» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|

— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

» Binary search: worst-case # queries is ©(log n)

» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|
— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

Motivating Example: Binary Search [kraska et al. siGMOD 2018]

n elements

» Binary search: worst-case # queries is ©(log n)

» Prediction: position h(q) of target g
— might be wrong; error n = |h(q) — index(q)|
— from h(q) use doubling to find other limit of search interval
(©(logn)) and apply binary search within it (©(logn))

predictions

O(log n)

A 4

O(logn)

Learning-Augmented Algorithms

» Assume access to predictions (e.g. ML)

» Prediction is imperfect

» No information about their quality

© Adobe Stock

Learning-Augmented Algorithms

» Assume access to predictions (e.g. ML)
» Prediction is imperfect

» No information about their quality

© Adobe Stock

Desired algorithm properties

» Consistency: better than worst case if the prediction errors are small

» Robustness: bounded worst case for arbitrary predictions

» Error-dependency: graceful degradation with the error

worst-case perform .

prediction quality

Learning-Augmented Algorithms

» Assume access to predictions (e.g. ML)
» Prediction is imperfect

» No information about their quality

© Adobe Stock

Desired algorithm properties

» Consistency: better than worst case if the prediction errors are small

» Robustness: bounded worst case for arbitrary predictions

» Error-dependency: graceful degradation with the error

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al.
(SIGMOD 2018)] — became an extremely vibrant area

Pa per Repository https://algorithms-with-predictions.github.io/

Algorithms with PrediCtions ~ PAPERLIST FURTHERMATERIAL HOWTO CONTRIBUTE ABOUT

07 09 0 17 M8 19 0 ;M 2w

Newestfirst ~ 214 papers

Balkans, Glatzehs, Shahk R

Lechowier i Sasni, Haesmat, Wieman, Shency (s 24) (D) D)

dict Purohi

Angeopouos, our, ke Lot (w24 (D) QDD

Learning-eugmented Maximum Independent Set Braverman, Dharangute, Shah, Weng ani 24

Berg,Boyar, Favnold, Larsen (v 24) (@)

Online Lead Time Quotaton wthPradicions o, Tanming Cheuna,Wang O (D) (I CHIITITD CID CZID

Learning-Augmented Priorty Queues Benomar, Coester

Warmystarting PushRelabel Davies, Vassilitski, Wang
Online Classification with Predictions Raman, Tewari

Equilbria in multiagent online problems with predictions

argorescs Lin, Song (021) (D D) D) D

tsate,Bonchis Boodn (a0 24 () (D CID

Onlne bipstte matcing with mpefect advie Choo,Goulesis g, shetacrans ¢ (D) (D) G €I

peF

“warm start”

PONTRSRNETEO v - X i)

srinivas, Blum (arkiv 24

D CD

NomclaioyantScheduling wth Partal Pradictons Sencmar perchet (a7, 2+ (D) (G CEED
GostOrien Data Replication with Predictons Zuo,Tong Lee w0 4 (D) (I CID

MAC Advice for Fcilty Locaton Mechanism Design Gara, Gupta, TalgarCohen i facilty location 3 mechanism design

s Kopla, Mansour Moron () (LD (D CID CTID

ToTrust or Not to

Energy-Efcient Scheduling with Predctions Balkansk, PervirSten. vl (321 (D) €D CIIED)

MaxcCutwith -Accurate Predictions Cohen-Addd, d0rs Gupa, Le,Panigahi ks 24

TS

prorrelated work

-

hosted by Alex Lindermayr and M.

https://algorithms-with-predictions.github.io/

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Goal: schedule jobs (preemptively) on a single machine
5 2 3

Objective: Minimize sum of completion times 3_; C;

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Goal: schedule jobs (preemptively) on a single machine

G G I G Cs

G
Objective: Minimize sum of completion times 3_; C;

Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT)

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Goal: schedule jobs (preemptively) on a single machine

G G I G Cs

G
Objective: Minimize sum of completion times 3_; C; > i wi G

Optimal Schedule: [Smith 1956]

Shortest Processing Time first (SPT) o2t (WSPT)

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Goal: schedule jobs (preemptively) on a single machine

G G I G Cs

G
Objective: Minimize sum of completion times 3_; C; > i wi G
Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) o2t (WSPT)

Unrelated machines (R|rj, pmtn|Y_ w;C;): 1.99-approximation [im, Li 2016]

Min-Sum Scheduling

Input: set of jobs with processing requirements p;

Goal: schedule jobs (preemptively) on a single machine

G G I G Cs

G
Objective: Minimize sum of completion times 3_; C; > i wi G
Optimal Schedule: [Smith 1956]
Shortest Processing Time first (SPT) o2t (WSPT)

Unrelated machines (R|rj, pmtn|Y_ w;C;): 1.99-approximation [im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)

Non-Clairvoyant Min-Sum Scheduling

Processing times are unknown.

We cannot expect to find the optimal solution.

Competitive analysis (worst-case analysis)

An online algorithm is p-competitive if it achieves, for any input instance,
a solution of cost within a factor p of the optimal cost:

Avrg(l) < p-Opx(l), for any input /.

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

DN N

CC Ca Ce Cb Cd

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.
C1:n-p1

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Ce G G Cyq

C1:n-p1
G=n-p+(n-1)(po—p)=p+(n—1)-p2

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Ce C G Cyq
C1:n-p1
G=n-p+(n-1)(po—p)=p+(n—1)-p2

G=n-p+(n=1)-(p2=p1)+(n=2)(ps—p2—p1) <pr+p2+(n—2)ps

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Ce G G Cyq

C1:n-p1
G=n-p+(n-1)(po—p)=p+(n—1)-p2
G=n-p+(n=1)-(p2=p1)+(n=2)(ps—p2—p1) <pr+p2+(n—2)ps

n n

quz(i:ipe+(n—j+1)-p,-)

j=t j=t

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Ce G G Cyq

C1:n-p1
G=n-p+(n-1)(po—p)=p+(n—1)-p2
G=n-p+(n=1)-(p2=p1)+(n=2)(ps—p2—p1) <pr+p2+(n—2)ps

G< (Pe+("—j+1)'Pj)
j=1 =1
Z n

—j+1)-p

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Ce
Proof. Let p1 < p» < ... < pn.

Ce G G Cyq

C1:n-p1
G=n-p+(n-1)(po—p)=p+(n—1)-p2
G=n-p+(n=1)-(p2=p1)+(n=2)(ps—p2—p1) <pr+p2+(n—2)ps

G<

j=t j=t

Pe+("—j+1)'Pj)

—j+1)-pj=2-SPT O

(>
Z:n

Non-Clairvoyant Min-Sum Scheduling

Round-Robin (RR) is 2-competitive for minimizing >=; C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

CC Ce Ca Cb Cd

Further Time-Sharing algorithms for more general problems:

» Individual job weights: \Weighted Round-Robin (2-competitive)
[Kim, Chwa 2003]

» Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

» Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.)
[Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jager 2024]

Prediction Model

Prediction Model

Predict job lengths y; [Kumar, Purohit, Svitkina, NIPS 2018]

ok e B
wl] fen B | EEl tr-error

Prediction Model

Predict job lengths y; [Kumar, Purohit, Svitkina, NIPS 2018]

poom B e
EEEE T Il R—

Error: {1 =3 _1|pj — jl

Prediction Model

Predict job lengths y; [Kumar, Purohit, Svitkina, NIPS 2018]

p1 P2 . _ -
nl] v B AN EE fr-error
Error: {1 =3 _1|pj — jl

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Prediction Model

Predict job lengths Y [Kumar, Purohit, Svitkina, NIPS 2018]

poom B e
EEEE T Il R—

Error: {1 =3 _1|pj — jl

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma

SPF achieves scheduling cost SPF(y;, pj) < OpT(p;) +n- 41

Prediction Model

Predict job lengths Y [Kumar, Purohit, Svitkina, NIPS 2018]

poom B e
EEEE T Il R—

Error: {1 =3 _1|pj — jl

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”)

Lemma

SPF achieves scheduling cost SPF(y;, pj) < OpT(p;) +n- 41

Consistent but not robust (against bad predictions).

Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]
Input:
— prediction-clairvoyant alg. .A“ (“follow the prediction”) with some

error-dependent competitive ratio
— non-clairvoyant alg. A" with error-independent competitive ratio

— confidence parameter A € (0,1)

Preferential Time Sharing (), A, AV): run both A€ and AN

Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]
Input:

— prediction-clairvoyant alg. A (“follow the prediction”) with some
error-dependent competitive ratio

— non-clairvoyant alg. A" with error-independent competitive ratio

— confidence parameter A € (0,1)

Preferential Time Sharing (), A, AV): run both A€ and AN

(1-A
A

Motivation: A gives consistency, A" gives robustness, trade-off by A

Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018], [Lindermayr, M. 2022]
Input:

— prediction-clairvoyant alg. .A“ (“follow the prediction”) with some
error-dependent competitive ratio

— non-clairvoyant alg. A" with error-independent competitive ratio

— confidence parameter A € (0,1)

Preferential Time Sharing (), A, AV): run both A€ and AN

(1-A
A

Motivation: A gives consistency, A" gives robustness, trade-off by A

- ; 1 1
Analysis: slowed down execution by factors ;= resp.

Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

PTS(A, A, A") has competitive ratio min {ﬁ ()) X}' if
> is monotone and ()—competitive and

> is monotone and //-competitive.

Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

PTS(A, A, A") has competitive ratio min {ﬁ () , X}' if
> is monotone and ()—competitive and
> is monotone and //-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive

ratio of min{X;(1 + 6';111), 2} for A € (0,1).

Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018] [Lindermayr, M. 2022]

PTS(A, A, A") has competitive ratio min {ﬁ () , X}' if
> is monotone and ()—competitive and
> is monotone and //-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive

ratio of min{X;(1 + 6';111), 2} for A € (0,1).

A small A large

comp. ratio
N w
comp. ratio
Now

0 2 4 0 2 4
rel. error /OPT rel. error n/OPT

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

» Proving error-dependent bounds seems difficult with ¢1-error
(linear error vs. quadratic objective)

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

» Proving error-dependent bounds seems difficult with ¢1-error
(linear error vs. quadratic objective)
— alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

10

Powerful Framework?!

Yes, works for more general scheduling problems [Lindermayr, M. 2022]

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

» Proving error-dependent bounds seems difficult with ¢1-error
(linear error vs. quadratic objective)
— alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

» Do we really need to predict all the job lengths?

10

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

Motivation: knowing WSPT order is often sufficient for good approximations:
— optimal for 1|(pmtn)|>_ w;C; [Smith 1956]
— 2-competitive for P|r;, pmtn|y_ w;C; [M. & Schulz 2004]
— 5.83-competitive for R|r;, pmtn|d_ w; G [Lindermayr & M. 2022]

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

P1 P2 P3| (W)SPT order p3 < p1 < p2
Y1 y2

}Indicate correct order y3 < y; < y», but f1,v >0
1 Y2

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

p1 P2 P3 (W)SPT order p3 < p1 < p2
Y1 Y2 y3

Indicate correct order y3 < y3 < y», but £1,v >0
Y1 Y2 ¥3

Error measure: quantifies effect of inversions Z between & and true
WSPT order on list scheduling according to predicted order:

n° = > (wipj — wp;)
(ij)eT

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

p1 P2 P3 (W)SPT order p3 < p1 < p2
Y1 Y2 y3

Indicate correct order y3 < y3 < y», but £1,v >0
Y1 Y2 ¥3

Error measure: quantifies effect of inversions Z between & and true
WSPT order on list scheduling according to predicted order:

n° = > (wipj — wp;)
(ij)eT

> For 1|3 w; G this is exactly n° = Op1(6) — OPT(0).

11

Permutation Predictions Lindermayr and M. 2022

Permutation predictions: predict an order of jobs: & : [n] — [n]

p1 P2 P3 (W)SPT order p3 < p1 < p2
Y1 Y2 y3

Indicate correct order y3 < y3 < y», but £1,v >0
Y1 Y2 ¥3

Error measure: quantifies effect of inversions Z between & and true
WSPT order on list scheduling according to predicted order:

n° = > (wipj — wp;)
(ij)eT

> For 1|3 w; G this is exactly n° = Op1(6) — OPT(0).

» 1 captures structure instead of irrelevant numerical values.

11

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|>° w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in WSPT order

\

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|>° w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in predicted order

\

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|>° w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in predicted order

\

2. non-clairvoyant AN: (2-competitive) [Kim, Chwa 2003]

12

Scheduling on a Single Machine

for weighted jobs on a single machine 1|pmtn|>" w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in predicted order

[3+

2. non-clairvoyant AN: (2-competitive) [Kim, Chwa 2003]

12

Scheduling on a Single Machine

PTS for weighted jobs on a single machine 1|pmtn|>° w;C;

1. prediction-clairvoyant A¢: (optimal) [Smith56]

Schedule jobs in predicted order

|
2. non-clairvoyant AN: (2-competitive) [Kim, Chwa 2003]
. 1 n°
mm{l—)\ (+ OPT) ’)\}
WSPT order also useful for more general scheduling settings.

12

Scheduling on ldentical Machines

for multiple machines and release dates P|r;, pmtn|3_ w;C;

1. prediction-clairvoyant A¢: (2-competitive) [M., Schulz 2004]

at any time

13

Scheduling on ldentical Machines

PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]
unfinished released jobs in WSPT order

N

at any time

13

Scheduling on ldentical Machines

PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]
unfinished released jobs in WSPT order

~

: schedule m first jobs
3 :‘:

at any time

N

13

Scheduling on ldentical Machines

PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in predicted order

~

: schedule m first jobs
3 :‘:

at any time

N

13

Scheduling on ldentical Machines

PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in predicted order

~

: schedule m first jobs
3 :‘:

at any time

N

2. non-clairvoyant AN: WDEQ (3-competitive) [Beaumont et al. 2012]

13

Scheduling on ldentical Machines

PTS for multiple machines and release dates P|r;, pmtn|> w;C;

1. prediction-clairvoyant A¢: P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in predicted order

~

: schedule m first jobs
3 :‘:

at any time

N

2. non-clairvoyant AN: WDEQ (3-competitive) [Beaumont et al. 2012]

. 1 n° 3
m'”{l—A<2+m-0pT>’X}

13

Scheduling on Unrelated Machines

on unrelated machines R|r;, pmtn|> w;C;

14

Scheduling on Unrelated Machines

on unrelated machines R|r;, pmtn|> w;C;

1. prediction-clairvoyant A€

Known algorithms may not always work!
— prove error-dependent competitive ratio for alg. that trusts the prediction

14

Scheduling on Unrelated Machines

on unrelated machines R|r;, pmtn|> w;C;

1. prediction-clairvoyant A€

Known algorithms may not always work!
— prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

14

Scheduling on Unrelated Machines

on unrelated machines R|r;, pmtn|> w;C;

1. prediction-clairvoyant A€

Known algorithms may not always work!

— prove error-dependent competitive ratio for alg. that trusts the prediction
We can design such algorithm, but it is worse than the
non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant AN: (4.62-competitive)
[Lindermayr, M., Jager 2024]

14

Sensitivity Experiments

» Single machine, unweighted jobs

» Synthetic instances sampled from Pareto-distribution with shape 1.1
Many small jobs and few very large jobs! (common)

4.5
= PTS (A =0.1) ===+ MultiStage (¢ = 0.25)

o 40 == PTS (A = 0.66) === MultiStage (¢ = 10.0)
R IR TwoStage A\ = 0.1) Round-Robin
; 3.5 === TwoStage (\ = 0.66)
2
k=]
T 3.0
Q
g 2.5 I3 P = PR ORY P D hegdnipia - [P TRV Nt LT
82 {-\-l*v TSP PSS Y Lo Ao i ;;}T"\.‘mv\’\
© -~
2 2.0 .
a
£ 15

1.0 4

T T T T T T
0 100 10 102 103 104
Noise parameter w

Online Precedence Constraints (min 3; w;G)

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

16

Online Precedence Constraints (min 3; w;G)

1
> We “see” only jobs without
unfinished predecessors 2
3
n—2

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

16

Online Precedence Constraints (min 3; w;G)

1

> We “see” only jobs without >). n—1
2

unfinished predecessors W, 1=0

» Jobs are revealed once their
predecessors have completed

Online Precedence Constraints (min 3; w;G)

1

> We “see” only jobs without >3). n—1
2

unfinished predecessors W, 1=0

» Jobs are revealed once their
predecessors have completed

—
N

Online Precedence Constraints (min 3; w;G)

1

> We “see” only jobs without >. n—1
unfinished predecessors 2 Wp_1=0
» Jobs are revealed once their 30
predecessors have completed R
n—2®
w; =0

Online Precedence Constraints (min 3; w;G)

1

> We “see” only jobs without >. n—1
unfinished predecessors 2 Wp_1=0
» Jobs are revealed once their 30
predecessors have completed R
n—2®
w; =0

N

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without >. n—1
unfinished predecessors 2 Wp_1=0
» Jobs are revealed once their 30
predecessors have completed R
n—2@——— 0 n
w; =0 w, =

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without >. n—1
unfinished predecessors 2

» Jobs are revealed once their
predecessors have completed

Wp-1 =0

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without >. n—1
unfinished predecessors 2

» Jobs are revealed once their
predecessors have completed

Wp-1 =0

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without >. n—1
unfinished predecessors 2 Wp_1=0
» Jobs are revealed once their 30
predecessors have completed R
n—2@——— 0 n
w; =0 w, =

[y

B - -

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

[y

: n

a [

Wp-1 =0

16

Online Precedence Constraints (min 3; w;G)

> We “see” only jobs without
unfinished predecessors

» Jobs are revealed once their
predecessors have completed

Any online algorithm has a
competitive ratio Q(n)!

: n

[y

a [

Wp_1 = 0

16

Full Input Prediction — PTS Framework

[Lassota, Lindermayr, M., Schléter, ICML 2023]

Predict the full instance or a permutation of jobs

17

Full Input Prediction — PTS Framework

[Lassota, Lindermayr, M., Schléter, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 4 n)-competitive (1 permutation error)

17

Full Input Prediction — PTS Framework

[Lassota, Lindermayr, M., Schlster, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 4 n)-competitive (1 permutation error)
2. Robustness via Round Robin for front jobs: w-competitive (w width)

Hidden successors of job 1

Initial front jobs

17

Full Input Prediction — PTS Framework

[Lassota, Lindermayr, M., Schlster, ICML 2023]

Predict the full instance or a permutation of jobs
1. “Follow-the-Prediction” is (1 4 n)-competitive (1 permutation error)
2. Robustness via Round Robin for front jobs: w-competitive (w width)

Hidden successors of job 1

Initial front jobs

Theorem. Preferential Time Sharing is O(min{1 + n, w})-competitive.

17

Minimalistic Input Prediction

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Hidden successors of job 1

18

Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input

18

Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input

Total successor weight Avg. successor weight

18

Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input

Total successor weight Avg. successor weight

Weight order

18

Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input
Total successor weight Avg. successor weight
Static Adaptive Stamptive

Weight order

Static Adaptive

18

Minimalistic Input Prediction

Hidden successors of job 1

What additional information is needed
to improve upon lower bound?

— exact information!

Initial front jobs

Full input
Total successor weight Avg. successor weight
Static Adaptive Static Adaptive
Weight order
Static Adaptive

. results for different topologies — not today.
18

Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

hldden successors of job 1

initial front jobs

19

Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

» Decompose DAG G into out-trees rooted at the front jobs

19

Weight Prediction based on Graph Decomposition
[Jager & Warode, 2024]
» Decompose DAG G into out-trees rooted at the front jobs

» Algorithm: run front jobs v at a rate proportional to the total
weight w(T(v)) of jobs in v's tree T(v)

19

Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

» Decompose DAG G into out-trees rooted at the front jobs

» Algorithm: run front jobs v at a rate proportional to the total
weight w(T(v)) of jobs in v's tree T(v)

Theorem (Jager & Warode 2024). This algorithm is 2-competitive.

19

Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

» Decompose DAG G into out-trees rooted at the front jobs

» Algorithm: run front jobs v at a rate proportional to the total
weight w(T(v)) of jobs in v's tree T(v)

Theorem (Jager & Warode 2024). This algorithm is 2-competitive.

» Prediction: the total weight w(T(v)) of successors of job v in T

19

Weight Prediction based on Graph Decomposition

[Jager & Warode, 2024]

» Decompose DAG G into out-trees rooted at the front jobs

» Algorithm: run front jobs v at a rate proportional to the total
weight w(T(v)) of jobs in v's tree T(v)

Theorem (Jager & Warode 2024). This algorithm is 2-competitive.

» Prediction: the total weight w(T(v)) of successors of job v in T

Theorem. The time sharing framework is O(min{2 + 7, w }-competitive.
19

Summary and Outlook

This talk

» Algorithms with predictions
binary search, scheduling with unknown job sizes, precedences (online)

20

Summary and Outlook

This talk
» Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

20

Summary and Outlook

This talk
» Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

» Prediction models and error measures

predictions: length, permutation, weight decomp.; errors: ¢; error, and more

20

Summary and Outlook

This talk

» Algorithms with predictions
binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

» Prediction models and error measures

predictions: length, permutation, weight decomp.; errors: ¢; error, and more

Outlook:

» More sophisticated technigies to leverage imperfect predictions

20

Summary and Outlook

This talk
» Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

» Prediction models and error measures

predictions: length, permutation, weight decomp.; errors: ¢; error, and more

Outlook:

» More sophisticated technigies to leverage imperfect predictions

» Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy

(mechanism design), etc.

20

Summary and Outlook

This talk
» Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

» Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

» Prediction models and error measures
predictions: length, permutation, weight decomp.; errors: ¢; error, and more

Outlook:

» More sophisticated technigies to leverage imperfect predictions

» Predictions to improve other performance metrics
running time (offline alg.), update time (dynamic alg.), price of anarchy

(mechanism design), etc.

» Minimalistic, parsimonious predictions
20

