Algorithms with Predictions Learning-Augmented Algorithms for Scheduling Problems

Nicole Megow

Faculty of Mathematics and Computer Science University of Bremen

CO@Work 2024, Berlin

Different models for uncertain input

Different models for uncertain input

Different optimization frameworks: online optimization, stochastic optimization, robust optimization, etc.

Different models for uncertain input

Different optimization frameworks: online optimization, stochastic optimization, robust optimization, etc.

Different models for uncertain input

Different optimization frameworks: online optimization, stochastic optimization, robust optimization, etc.

Can imperfect predictions improve rigorous performance guarantees?

n elements

► Binary search: worst-case $#$ queries is $\Theta(\log n)$

- $▶$ Binary search: worst-case $#$ queries is $Θ(log n)$
- \triangleright Prediction: position $h(q)$ of target q

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- ▶ Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

- Binary search: worst-case $\#$ queries is $\Theta(\log n)$
- Prediction: position $h(q)$ of target q
	- $-$ might be wrong; error $\eta = |h(q) \text{index}(q)|$
	- $-$ from $h(q)$ use doubling to find other limit of search interval (Θ(log *η*)) and apply binary search within it (Θ(log *η*))

Learning-Augmented Algorithms

- ▶ Assume access to predictions (e.g. ML)
- ▶ Prediction is imperfect
- ▶ No information about their quality

© Adobe Stock

Learning-Augmented Algorithms

- ▶ Assume access to predictions (e.g. ML)
- ▶ Prediction is imperfect
- \triangleright No information about their quality

© Adobe Stock

Desired algorithm properties

- ▶ Consistency: better than worst case if the prediction errors are small
- ▶ Robustness: bounded worst case for arbitrary predictions
- ▶ Error-dependency: graceful degradation with the error

Learning-Augmented Algorithms

- ▶ Assume access to predictions (e.g. ML)
- ▶ Prediction is imperfect
- \triangleright No information about their quality

© Adobe Stock

Desired algorithm properties

- ▶ Consistency: better than worst case if the prediction errors are small
- ▶ Robustness: bounded worst case for arbitrary predictions
- ▶ Error-dependency: graceful degradation with the error

Line of research (re)initiated by [Lykouris, Vassilvitskii (ICML 2018)], [Kraska et al. $(SIGMOD 2018)$ – became an extremely vibrant area

Paper Repository <https://algorithms-with-predictions.github.io/>

hosted by Alex Lindermayr and M.

Input: set of jobs with processing requirements p_j

Input: set of jobs with processing requirements p_i

Goal: schedule jobs (preemptively) on a single machine

 $\mathbf{Objective:}$ Minimize sum of completion times $\sum_j \mathcal{C}_j$

Input: set of jobs with processing requirements p_i

Goal: schedule jobs (preemptively) on a single machine

 $\mathbf{Objective:}$ Minimize sum of completion times $\sum_j \mathcal{C}_j$

Optimal Schedule: Company of the Schedule: Company of the Schedule: [Smith 1956]

Shortest Processing Time first (SPT)

Input: set of jobs with processing requirements p_i

Goal: schedule jobs (preemptively) on a single machine

 $\mathbf{Objective:}$ Minimize sum of completion times $\sum_j \mathcal{C}_j$ $\sum_j w_j$ Cj **Optimal Schedule: Company of the Schedule: Company of the Schedule: [Smith 1956]** Shortest Processing Time first (SPT) $\frac{w_1}{p_1} \geq \ldots \geq \frac{w_n}{p_n}$ $\frac{w_n}{p_n}$ (WSPT)

Input: set of jobs with processing requirements p_i

Goal: schedule jobs (preemptively) on a single machine

 $\mathbf{Objective:}$ Minimize sum of completion times $\sum_j \mathcal{C}_j$ $\sum_j w_j$ Cj **Optimal Schedule: Company of the Schedule: Company of the Schedule: [Smith 1956]**

Shortest Processing Time first (SPT) $\frac{w_1}{p_1} \geq \ldots \geq \frac{w_n}{p_n}$ $\frac{w_n}{p_n}$ (WSPT)

Unrelated machines $(R | r_j, pmtn| \sum w_j C_j)$: 1.99-approximation [Im, Li 2016]

Input: set of jobs with processing requirements p_i

Goal: schedule jobs (preemptively) on a single machine

 $\mathbf{Objective:}$ Minimize sum of completion times $\sum_j \mathcal{C}_j$ $\sum_j w_j$ Cj **Optimal Schedule: Company of the Schedule: Company of the Schedule: [Smith 1956]** Shortest Processing Time first (SPT) $\frac{w_1}{p_1} \geq \ldots \geq \frac{w_n}{p_n}$ $\frac{w_n}{p_n}$ (WSPT)

Unrelated machines $(R | r_j, pmtn| \sum w_j C_j)$: 1.99-approximation [Im, Li 2016]

Suppose processing times are unknown! (non-clairvoyant scheduling)
Processing times are unknown.

We cannot expect to find the optimal solution.

Competitive analysis (worst-case analysis)

An online algorithm is *ρ*-competitive if it achieves, for any input instance, a solution of cost within a factor *ρ* of the optimal cost:

 $\text{ALG}(I) \leq \rho \cdot \text{OPT}(I)$, for any input I.

Round-Robin (RR) is 2-competitive for minimizing $\sum_j \mathsf{C}_j$ on a single machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Proof. Let $p_1 < p_2 < ... < p_n$.

$$
C_1 = n \cdot p_1
$$

\n
$$
C_2 = n \cdot p_1 + (n - 1) \cdot (p_2 - p_1) = p_1 + (n - 1) \cdot p_2
$$

\n
$$
C_3 = n \cdot p_1 + (n - 1) \cdot (p_2 - p_1) + (n - 2) \cdot (p_3 - p_2 - p_1) \le p_1 + p_2 + (n - 2) \cdot p_3
$$

Proof. Let
$$
p_1 \leq p_2 \leq ... \leq p_n
$$
.
\n
$$
C_c \qquad C_e \qquad C_a \qquad C_b \qquad C_d
$$
\nProof. Let $p_1 \leq p_2 \leq ... \leq p_n$.
\n
$$
C_1 = n \cdot p_1
$$
\n
$$
C_2 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) = p_1 + (n-1) \cdot p_2
$$
\n
$$
C_3 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) + (n-2) \cdot (p_3 - p_2 - p_1) \leq p_1 + p_2 + (n-2) \cdot p_3
$$
\n
$$
\therefore \qquad \sum_{j=1}^n C_j \leq \sum_{j=1}^n \left(\sum_{\ell=1}^{j-1} p_\ell + (n-j+1) \cdot p_j \right)
$$

Proof. Let
$$
p_1 \leq p_2 \leq ... \leq p_n
$$
.
\n $C_1 = n \cdot p_1$
\n $C_2 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) = p_1 + (n-1) \cdot p_2$
\n $C_3 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) + (n-2) \cdot (p_3 - p_2 - p_1) \leq p_1 + p_2 + (n-2) \cdot p_3$
\n...
\n $\sum_{j=1}^n C_j \leq \sum_{j=1}^n \left(\sum_{\ell=1}^{j-1} p_\ell + (n-j+1) \cdot p_j \right)$
\n $\leq 2 \cdot \sum_{j=1}^n (n-j+1) \cdot p_j$

Proof. Let
$$
p_1 \leq p_2 \leq ... \leq p_n
$$
.
\n
$$
C_c \qquad C_e \qquad C_a \qquad C_b \qquad C_d
$$
\nProof. Let $p_1 \leq p_2 \leq ... \leq p_n$.
\n
$$
C_1 = n \cdot p_1
$$
\n
$$
C_2 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) = p_1 + (n-1) \cdot p_2
$$
\n
$$
C_3 = n \cdot p_1 + (n-1) \cdot (p_2 - p_1) + (n-2) \cdot (p_3 - p_2 - p_1) \leq p_1 + p_2 + (n-2) \cdot p_3
$$
\n
$$
\therefore
$$
\n
$$
\sum_{j=1}^n C_j \leq \sum_{j=1}^n \left(\sum_{\ell=1}^{j-1} p_\ell + (n-j+1) \cdot p_j \right)
$$
\n
$$
\leq 2 \cdot \sum_{j=1}^n (n-j+1) \cdot p_j = 2 \cdot \text{SPT} \qquad \Box
$$

Round-Robin (RR) is 2-competitive for minimizing $\sum_j \mathsf{C}_j$ on a single machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Further **Time-Sharing** algorithms for more general problems:

- ▶ Individual job weights: Weighted Round-Robin (2-competitive) [Kim, Chwa 2003]
- **Identical machines: Weighted Dynamic Equipartition (2-comp.)**

[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-comp., 4.62-comp.) [Im, Kulkarni, Munagala 2018], [Lindermayr, M., Jäger 2024]

Predict job lengths y_i

[Kumar, Purohit, Svitkina, NIPS 2018]

Predict job lengths y_i

[Kumar, Purohit, Svitkina, NIPS 2018]

Error: $\ell_1 = \sum_{i=1}^n |p_j - y_j|$

Predict job lengths y_i

[Kumar, Purohit, Svitkina, NIPS 2018]

Error: $\ell_1 = \sum_{i=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction")

Predict job lengths y_i

[Kumar, Purohit, Svitkina, NIPS 2018]

Error: $\ell_1 = \sum_{i=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction")

Lemma

 SPF achieves scheduling cost $\text{SPF}(y_j, p_j) \leq \text{OPT}(p_j) + n \cdot \ell_1$

Predict job lengths y_i

[Kumar, Purohit, Svitkina, NIPS 2018]

Error: $\ell_1 = \sum_{i=1}^n |p_j - y_j|$

Natural algorithm: run shortest predicted job first (SPF). ("Follow the prediction")

Lemma

 SPF achieves scheduling cost $\text{SPF}(y_j, p_j) \leq \text{OPT}(p_j) + n \cdot \ell_1$

Consistent but not robust (against bad predictions).

[Kumar, Purohit, Svitkina 2018], [Lindermayr, **M.** 2022]

Input:

- − prediction-clairvoyant alg. A^C ("follow the prediction") with some error-dependent competitive ratio
- $-$ non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- − confidence parameter *λ* ∈ (0*,* 1)

Preferential Time Sharing (λ , A^C , A^N): run both A^C and A^N

$$
\frac{\mathcal{A}^C \mathcal{A}^N}{\sqrt{(1-\lambda)\lambda}} \mathcal{A}^C \mathcal{A}^N \mathcal{A}^C \mathcal{A}^N \mathcal{A}^C \mathcal{A}^N \mathcal{A}^C \mathcal{A}^N
$$

[Kumar, Purohit, Svitkina 2018], [Lindermayr, **M.** 2022]

Input:

- − prediction-clairvoyant alg. A^C ("follow the prediction") with some error-dependent competitive ratio
- $-$ non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- − confidence parameter *λ* ∈ (0*,* 1)

Preferential Time Sharing (λ , A^C , A^N): run both A^C and A^N

$$
\begin{array}{c}\n(1-\lambda) \\
\lambda\n\end{array}
$$

Motivation: A^C gives consistency, A^N gives robustness, trade-off by λ

[Kumar, Purohit, Svitkina 2018], [Lindermayr, **M.** 2022]

Input:

- − prediction-clairvoyant alg. A^C ("follow the prediction") with some error-dependent competitive ratio
- $-$ non-clairvoyant alg. \mathcal{A}^N with error-independent competitive ratio
- − confidence parameter *λ* ∈ (0*,* 1)

Preferential Time Sharing (λ , A^C , A^N): run both A^C and A^N

$$
\begin{array}{c}\n(1-\lambda) \\
\lambda\n\end{array}
$$

Motivation: A^C gives consistency, A^N gives robustness, trade-off by λ **Analysis:** slowed down execution by factors $\frac{1}{1-\lambda}$ resp. $\frac{1}{\lambda}$

[Kumar, Purohit, Svitkina 2018] [Lindermayr, **M.** 2022]

Theorem

 $\mathsf{PTS}(\lambda,\mathcal{A}^\mathsf{C},\mathcal{A}^N)$ has competitive ratio min $\left\{\frac{1}{1-\lambda}\left(\alpha+\frac{\eta}{\mathrm{OPT}}\right),\frac{\beta}{\lambda}\right\}$ $\frac{\beta}{\lambda}\Big\}$, if

- \blacktriangleright $\mathcal{A}^{\mathcal{C}}$ is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \blacktriangleright \mathcal{A}^N is monotone and *β*-competitive.

[Kumar, Purohit, Svitkina 2018] [Lindermayr, **M.** 2022]

Theorem

$$
\mathsf{PTS}(\lambda,\mathcal{A}^{\mathsf{C}},\mathcal{A}^{\mathsf{N}}) \mathsf{\;has\; competitive\;ratio\;min} \left\{ \tfrac{1}{1-\lambda} \left(\alpha + \tfrac{\eta}{\mathrm{OPT}} \right), \tfrac{\beta}{\lambda} \right\} ,\; \mathsf{if}
$$

- \blacktriangleright $\mathcal{A}^{\mathcal{C}}$ is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \blacktriangleright \mathcal{A}^N is monotone and *β*-competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive ratio of min $\{\frac{1}{1-\lambda}(1+\frac{n\cdot\ell_1}{\text{OPT}}), \frac{2}{\lambda}\}$, for $\lambda\in(0,1).$

[Kumar, Purohit, Svitkina 2018] [Lindermayr, **M.** 2022]

Theorem

$\mathsf{PTS}(\lambda,\mathcal{A}^\mathsf{C},\mathcal{A}^N)$ has competitive ratio min $\left\{\frac{1}{1-\lambda}\left(\alpha+\frac{\eta}{\mathrm{OPT}}\right),\frac{\beta}{\lambda}\right\}$ $\frac{\beta}{\lambda}\Big\}$, if

- \blacktriangleright $\mathcal{A}^{\mathcal{C}}$ is monotone and $\left(\alpha + \frac{\eta}{\text{OPT}}\right)$ -competitive and
- \blacktriangleright \mathcal{A}^N is monotone and β -competitive.

Corollary. PTS with 2-competitive RR and SPF achieves a competitive ratio of min $\{\frac{1}{1-\lambda}(1+\frac{n\cdot\ell_1}{\text{OPT}}), \frac{2}{\lambda}\}$, for $\lambda\in(0,1).$

Yes, works for more general scheduling problems [Lindermayr, **M.** 2022]

Roadmap

- 1. develop monotone prediction-clairvoyant alg. A^C and error-dependent competitive ratio
- 2. select a monotone non-clairvoyant algorithm A^N

Yes, works for more general scheduling problems [Lindermayr, **M.** 2022]

Roadmap

- 1. develop monotone prediction-clairvovant alg. A^C and error-dependent competitive ratio
- 2. select a monotone non-clairvoyant algorithm A^N

▶ Proving error-dependent bounds seems difficult with *^ℓ*1-error (linear error vs. quadratic objective)

Yes, works for more general scheduling problems [Lindermayr, **M.** 2022]

Roadmap

- 1. develop monotone prediction-clairvovant alg. A^C and error-dependent competitive ratio
- 2. select a monotone non-clairvoyant algorithm A^N

- ▶ Proving error-dependent bounds seems difficult with *^ℓ*1-error (linear error vs. quadratic objective)
	- \rightarrow alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]

Yes, works for more general scheduling problems [Lindermayr, **M.** 2022]

Roadmap

- 1. develop monotone prediction-clairvovant alg. A^C and error-dependent competitive ratio
- 2. select a monotone non-clairvoyant algorithm A^N

- ▶ Proving error-dependent bounds seems difficult with *^ℓ*1-error (linear error vs. quadratic objective)
	- \rightarrow alternative error measures [Im et al. 2021], [Lindermayr, M. 2022]
- Do we really need to predict all the job lengths?

Permutation Predictions Lindermayr and **M.** ²⁰²²

Permutation predictions: predict an order of jobs: $\hat{\sigma}$: $[n] \rightarrow [n]$

Motivation: knowing WSPT order is often sufficient for good approximations:

- $-$ optimal for $1|(\rho mtn)|\sum w_jC_j$ [Smith 1956]
- $-$ 2-competitive for $P|_{\mathit{r}_j},$ ρ mtn $|\sum w_jC_j|$
- $-$ 5.83-competitive for $R|_{\mathit{r}_j},$ ρ mtn $|\sum w_jC_j|$

[**M**. & Schulz 2004]

[Lindermayr & **M**. 2022]

Permutation Predictions Lindermayr and **M.** ²⁰²²

Permutation predictions: predict an order of jobs: $\hat{\sigma}$: $[n] \rightarrow [n]$

Indicate correct order $y_3 \le y_1 \le y_2$, but $\ell_1, \nu > 0$

Permutation Predictions Lindermayr and **M.** ²⁰²²

Permutation predictions: predict an order of jobs: $\hat{\sigma}$: $[n] \rightarrow [n]$

Error measure: quantifies effect of inversions *I* between $\hat{\sigma}$ and true WSPT order on list scheduling according to predicted order:

$$
\eta^S = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)
$$

Permutation predictions: predict an order of jobs: $\hat{\sigma}$: $[n] \rightarrow [n]$

p_1	p_2	p_3	(W)SPT order $p_3 \leq p_1 \leq p_2$
y_1	y_2	y_3	Indicate correct order $y_3 \leq y_1 \leq y_2$, but $\ell_1, \nu > 0$

Error measure: quantifies effect of inversions $\mathcal I$ between $\hat \sigma$ and true WSPT order on list scheduling according to predicted order:

$$
\eta^S = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)
$$

▶ For $1||\sum w_j C_j$ this is exactly $η^S = \text{OPT}(\hat{σ}) - \text{OPT}(\sigma)$.

Permutation predictions: predict an order of jobs: $\hat{\sigma}$: $[n] \rightarrow [n]$

p_1	p_2	p_3	(W)SPT order $p_3 \leq p_1 \leq p_2$
y_1	y_2	y_3	Indicate correct order $y_3 \leq y_1 \leq y_2$, but $\ell_1, \nu > 0$

Error measure: quantifies effect of inversions $\mathcal I$ between $\hat \sigma$ and true WSPT order on list scheduling according to predicted order:

$$
\eta^S = \sum_{(i,j)\in\mathcal{I}} (w_i p_j - w_j p_i)
$$

▶ For $1||\sum w_j C_j$ this is exactly $η^S = \text{OPT}(\hat{σ}) - \text{OPT}(\sigma)$. \blacktriangleright η^S captures structure instead of irrelevant numerical values.

PTS for weighted jobs on a single machine $1 | pmtn | \sum w_j C_j$

1. prediction-clairvoyant A^C : WSPT (optimal) [Smith56]

PTS for weighted jobs on a single machine $1 | pmtn | \sum w_j C_j$

1. prediction-clairvoyant A^C : WSPT (optimal) [Smith56]

Schedule jobs in predicted order 3 4 2 1 1

PTS for weighted jobs on a single machine $1 | pmtn | \sum w_j C_j$

1. prediction-clairvoyant A^C : WSPT (optimal) [Smith56]

2. non-clairvoyant A^N : WRR (2-competitive) [Kim, Chwa 2003]

PTS for weighted jobs on a single machine $1 | pmtn | \sum w_j C_j$

1. prediction-clairvoyant A^C : WSPT (optimal) [Smith56]

2. non-clairvoyant A^N : WRR (2-competitive) [Kim, Chwa 2003]

$$
\min\left\{\frac{1}{1-\lambda}\left(1+\frac{\eta^{\mathcal{S}}}{\text{OPT}}\right),\frac{2}{\lambda}\right\}
$$
Scheduling on a Single Machine

PTS for weighted jobs on a single machine $1 | pmtn | \sum w_j C_j$

1. prediction-clairvoyant A^C : WSPT (optimal) [Smith56]

2. non-clairvoyant A^N : WRR (2-competitive) [Kim, Chwa 2003]

$$
\min\left\{\frac{1}{1-\lambda}\left(1+\frac{\eta^{\mathcal{S}}}{\text{OPT}}\right),\frac{2}{\lambda}\right\}
$$

WSPT order also useful for more general scheduling settings.

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvoyant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvoyant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in WSPT order

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvoyant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in WSPT order

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvoyant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

unfinished released jobs in predicted order

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvovant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

2. non-clairvoyant A^N : WDEQ (3-competitive) [Beaumont et al. 2012]

PTS for multiple machines and release dates $P|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvovant A^C : P-WSPT (2-competitive) [M., Schulz 2004]

2. non-clairvoyant A^N : WDEQ (3-competitive) [Beaumont et al. 2012]

$$
\min\left\{\frac{1}{1-\lambda}\left(2+\frac{\eta^{\sf S}}{m\cdot\text{OPT}}\right),\frac{3}{\lambda}\right\}
$$

PTS on unrelated machines $R|r_j, pmtn| \sum w_j C_j$

PTS on unrelated machines $R|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvoyant A^C :

Known algorithms may not always work!

 \rightarrow prove error-dependent competitive ratio for alg. that trusts the prediction

PTS on unrelated machines $R|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvovant A^C :

Known algorithms may not always work! \rightarrow prove error-dependent competitive ratio for alg. that trusts the prediction We can design such algorithm, but it is worse than the non-clairvoyant algorithm Proportional Fairness (PF).

PTS on unrelated machines $R|r_j, pmtn| \sum w_j C_j$

1. prediction-clairvovant A^C :

Known algorithms may not always work!

 \rightarrow prove error-dependent competitive ratio for alg. that trusts the prediction

We can design such algorithm, but it is worse than the non-clairvoyant algorithm Proportional Fairness (PF).

2. non-clairvoyant A^N : Proportional Fairness (4.62-competitive)

[Lindermayr, M., Jäger 2024]

Sensitivity Experiments

- Single machine, unweighted jobs
- Synthetic instances sampled from Pareto-distribution with shape 1.1 Many small jobs and few very large jobs! (common)

▶ We "see" only jobs without unfinished predecessors

▶ We "see" only jobs without unfinished predecessors

- \triangleright We "see" only jobs without unfinished predecessors
- \blacktriangleright lobs are revealed once their predecessors have completed

- \triangleright We "see" only jobs without unfinished predecessors
- \blacktriangleright lobs are revealed once their predecessors have completed

- \triangleright We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|c|}\n\hline\n1 & 2 \\
\hline\n\end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|}\n\hline\n1 & 2 & n-1\n\end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n1 & 2 & n-1 & 3 \\
\hline\n\end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|c|c|c|}\n\hline\n1 & 2 & n-1 & 3 & \cdots & n-2 \\
\hline\n\end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|c|c|c|}\n\hline\n1 & 2 & n-1 & 3 & \cdots & n-2 \\
\hline\n\end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
\begin{array}{|c|c|c|c|c|c|c|c|} \hline 1 & 2 & n-1 & 3 & \bullet \bullet \bullet & n-2 & n \\ \hline \end{array}
$$

- ▶ We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

1	2	$n-1$	3	•••	$n-2$	n	$\sum_{j=1}^{n} w_j C_j = n$
---	---	-------	---	-----	-------	-----	------------------------------

- \triangleright We "see" only jobs without unfinished predecessors
- ▶ Jobs are revealed once their predecessors have completed

$$
n-2 \quad n \quad 1 \quad 2 \quad n-1 \quad 3 \quad \bullet \bullet \bullet
$$

- \triangleright We "see" only jobs without unfinished predecessors
- \blacktriangleright Jobs are revealed once their predecessors have completed

$$
n-2 \quad n \quad 1 \quad 2 \quad n-1 \quad 3 \quad \bullet \bullet \bullet \qquad \sum_{j=1}^{n} w_j C_j = 2
$$

- \triangleright We "see" only jobs without unfinished predecessors
- ▶ Jobs are revealed once their predecessors have completed

Any online algorithm has a competitive ratio $\Omega(n)!$

$$
n-2 \quad n \quad 1 \quad 2 \quad n-1 \quad 3 \quad \bullet \bullet \bullet \qquad \sum_{j=1}^{n} w_j C_j = 2
$$

[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs

[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs

1. "Follow-the-Prediction" is $(1 + \eta)$ -competitive (η permutation error)

[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs

- 1. "Follow-the-Prediction" is $(1 + \eta)$ -competitive (η permutation error)
- 2. Robustness via Round Robin for front jobs: *ω*-competitive (*ω* width)

Initial front jobs

[Lassota, Lindermayr, M., Schlöter, ICML 2023]

Predict the full instance or a permutation of jobs

- 1. "Follow-the-Prediction" is $(1 + \eta)$ -competitive (η permutation error)
- 2. Robustness via Round Robin for front jobs: *ω*-competitive (*ω* width)

Theorem. Preferential Time Sharing is $\mathcal{O}(\min\{1 + \eta, \omega\})$ -competitive.

What additional information is needed to improve upon lower bound?

 \rightarrow exact information!

What additional information is needed to improve upon lower bound?

 \rightarrow exact information!

Full input

What additional information is needed to improve upon lower bound?

 \rightarrow exact information!

What additional information is needed to improve upon lower bound?

Total successor weight

Weight order

 \rightarrow exact information!

Minimalistic Input Prediction

What additional information is needed to improve upon lower bound?

Total successor weight

Weight order

Static Adaptive

 \rightarrow exact information!

Minimalistic Input Prediction

What additional information is needed to improve upon lower bound?

Weight order

Static Adaptive

 \rightarrow exact information!

... results for different topologies – not today.

Weight Prediction based on Graph Decomposition [Jäger & Warode, 2024]

initial front jobs

[Jäger & Warode, 2024]

▶ Decompose DAG G into out-trees rooted at the front jobs

[Jäger & Warode, 2024]

- ▶ Decompose DAG G into out-trees rooted at the front jobs
- \blacktriangleright Algorithm: run front jobs v at a rate proportional to the total weight $w(T(v))$ of jobs in v's tree $T(v)$

[Jäger & Warode, 2024]

- ▶ Decompose DAG G into out-trees rooted at the front jobs
- \blacktriangleright Algorithm: run front jobs v at a rate proportional to the total weight $w(T(v))$ of jobs in v's tree $T(v)$

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

[Jäger & Warode, 2024]

- Decompose DAG G into out-trees rooted at the front jobs
- \blacktriangleright Algorithm: run front jobs v at a rate proportional to the total weight $w(T(v))$ of jobs in v's tree $T(v)$

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

▶ Prediction: the total weight $w(T(v))$ of successors of job v in T

[Jäger & Warode, 2024]

- Decompose DAG G into out-trees rooted at the front jobs
- \blacktriangleright Algorithm: run front jobs v at a rate proportional to the total weight $w(T(v))$ of jobs in v's tree $T(v)$

Theorem (Jäger & Warode 2024). This algorithm is 2-competitive.

▶ Prediction: the total weight $w(T(v))$ of successors of job v in T **Theorem**. The time sharing framework is $\mathcal{O}(m \cdot n \cdot 2 + \eta, \omega)$ -competitive.

This talk

▶ Algorithms with predictions

binary search, scheduling with unknown job sizes, precedences (online)

This talk

 \blacktriangleright Algorithms with predictions binary search, scheduling with unknown job sizes, precedences (online)

▶ Powerful time-sharing framework

admits (blackbox) algorithms with error-dependent performance guarantee

This talk

- \blacktriangleright Algorithms with predictions binary search, scheduling with unknown job sizes, precedences (online)
- ▶ Powerful time-sharing framework admits (blackbox) algorithms with error-dependent performance guarantee
- ▶ Prediction models and error measures predictions: length, permutation, weight decomp.; errors: *ℓ*¹ error, and more

This talk

- \blacktriangleright Algorithms with predictions binary search, scheduling with unknown job sizes, precedences (online)
- ▶ Powerful time-sharing framework admits (blackbox) algorithms with error-dependent performance guarantee
- ▶ Prediction models and error measures predictions: length, permutation, weight decomp.; errors: *ℓ*¹ error, and more

Outlook:

▶ More sophisticated techniqies to leverage imperfect predictions

This talk

- \blacktriangleright Algorithms with predictions binary search, scheduling with unknown job sizes, precedences (online)
- ▶ Powerful time-sharing framework admits (blackbox) algorithms with error-dependent performance guarantee
- ▶ Prediction models and error measures predictions: length, permutation, weight decomp.; errors: *ℓ*¹ error, and more

Outlook:

- ▶ More sophisticated techniqies to leverage imperfect predictions
- ▶ Predictions to improve other performance metrics running time (offline alg.), update time (dynamic alg.), price of anarchy (mechanism design), etc.

This talk

- \blacktriangleright Algorithms with predictions binary search, scheduling with unknown job sizes, precedences (online)
- ▶ Powerful time-sharing framework admits (blackbox) algorithms with error-dependent performance guarantee
- ▶ Prediction models and error measures predictions: length, permutation, weight decomp.; errors: *ℓ*¹ error, and more

Outlook:

- ▶ More sophisticated techniqies to leverage imperfect predictions
- ▶ Predictions to improve other performance metrics running time (offline alg.), update time (dynamic alg.), price of anarchy (mechanism design), etc.
- Minimalistic, parsimonious predictions