
Branch-and-Price Crash Course

Marco Lübbecke

Chair of Operations Research · RWTH Aachen University

CO@Work 2024 · ZIB@40 Berlin · September 19, 2024

image by Darius Dan on flaticon.com

@mluebbecke@mas.to

https://www.flaticon.com/de/kostenlose-icons/45-minuten

Branch-and-Price is about

▶ extending your modeling capabilities

▶ algorithmically exploiting subproblems that you can solve well

The Cutting Stock Problem

image source: commons.wikimedia.org, Leeco Steel - Antonio Rosset

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 3/many

commons.wikimedia.org

Example: The Cutting Stock Problem

Data

m rolls of raw material, each of length W ≥ 0; and
n items of length wi ≥ 0 with a demand of bi ∈ Z+, i = 1, . . . , n

Goal

cut rolls into items, satisfying all demands, minimizing the number of used rolls

1

1

2

1

3

2

2

2 . . .

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 4/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤W

yj

j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤W

yj

j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤W

yj

j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤W

yj

j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤Wyj j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

The Cutting Stock Problem: An “Assignment Type” Model

▶ formulation as an integer program; notation [n] := {1, . . . , n}

min

m∑
j=1

yj // minimize number of used rolls

s.t.
m∑
j=1

xij ≥ bi i ∈ [n] // cover all demands

n∑
i=1

wixij ≤Wyj j ∈ [m] // respect roll capacities

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut i from j

yj ∈ {0, 1} j ∈ [m] // do we use roll j?

in our context: this is the “original” or “compact” formulation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 5/many

Observations on the Compact Model

▶ the model contains m independent knapsack constraints (“local”)
// we know well how to solve knapsack problems

n∑
i=1

wixij ≤W j ∈ [m] // respect roll capacities

▶ these are “coordinated” by the demand constraints (“global”)

▶ the model is symmetric in index j: given a feasible solution, any permutation of
the j indices gives an equivalent feasible solution // this is bad

i.e., they don’t share any variables

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 6/many

Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

▶ how do solutions look like? how can we possibly cut one roll?

P =

1

2

2

1

1

2

2

2

2

2

2

3
, , , , . . .

=


1
2
0

 ,

2
1
0

 ,

0
4
0

 ,

0
1
1

 , . . .



▶ the set P of (encodings of) all feasible cutting patterns is

P =


a1

...
an

 ∈ Zn
+ |

n∑
i=1

wiai ≤W


▶ for each p ∈ P, denote by aip ∈ Z+ how often i is cut in p

a1p = 0
a2p = 1
a3p = 1

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 7/many

Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

▶ we build a model on these observations, on entire configurations

min
∑
p∈P

λp // minimimize number of patterns used

s.t.
∑
p∈P

aipλp ≥ bi i ∈ [n] // cover all demands

λp ∈ Z+ p ∈ P // how often to cut pattern p?

in our context: we call this an “extended” formulation // well, in fact, it is one

▶ how can we solve even only the LP relaxation of such models?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 8/many

Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

▶ we build a model on these observations, on entire configurations

min
∑
p∈P

λp // minimimize number of patterns used

s.t.
∑
p∈P

aipλp ≥ bi i ∈ [n] // cover all demands

λp ∈ Z+ p ∈ P // how often to cut pattern p?

in our context: we call this an “extended” formulation // well, in fact, it is one

▶ how can we solve even only the LP relaxation of such models?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 8/many

Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

▶ we build a model on these observations, on entire configurations

min
∑
p∈P

λp // minimimize number of patterns used

s.t.
∑
p∈P

aipλp ≥ bi i ∈ [n] // cover all demands

λp ∈ Z+ p ∈ P // how often to cut pattern p?

in our context: we call this an “extended” formulation // well, in fact, it is one

▶ how can we solve even only the LP relaxation of such models?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 8/many

Overview

1 Column Generation

2 Dantzig-Wolfe Reformulation

3 Branch-Price-and-Cut

Column Generation to solve a Linear Program

▶ we want to solve the master problem (MP)

, with J ′ ⊆ J

z∗MP = min
∑
j∈J

′

cjλj

s.t.
∑
j∈J

′

ajλj ≥ b

[π]

λj ≥ 0 ∀j ∈ J

′

▶ typically, |J | huge

, |J ′| small

▶ use e.g., simplex method to obtain optimal primal λ and optimal dual π

▶ does λ solve the master problem to optimality as well?

▶ sufficient optimality condition: c̄j(π) = cj − πtaj ≥ 0, ∀j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 10/many

Column Generation to solve a Linear Program

▶ but we solve the restricted master problem (RMP), with J ′ ⊆ J

z∗RMP = min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≥ b

[π]

λj ≥ 0 ∀j ∈ J ′

▶ typically, |J | huge, |J ′| small

▶ use e.g., simplex method to obtain optimal primal λ and optimal dual π

▶ does λ solve the master problem to optimality as well?

▶ sufficient optimality condition: c̄j(π) = cj − πtaj ≥ 0, ∀j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 10/many

Column Generation to solve a Linear Program

▶ but we solve the restricted master problem (RMP), with J ′ ⊆ J

z∗RMP = min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J ′

▶ typically, |J | huge, |J ′| small

▶ use e.g., simplex method to obtain optimal primal λ and optimal dual π

▶ does λ solve the master problem to optimality as well?

▶ sufficient optimality condition: c̄j(π) = cj − πtaj ≥ 0, ∀j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 10/many

Column Generation to solve a Linear Program

▶ but we solve the restricted master problem (RMP), with J ′ ⊆ J

z∗RMP = min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J ′

▶ typically, |J | huge, |J ′| small

▶ use e.g., simplex method to obtain optimal primal λ and optimal dual π

▶ does λ solve the master problem to optimality as well?

▶ sufficient optimality condition: c̄j(π) = cj − πtaj ≥ 0, ∀j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 10/many

Column Generation to solve a Linear Program

▶ but we solve the restricted master problem (RMP), with J ′ ⊆ J

z∗RMP = min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J ′

▶ typically, |J | huge, |J ′| small

▶ use e.g., simplex method to obtain optimal primal λ and optimal dual π

▶ does λ solve the master problem to optimality as well?

▶ sufficient optimality condition: c̄j(π) = cj − πtaj ≥ 0, ∀j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 10/many

Idea for an Algorithm: Explicit Pricing

▶ this suggests a natural iterative procedure to solve the MP:

solve RMP (with J ′) to optimality

compute sign of all c̄j(π), j ∈ J \ J ′

π
λj∗ if c̄j∗(π) < 0

stop, if c̄j(π) ≥ 0 ∀j

▶ however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many

J ′ ← J ′ ∪ {j∗}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 11/many

Idea for an Algorithm: Explicit Pricing

▶ this suggests a natural iterative procedure to solve the MP:

solve RMP (with J ′) to optimality

compute sign of all c̄j(π), j ∈ J \ J ′

π

λj∗ if c̄j∗(π) < 0

stop, if c̄j(π) ≥ 0 ∀j

▶ however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many

J ′ ← J ′ ∪ {j∗}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 11/many

Idea for an Algorithm: Explicit Pricing

▶ this suggests a natural iterative procedure to solve the MP:

solve RMP (with J ′) to optimality

compute sign of all c̄j(π), j ∈ J \ J ′

π

λj∗ if c̄j∗(π) < 0

stop, if c̄j(π) ≥ 0 ∀j

▶ however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many

J ′ ← J ′ ∪ {j∗}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 11/many

Idea for an Algorithm: Explicit Pricing

▶ this suggests a natural iterative procedure to solve the MP:

solve RMP (with J ′) to optimality

compute sign of all c̄j(π), j ∈ J \ J ′

π
λj∗ if c̄j∗(π) < 0

stop, if c̄j(π) ≥ 0 ∀j

▶ however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many

J ′ ← J ′ ∪ {j∗}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 11/many

Idea for an Algorithm: Explicit Pricing

▶ this suggests a natural iterative procedure to solve the MP:

solve RMP (with J ′) to optimality

compute sign of all c̄j(π), j ∈ J \ J ′

π
λj∗ if c̄j∗(π) < 0

stop, if c̄j(π) ≥ 0 ∀j

▶ however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many

J ′ ← J ′ ∪ {j∗}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 11/many

Better Idea: Implicit Pricing

▶ instead: solve an auxiliary optimization problem // implicit enumeration

c̄∗(π) = min{c̄j(π) | j ∈ J}

▶ this is called the pricing problem, subproblem, oracle, or column generator

→ if c̄∗(π) < 0, we set J ′ ← J ′ ∪ argminj∈J{c̄j(π)}
and re-optimize the restricted master problem

→ otherwise, i.e., c̄∗(π) ≥ 0, there is no j ∈ J with c̄j(π) < 0
and we proved that we solved the master problem to optimality

✎ keep in mind

this identifies a master variable of negative reduced cost or proves that none exists

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 12/many

Better Idea: Implicit Pricing

▶ this is almost the same as before, with a “tiny detail” changed

solve RMP (with J ′) to optimality

compute sign of all c̄j , j ∈ J \ J ′

πλj∗ if c̄j∗ < 0

stop, if c̄j ≥ 0 ∀j

J ′ ← J ′ ∪ {j∗}

a most negative

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 13/many

Better Idea: Implicit Pricing

▶ this is almost the same as before, with a “tiny detail” changed

solve RMP (with J ′) to optimality

compute sign of all c̄j , j ∈ J \ J ′

πλj∗ if c̄j∗ < 0

stop, if c̄j ≥ 0 ∀j

J ′ ← J ′ ∪ {j∗}

a most negative

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 13/many

Summary: The Column Generation Algorithm

algorithm column generation

input: restricted master problem RMP with an initial set J ′ ⊆ J of variables;
output: optimal solution λ to the master problem MP;

repeat
solve RMP to optimality, obtain λ and π;
solve pricing problem c̄∗(π) = min{c̄j(π) | j ∈ J};
if c̄∗(π) < 0 then

J ′ ← J ′ ∪ {j∗} with c̄j∗(π) = c̄∗(π); // add variable λj∗ to RMP

until c̄∗(π) ≥ 0;

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 14/many

Origins of the Method: Around 1958 in the Western World

Management Science, 5(1):97-101, 1958

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 15/many

But already around/before 1951 in the former Soviet Union

Kantorovich and Zalgaller. Calculation of rational cutting of stock, Leningrad, Lenizdat, 1951

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 16/many

Example: Cutting Stock: Restricted Master Problem

▶ solve (restricted) LP relaxation of Kantorovich-Gilmore-Gomory formulation

min
∑
p∈P ′

λp

s.t.
∑
p∈P ′

aipλp ≥ bi ∀i ∈ [n]

λp ≥ 0 ∀p ∈ P ′

with P ′ ⊆ P = {(a1, . . . , an)t ∈ Zn
+ |

∑n
i=1wiai ≤W}

→ obtain optimal primal λ and optimal dual πt = (π1, . . . , πn)
// one dual variable per demand

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 17/many

Example: Cutting Stock: Reduced Cost

▶ reduced cost of λp:

c̄p(π) = 1− (π1, . . . , πn) ·


a1p
a2p
...

anp

 !
≥ 0

for all feasible cutting patterns p ∈ P

▶ again: explicit enumeration of all patterns impracticable

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 18/many

Example: Cutting Stock: Pricing Problem

▶ instead: solve auxiliary optimization problem

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , πn) ·


a1p
a2p
...

anp



s.t.
n∑

i=1

wixi ≤W

xi ∈ Z+ i ∈ [n] .

▶ which is an integer knapsack problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 19/many

Example: Cutting Stock: Pricing Problem

▶ instead: solve auxiliary optimization problem

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , πn) ·


a1p
a2p
...

anp


= min 1−

n∑
i=1

πixi

s.t.
n∑

i=1

wixi ≤W

xi ∈ Z+ i ∈ [n] .

▶ which is an integer knapsack problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 19/many

Example: Cutting Stock: Pricing Problem

▶ instead: solve auxiliary optimization problem

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , πn) ·


a1p
a2p
...

anp


= 1− max

n∑
i=1

πixi

s.t.
n∑

i=1

wixi ≤W

xi ∈ Z+ i ∈ [n] .

▶ which is an integer knapsack problem!
@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 19/many

Example: Cutting Stock: Pricing Problem

▶ two cases for the minimum reduced cost c̄∗(π) = min
p∈P

c̄p(π):

1. c̄∗(π) < 0,
that is, (xi)i∈[n] represents a feasible pattern p = (aip)i∈[n]

P ′ ← P ′ ∪ {p};
repeat solving the RMP.

2. c̄∗(π) ≥ 0
proves that there is no negative reduced cost (master variable that
corresponds to a) feasible pattern

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 20/many

Another Example: Vertex Coloring

Data

G = (V,E) undirected graph

Goal

color all vertices such that adjacent vertices receive different colors, minimizing the
number of used colors // like almost all problems we are interested in, this is NP-hard

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 21/many

Another Example: Vertex Coloring

Data

G = (V,E) undirected graph

Goal

color all vertices such that adjacent vertices receive different colors, minimizing the
number of used colors // like almost all problems we are interested in, this is NP-hard

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 21/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Vertex Coloring: Textbook Model

▶ notation: C set of available colors

χ(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ(G) is called the chromatic number of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 22/many

Defects of the Textbook Model

▶ the LP relaxation is extremely weak

▶ optimal fractional solution, e.g.,

xic1 = xic2 = 0.5, i ∈ V

yc1 = yc2 = 0.5

▶ model symmetry in C: for every feasible xic, yc and a permutation ϕ : C → C,
also xiϕ(c), yϕ(c) is feasible

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 23/many

Defects of the Textbook Model

▶ the LP relaxation is extremely weak

▶ optimal fractional solution, e.g.,

xic1 = xic2 = 0.5, i ∈ V

yc1 = yc2 = 0.5

▶ model symmetry in C: for every feasible xic, yc and a permutation ϕ : C → C,
also xiϕ(c), yϕ(c) is feasible

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 23/many

An Alternative Model based on Color Classes

▶ observation: every color class forms an independent/stable set

▶ coloring: a partition of the vertex set V into independent sets

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 24/many

An Alternative Model based on Color Classes

▶ the set P of (encodings of) all independent sets in G is

P =


 a1

...
a|V |

 ∈ {0, 1}|V | | ai + aj ≤ 1 ∀ij ∈ E


▶ for each p ∈ P, denote by aip ∈ {0, 1} whether vertex i is contained in

independent set p

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 25/many

Vertex Coloring: Master Problem

min
∑
p∈P

λp // minimimize number of sets used

s.t.
∑
p∈P

aipλp = 1 i ∈ V // every vertex must be covered

λp ∈ {0, 1} p ∈ P // do we use independent set p?

▶ the LP relaxation gives a master problem

▶ solve it by column generation

→ dual variables πt = (π1, . . . , π|V |), one per vertex

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 26/many

Vertex Coloring: Master Problem

min
∑
p∈P

λp // minimimize number of sets used

s.t.
∑
p∈P

aipλp = 1 i ∈ V // every vertex must be covered

λp ∈ {0, 1} p ∈ P // do we use independent set p?

▶ the LP relaxation gives a master problem

▶ solve it by column generation

→ dual variables πt = (π1, . . . , π|V |), one per vertex

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 26/many

Vertex Coloring: Master Problem

min
∑
p∈P

λp // minimimize number of sets used

s.t.
∑
p∈P

aipλp = 1 i ∈ V // every vertex must be covered

λp ∈ {0, 1} p ∈ P // do we use independent set p?

▶ the LP relaxation gives a master problem

▶ solve it by column generation

→ dual variables πt = (π1, . . . , π|V |), one per vertex

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 26/many

Vertex Coloring: Pricing Problem

▶ the pricing problem looks like

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , π|V |) ·


a1p
a2p
...

a|V |p



s.t. xi + xj ≤ 1 ij ∈ E

xi ∈ {0, 1} i ∈ V .

▶ which is a maximum weight independent set problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 27/many

Vertex Coloring: Pricing Problem

▶ the pricing problem looks like

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , π|V |) ·


a1p
a2p
...

a|V |p


= min 1−

∑
i∈V

πixi

s.t. xi + xj ≤ 1 ij ∈ E

xi ∈ {0, 1} i ∈ V .

▶ which is a maximum weight independent set problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 27/many

Vertex Coloring: Pricing Problem

▶ the pricing problem looks like

c̄∗(π) = min
p∈P

c̄p(π) = min
p∈P

1− (π1, . . . , π|V |) ·


a1p
a2p
...

a|V |p


= 1− max

∑
i∈V

πixi

s.t. xi + xj ≤ 1 ij ∈ E

xi ∈ {0, 1} i ∈ V .

▶ which is a maximum weight independent set problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 27/many

Tiny Numerical Example

a

b

c

d P = { , , , , , } → MP

min λ + λ + λ + λ + λ + λ

s. t. λ + λ

+ 0λ

= 1 [πa]

λ +

1

λ = 1 [πb]

λ

+ 0λ

= 1 [πc]

λ + λ +

1

λ = 1 [πd]

λ , λ , λ , λ , λ , λ ≥ 0

stable sets are encoded by their incidence vectors

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 28/many

Tiny Numerical Example

a

b

c

d P = { , , , , , } → MP

min λ + λ + λ + λ + λ + λ

s. t. λ + λ + 0λ = 1 [πa]

λ + 1λ = 1 [πb]

λ + 0λ = 1 [πc]

λ + λ + 1λ = 1 [πd]

λ , λ , λ , λ , λ , λ ≥ 0

stable sets are encoded by their incidence vectors

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 28/many

Tiny Numerical Example

a

b

c

d P ′ = { , , , , , } → RMP

min λ + λ + λ + λ + λ + λ

s. t. λ + λ

+ 0λ

= 1 [πa]

λ +

1

λ = 1 [πb]

λ

+ 0λ

= 1 [πc]

λ + λ +

1

λ = 1 [πd]

λ , λ , λ , λ , λ , λ ≥ 0

stable sets are encoded by their incidence vectors

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 28/many

Tiny Numerical Example

▶ RMP optimal: λ = λ = λ = λ = 1, πa = πb = πc = πd = 1

▶ pricing:

c̄∗(π) = min 1 − πaxa − πbxb − πcxc − πdxd

xa + xb ≤ 1

xa + xc ≤ 1

xb + xc ≤ 1

xc + xd ≤ 1

xa , xb , xc , xd ∈ {0, 1}

⇒ we see that for the two missing variables c̄ = c̄ = −1
⇒ we add λ or λ to the RMP, and iterate

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 29/many

Tiny Numerical Example

▶ observe: an optimal (“fractional”) solution to the MP is e.g.,

λ = λ = λ = 1

▶ the dual bound we obtain from this solution is 3

▶ compare: the dual bound we obtain from the original LP relaxation is 1!

→ it is a coincidence that this solution is integer and the dual bound is tight

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 30/many

Initialization: How to choose an initial P ′?

▶ e.g., for the vertex coloring problem:

P ′ =
⋃
i∈V
{(a1, . . . , a|V |)

t} with av =

{
1 v = i
0 v ̸= i

i.e., one stable set per vertex, consisting of that single vertex

▶ or use a heuristic

▶ or artificial variables (“phase I”)

▶ or use Farkas pricing
...

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 31/many

Initialization: How to choose an initial P ′?

▶ e.g., for the vertex coloring problem:

P ′ =
⋃
i∈V
{(a1, . . . , a|V |)

t} with av =

{
1 v = i
0 v ̸= i

i.e., one stable set per vertex, consisting of that single vertex

▶ or use a heuristic

▶ or artificial variables (“phase I”)

▶ or use Farkas pricing
...

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 31/many

Practically Important: Several Pricing Problems

▶ in applications we often have different, say K many “types” of objects
// different types of vehicles, containers, material, persons, . . .

z∗MP = min
∑
k∈[K]

∑
j∈Jk

ckjλ
k
j

s.t.
∑
k∈[K]

∑
j∈Jk

akjλ
k
j ≥ b [π]

λk
j ≥ 0 ∀k ∈ [K] ∀j ∈ Jk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 32/many

Practically Important: Several Pricing Problems

▶ the K classes of variables have their respective own “realms”

λ1
p, p ∈ P1 λ2

p, p ∈ P2 . . . λK
p , p ∈ PK

▶ this requires K pricing problems: c̄k∗(π) = min{c̄kj (π) | j ∈ Jk}, k ∈ [K]

▶ the optimality condition becomes: c̄kj (π) = ckj − πtakj ≥ 0, ∀k ∈ [K] ∀j ∈ Jk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 33/many

Dual Bounds on the Master Problem Optimum

Interpretation of reduced costs in linear programs in general

▶ c̄j(π) is the potential objective improvement when λj is increased by one unit

▶ assume that we know a κ with
∑
j∈J

λj ≤ κ for any λ-solution

⇒ current objective function value cannot be improved by more than κ ·min
j∈J

c̄j(π)

Lemma (Lagrangian bound)

Given the optimal values of the RMP and pricing problem, zRMP and c̄∗(π), then

zRMP + κ · c̄∗(π) ≤ z∗MP

when column generation stops, i.e., when c̄∗ = 0, the bound becomes tight

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 34/many

Dual Bounds on the Master Problem Optimum

100 200 300 400 500 600 700 800 900

z∗MP

⋆

iteration

z
zRMP

zRMP + κc̄(π)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 35/many

Tailing Off and Early Termination

▶ tailing off : the slow convergence at the end of the column generation process

▶ given a dual bound on the master optimum, we could stop generating columns
when a certain (relative) quality is reached, called early termination

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 36/many

Question

▶ how do we arrive at such models like Kantorovich-Gilmore-Gomory’s?

Overview

1 Column Generation

2 Dantzig-Wolfe Reformulation
2.1 Dantzig-Wolfe Reformulation for LPs
2.2 Column Generation
2.3 Multiple Subproblems and Aggregation

3 Branch-Price-and-Cut

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron

For P ⊆ Rn, the following are equivalent:

1. P is a polyhedron

2. There are finite sets {xq}q∈Q, {xr}r∈R ⊆ Rn such that
P = conv({xq}q∈Q) + cone({xr}r∈R) // “P is finitely generated”

▶ choose {xq}q∈Q (resp. {xr}r∈R) as P ’s extreme points (resp. extreme rays)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 39/many

That’s Nice!

▶ so let’s use this!

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

▶ we will now equivalently reformulate what we call in this context the

original model z∗LP = min ctx
s. t. Ax ≥ b

Dx ≥ d
x ≥ 0

▶ identify two sets of constraints, typically constraints we know how to deal (well)
with and everything else.

e.g., network flow constraints, etc.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 41/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

▶ we will now equivalently reformulate what we call in this context the

original model z∗LP = min ctx
s. t. Ax ≥ b

Dx ≥ d
x ≥ 0

▶ identify two sets of constraints, typically constraints we know how to deal (well)
with and everything else.

e.g., network flow constraints, etc.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 41/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

original formulation z∗LP = min ctx
s. t. Ax ≥ b

Dx ≥ d
x ≥ 0

▶ idea: apply Farkas-Minkowski-Weyl on X = {x ≥ 0 | Dx ≥ d}

extreme points {xq}q∈Q, extreme rays {xr}r∈R of X

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 42/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

extreme points {xq}q∈Q, extreme rays {xr}r∈R of X

express every x ∈ X as

x =
∑
q∈Q

λqxq +
∑
r∈R

λrxr∑
q∈Q

λq = 1 // convexity constraint

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

and substitute this x ∈ X in Ax ≥ b and ctx.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 43/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of x ∈ X in Ax ≥ b and ctx

and some rearranging and renaming

min ct

∑
q∈Q

λqxq +
∑
r∈R

λrxr

)

s.t. A

∑
q∈Q

λqxq +
∑
r∈R

λrxr

)
≥ b

∑
q∈Q

λq = 1

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 44/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of x ∈ X in Ax ≥ b and ctx and some rearranging

and renaming

min
∑
q∈Q

λqc
txq +

∑
r∈R

λrc
txr

s.t.
∑
q∈Q

λqAxq +
∑
r∈R

λrAxr ≥ b

∑
q∈Q

λq = 1

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 44/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of x ∈ X in Ax ≥ b and ctx and some rearranging and renaming

min
∑
q∈Q

λq c
txq︸︷︷︸
=:cq

+
∑
r∈R

λr c
txr︸︷︷︸
=:cr

s.t.
∑
q∈Q

λq Axq︸︷︷︸
=:aq

+
∑
r∈R

λr Axr︸︷︷︸
=:ar

≥ b

∑
q∈Q

λq = 1

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 44/many

Dantzig-Wolfe Reformulation for LPs (1960, 1961)

leads to an extended linear program which we call the Dantzig-Wolfe master problem

z∗MP = min
∑
q∈Q

cqλq +
∑
r∈R

crλr

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b

∑
q∈Q

λq = 1

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

by construction, this LP is equivalent to the original LP, i.e., z∗LP = z∗MP

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 44/many

What did we just do?

▶ we discovered this nice theorem by Minkowski, Weyl, and Farkas

▶ we reformulated part of the constraints of an LP according to this theorem

→ because we can!

▶ now we have an equivalent LP with a gigantic number of variables

→ but this doesn’t scare us! // because we know column generation

⇒ that makes it quite obvious what comes next . . .

The Dantzig-Wolfe Restricted Master Problem

z∗RMP = min
∑
q∈Q′

cqλq +
∑
r∈R′

crλr

s.t.
∑
q∈Q′

aqλq +
∑
r∈R′

arλr ≥ b [π]

∑
q∈Q′

λq = 1 [π0]

λq ≥ 0 q ∈ Q′

λr ≥ 0 r ∈ R′

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 46/many

Reduced Cost Computation

▶ for the reduced cost formula we distinguish two cases

→ for λq, q ∈ Q:

c̄q = cq − (πt, π0)

(
aq
1

)
= cq − πtaq − π0

= ctxq − πtAxq − π0

→ for λr, r ∈ R:

c̄r = cr − (πt, π0)

(
ar
0

)
= cr − πtar

= ctxr − πtAxr

▶ we need to compute c̄∗ = min{min
q∈Q

c̄q, min
r∈R

c̄r}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 47/many

Dantzig-Wolfe Pricing Problem

▶ in words: find an extreme point xq, q ∈ Q with minimum c̄q and/or an extreme
ray xr, r ∈ R with minimum c̄r

▶ to this end, consider an “almost correct” problem min
j∈Q∪R

ctxj − πtAxj − π0

// the objective function (reduced cost) is off by a constant −π0 for rays

▶ leading to the Dantzig-Wolfe pricing problem

z∗PP = min (ct − πtA)x − π0
s. t. Dx ≥ d

x ≥ 0

▶ Q and R index the extreme points/extreme rays of {x ≥ 0 | Dx ≥ d}!
// and we know how to obtain these extreme points/rays

▶ the pricing problem is again a linear program

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 48/many

Dantzig-Wolfe Pricing Problem

▶ in words: find an extreme point xq, q ∈ Q with minimum c̄q and/or an extreme
ray xr, r ∈ R with minimum c̄r

▶ to this end, consider an “almost correct” problem min
j∈Q∪R

ctxj − πtAxj − π0

// the objective function (reduced cost) is off by a constant −π0 for rays

▶ leading to the Dantzig-Wolfe pricing problem

z∗PP = min (ct − πtA)x − π0
s. t. Dx ≥ d

x ≥ 0

▶ Q and R index the extreme points/extreme rays of {x ≥ 0 | Dx ≥ d}!
// and we know how to obtain these extreme points/rays

▶ the pricing problem is again a linear program

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 48/many

Dantzig-Wolfe Pricing Problem

▶ in words: find an extreme point xq, q ∈ Q with minimum c̄q and/or an extreme
ray xr, r ∈ R with minimum c̄r

▶ to this end, consider an “almost correct” problem min
j∈Q∪R

ctxj − πtAxj − π0

// the objective function (reduced cost) is off by a constant −π0 for rays

▶ leading to the Dantzig-Wolfe pricing problem

z∗PP = min (ct − πtA)x − π0
s. t. Dx ≥ d

x ≥ 0

▶ Q and R index the extreme points/extreme rays of {x ≥ 0 | Dx ≥ d}!
// and we know how to obtain these extreme points/rays

▶ the pricing problem is again a linear program

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 48/many

Dantzig-Wolfe Pricing Problem

▶ in words: find an extreme point xq, q ∈ Q with minimum c̄q and/or an extreme
ray xr, r ∈ R with minimum c̄r

▶ to this end, consider an “almost correct” problem min
j∈Q∪R

ctxj − πtAxj − π0

// the objective function (reduced cost) is off by a constant −π0 for rays

▶ leading to the Dantzig-Wolfe pricing problem

z∗PP = min (ct − πtA)x − π0
s. t. Dx ≥ d

x ≥ 0

▶ Q and R index the extreme points/extreme rays of {x ≥ 0 | Dx ≥ d}!
// and we know how to obtain these extreme points/rays

▶ the pricing problem is again a linear program

beauty alert!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 48/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}

1. z∗PP = −∞

⇒ we identified an extreme ray xr∗ , r
∗ ∈ R with c̄r∗ < 0

→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0

⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)

3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞

⇒ we identified an extreme ray xr∗ , r
∗ ∈ R with c̄r∗ < 0

→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0

⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)

3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞ ⇒ we identified an extreme ray xr∗ , r

∗ ∈ R with c̄r∗ < 0
→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0

⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)

3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞ ⇒ we identified an extreme ray xr∗ , r

∗ ∈ R with c̄r∗ < 0
→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0

⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)
3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞ ⇒ we identified an extreme ray xr∗ , r

∗ ∈ R with c̄r∗ < 0
→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0 ⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)

3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞ ⇒ we identified an extreme ray xr∗ , r

∗ ∈ R with c̄r∗ < 0
→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0 ⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)
3. 0 ≤ z∗PP

⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Dantzig-Wolfe Pricing Problem

three cases for z∗PP = min
x≥0

{
(ct − πtA)x− π0 | Dx ≥ d

}
1. z∗PP = −∞ ⇒ we identified an extreme ray xr∗ , r

∗ ∈ R with c̄r∗ < 0
→ add variable λr∗ to the RMP

with cost ctxr∗ and column coefficients

(
Axr∗

0

)
// the precise value of c̄r∗ is not relevant in this case, so we “accept” the wrong objective function

2. −∞ < z∗PP < 0 ⇒ we identified an extreme point xq∗ , q
∗ ∈ Q with c̄q∗ < 0

→ add variable λq∗ to the RMP

with cost ctxq∗ and column coefficients

(
Axq∗

1

)
3. 0 ≤ z∗PP ⇒ there is no j ∈ Q ∪R with c̄j < 0.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 49/many

Projecting back to the Original Variables

▶ by construction, we can always obtain an original x solution from a master λ
solution via

x =
∑
q∈Q

λqxq +
∑
r∈R

λrxr

▶ this projection becomes interesting when we are interested in integer solutions

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 50/many

Wrap-Up

▶ we Dantzig-Wolfe reformulated a subset of constraints of a linear program

▶ these constraints are exactly those that appear in the pricing problem

▶ feasible solutions to these constraints “define” the meaning of the master variables

▶ this “effect” becomes even more visible when working with integer programs

✎ keep in mind

the variables (and constraints) of the pricing problem are from the original LP

Block-Diagonal Structure

▶ many models in practice have a block-diagonal structure // we know this already

min ct1x
1 + ct2x

2 + · · · + ctKxK

s.t. A1x
1 + A2x

2 + · · · + AKxK ≥ b

D1x
1 ≥ d1

D2x
2 ≥ d2

. . .
...

DKxK ≥ dK

x1 , x2 , . . . , xK ≥ 0

▶ K bins, K colors, K vehicles, K blocks, . . .

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 52/many

Block-Diagonal Structure: Reformulate the Block Constraints

▶ in a Dantzig-Wolfe context, the constraints

(
A1 A2 . . . AK

)


x1

x2
...

xK

 ≥ b // =: Ax ≥ b

are “complicating” because they involve all variables, whereas


D1

D2

. . .

DK




x1

x2
...

xK

 ≥


d1

d2
...

dK

 // =: Dx ≥ d

are “easier” since they decompose into independent subsystems
@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 53/many

Block-Diagonal Structure: Dantzig-Wolfe Reformulation

▶ key idea: reformulate each Xk = {xk ≥ 0 | Dkx
k ≥ dk} individually

▶ use extreme points {xk
q}q∈Qk

and extreme rays {xk
r}r∈Rk

of Xk

▶ like before, express every xk ∈ Xk, k ∈ [K], as

xk =
∑
q∈Qk

λk
qx

k
q +

∑
r∈Rk

λk
rx

k
r∑

q∈Qk

λk
q = 1

λk
q ≥ 0 q ∈ Qk

λk
r ≥ 0 r ∈ Rk

▶ and substitute this xk ∈ Xk in
K∑
k=1

Akx
k ≥ b and

K∑
k=1

ctkx
k.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 54/many

Block-Diagonal Structure: Development of the MP

▶ substitution of xk ∈ Xk in
K∑
k=1

Akx
k ≥ b and

K∑
k=1

ctkx
k yields

min

K∑
k=1

ctk

∑
q∈Qk

λk
qx

k
q +

∑
r∈Rk

λk
rx

k
r


s.t.

K∑
k=1

Ak

∑
q∈Qk

λk
qx

k
q +

∑
r∈Rk

λk
rx

k
r

 ≥ b

∑
q∈Qk

λk
q = 1 k ∈ [K]

λk
q ≥ 0 k ∈ [K], q ∈ Qk

λk
r ≥ 0 k ∈ [K], r ∈ Rk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 55/many

Block-Diagonal Structure: Development of the MP

▶ substitution of xk ∈ Xk in
K∑
k=1

Akx
k ≥ b and

K∑
k=1

ctkx
k yields

min

K∑
k=1

∑
q∈Qk

λk
qc

t
kx

k
q +

K∑
k=1

∑
r∈Rk

λk
rc

t
kx

k
r

s.t.
K∑
k=1

∑
q∈Qk

λk
qAkx

k
q +

K∑
k=1

∑
r∈Rk

λk
rAkx

k
r ≥ b

∑
q∈Qk

λk
q = 1 k ∈ [K]

λk
q ≥ 0 k ∈ [K], q ∈ Qk

λk
r ≥ 0 k ∈ [K], r ∈ Rk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 55/many

Block-Diagonal Structure: Development of the MP

▶ substitution of xk ∈ Xk in
K∑
k=1

Akx
k ≥ b and

K∑
k=1

ctkx
k yields

min

K∑
k=1

∑
q∈Qk

λk
q c

t
kx

k
q︸︷︷︸

=:ckq

+

K∑
k=1

∑
r∈Rk

λk
r c

t
kx

k
r︸︷︷︸

=:ckr

s.t.
K∑
k=1

∑
q∈Qk

λk
q Akx

k
q︸ ︷︷ ︸

=:ak
q

+

K∑
k=1

∑
r∈Rk

λk
r Akx

k
r︸ ︷︷ ︸

=:ak
r

≥ b

∑
q∈Qk

λk
q = 1 k ∈ [K]

λk
q ≥ 0 k ∈ [K], q ∈ Qk

λk
r ≥ 0 k ∈ [K], r ∈ Rk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 55/many

Block-Diagonal Structure: Development of the MP

▶ we arrive, again, at the Dantzig-Wolfe master problem

min

K∑
k=1

∑
q∈Qk

ckqλ
k
q +

K∑
k=1

∑
r∈Rk

ckrλ
k
r

s.t.
K∑
k=1

∑
q∈Qk

akqλ
k
q +

K∑
k=1

∑
r∈Rk

akrλ
k
r ≥ b [π]

∑
q∈Qk

λk
q = 1 [πk

0] k ∈ [K]

λk
q ≥ 0 k ∈ [K], q ∈ Qk

λk
r ≥ 0 k ∈ [K], r ∈ Rk

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 55/many

Block-Diagonal Structure: Multiple Pricing Problems

▶ we now have K Dantzig-Wolfe pricing problems

min
j∈Qk∪Rk

ctkx
k
j − πtAkx

k
j − πk

0

▶ which, again, we solve as

z∗PP,k = min (ctk − πtAk)x
k − πk

0

s. t. Dkx
k ≥ dk

xk ≥ 0

▶ column generation stops when 0 ≤ z∗PP,k ∀k ∈ [K]

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 56/many

(Not so) special Case: Aggregation of Identical Subproblems

▶ if, e.g., we perform a DW reformulation on the vertex coloring textbook model

▶ we arrive at stable sets in many different colors and master constraints

∑
p∈P:i∈p

λp =

∑
p∈P1:i∈p

λ1
p

+
∑

p∈P2:i∈p
λ2
p +

∑
p∈P3:i∈p

λ3
p + · · ·+

∑
p∈P|C|:i∈p

λ|C|
p

= 1 i ∈ V

▶ but the stable sets are “all the same!” (and pricing problems are “the same”)

⇒ aggregate λp = λ1
p + λ2

p + · · ·+ λ
|C|
p p ∈ P // colorless representation

and use only one “colorless” pricing problem

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 57/many

(Not so) special Case: Aggregation of Identical Subproblems

▶ if, e.g., we perform a DW reformulation on the vertex coloring textbook model

▶ we arrive at stable sets in many different colors and master constraints

∑
p∈P:i∈p

λp =

∑
p∈P1:i∈p

λ1
p +

∑
p∈P2:i∈p

λ2
p

+
∑

p∈P3:i∈p
λ3
p + · · ·+

∑
p∈P|C|:i∈p

λ|C|
p

= 1 i ∈ V

▶ but the stable sets are “all the same!” (and pricing problems are “the same”)

⇒ aggregate λp = λ1
p + λ2

p + · · ·+ λ
|C|
p p ∈ P // colorless representation

and use only one “colorless” pricing problem

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 57/many

(Not so) special Case: Aggregation of Identical Subproblems

▶ if, e.g., we perform a DW reformulation on the vertex coloring textbook model

▶ we arrive at stable sets in many different colors and master constraints

∑
p∈P:i∈p

λp =

∑
p∈P1:i∈p

λ1
p +

∑
p∈P2:i∈p

λ2
p +

∑
p∈P3:i∈p

λ3
p

+ · · ·+
∑

p∈P|C|:i∈p
λ|C|
p

= 1 i ∈ V

▶ but the stable sets are “all the same!” (and pricing problems are “the same”)

⇒ aggregate λp = λ1
p + λ2

p + · · ·+ λ
|C|
p p ∈ P // colorless representation

and use only one “colorless” pricing problem

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 57/many

(Not so) special Case: Aggregation of Identical Subproblems

▶ if, e.g., we perform a DW reformulation on the vertex coloring textbook model

▶ we arrive at stable sets in many different colors and master constraints

∑
p∈P:i∈p

λp =

∑
p∈P1:i∈p

λ1
p +

∑
p∈P2:i∈p

λ2
p +

∑
p∈P3:i∈p

λ3
p + · · ·+

∑
p∈P|C|:i∈p

λ|C|
p = 1 i ∈ V

▶ but the stable sets are “all the same!” (and pricing problems are “the same”)

⇒ aggregate λp = λ1
p + λ2

p + · · ·+ λ
|C|
p p ∈ P // colorless representation

and use only one “colorless” pricing problem

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 57/many

(Not so) special Case: Aggregation of Identical Subproblems

▶ if, e.g., we perform a DW reformulation on the vertex coloring textbook model

▶ we arrive at stable sets in many different colors and master constraints∑
p∈P:i∈p

λp =
∑

p∈P1:i∈p
λ1
p +

∑
p∈P2:i∈p

λ2
p +

∑
p∈P3:i∈p

λ3
p + · · ·+

∑
p∈P|C|:i∈p

λ|C|
p = 1 i ∈ V

▶ but the stable sets are “all the same!” (and pricing problems are “the same”)

⇒ aggregate λp = λ1
p + λ2

p + · · ·+ λ
|C|
p p ∈ P // colorless representation

and use only one “colorless” pricing problem

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 57/many

Mark my Words!

▶ even if you neva eva DW reformulate an IP in your lives, this is useful stuff

Dantzig-Wolfe and Column Generation for LPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 59/many

Dantzig-Wolfe and Column Generation for LPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 59/many

Dantzig-Wolfe and Column Generation for LPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 59/many

Dantzig-Wolfe and Column Generation for LPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 59/many

Dantzig-Wolfe and Column Generation for LPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 59/many

Briefly Pause

▶ but the pricing problems we have seen were integer programs!

Dantzig-Wolfe Reformulation for IPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ not tighter than standard LP relaxation

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 61/many

Dantzig-Wolfe Reformulation for IPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ for integer programs: partial convexification conv{x ∈ Zn | Dx ≥ d}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 61/many

Dantzig-Wolfe Reformulation for IPs: Pictorially

{x ∈ Qn | Dx ≥ d} ∩ {x ∈ Qn | Ax ≥ b}

“pricing problem”

“master problem”

▶ for integer programs: partial convexification, possibly stronger

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 61/many

Overview

1 Column Generation

2 Dantzig-Wolfe Reformulation

3 Branch-Price-and-Cut
3.1 Cutting Planes
3.2 Branching

Strong and Stronger

▶ using a Dantzig-Wolfe reformulation, we may obtain a stronger relaxation

▶ we can try to strengthen it even more by adding cutting planes

skip to branching

Cutting Planes in the Original Variables

▶ let us assume that we know a set of cutting planes Fx ≥ f for our original IP

z∗IP := min ctx
s.t. Ax ≥ b

Dx ≥ d
Fx ≥ f
x ∈ Zn

+

▶ how do they present themselves in the master problem?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 64/many

DW Reformulated Cutting Planes appear in the Master

▶ cuts Fx ≥ f are treated in the same way as Ax ≥ b

min
∑
q∈Q

cqλq +
∑
r∈R

crλr

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b [π]

∑
q∈Q

Fxq︸︷︷︸
=:fq

λq +
∑
r∈R

Fxr︸︷︷︸
=:fr

λr ≥ f [α]

∑
q∈Q

λq = 1 [π0]

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 65/many

Small Modifications in the Pricing Problem

▶ the cuts’ dual variables α impact the reduced cost calculation

min (ct − πtA−αtF)x − π0
s.t. Dx ≥ d

x ∈ Zn
+

▶ the pricing problem’s domain formally stays the same!
// “the pricing problem structure does not change”

→ specialized algorithms for the pricing problem may still work

▶ from a solution x∗ to the pricing problem one computes the cuts’ coefficients in
the master problem as usual as Fx∗ // the cuts are “lifted”

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 66/many

Algorithmic Modifications: Pricing and Cutting

initialize the RMP as usual
loop

solve the MP to optimality via column generation to obtain λ∗;
project λ∗ back to original variables x∗;
call separation algorithms on x∗;
if this produces a cut f tx ≥ f0 then

add
∑
q∈Q′

f txqλq +
∑
r∈R′

f txrλr ≥ f0 to the RMP with dual variable α;

respect α in objective function of the pricing problem;
else

break;

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 67/many

Experimental Strength of Cutting Planes in Original Variables

▶ we performed an experiment on many (mixed) integer programs (“instances”);
for each instance compute the integrality gap (z∗IP − z∗LP)/z

∗
LP; then report

→ the portion of the gap that is closed by the DW reformulation

→ the additional gap closed by generic cuts // those, SCIP can separate

▶ details in the Ph.D. thesis by Jonas Witt (2019)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 68/many

Experimental Strength of Cutting Planes in Original Variables

50 100 150 200
instance

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gcg-nosepa
gcg-sepa

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 69/many

Experimental Strength of Cutting Planes in Original Variables

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 69/many

Experimental Strength of Cutting Planes from Original

▶ attempt of an interpretation: DW reformulation is so strong that generic cutting
planes (from original) are already “implied” // what we observed for vertex coloring

▶ a formal proof of such results is an open research topic

▶ partial answers in the Ph.D. thesis by Jonas Witt (2019)

▶ still, in practice, adding (problem specific) cuts appears to be indispensable for a
good performance

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 70/many

Where we are

▶ it is not either reformulation or cutting planes

▶ the large body of literature on cutting planes can be combined with Dantzig-Wolfe

→ usually, only the objective function of the pricing problem needs adaptation
// when cuts involve zero cost variables of the pricing problem, constraints may change

▶ empirically, most strengthening is to be expected from problem specific cuts

Cutting Planes in the Master Variables

▶ assuming integer master variables, // which we can always do

we want to formulate cuts directly on the λ-variables

▶ this is also the case when the MP is stated as a “pattern based model,” not
arriving as a DW reformulation

▶ challenge: when these cuts don’t stem from a counterpart in original variables,
how can we know their coefficients in the pricing problem?

→ we will have to construct a counterpart in extended original variables!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 72/many

Cutting Planes in the Master Variables

▶ the master problem with cuts in the λ-variables reads

min
∑
q∈Q

cqλq +
∑
r∈R

crλr

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b [π]

∑
q∈Q

gqλq +
∑
r∈R

grλr ≥ h [β]

∑
q∈Q

λq = 1 [π0]

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 73/many

We restrict ourselves to Rank-1 Inequalities

▶ let us consider rank-1 inequalities, i.e., cut coefficients gj depend only on aj :
gj = g(aj) = g(Axj) ∑

q∈Q
aqλq +

∑
r∈R

arλr ≥ b [π]

∑
q∈Q

gqλq +
∑
r∈R

grλr ≥ h [β]

▶ the cut coefficients gj impact the reduced cost computation:

min ctx− πtAx− βtg(Ax) − π0
s.t. Dx ≥ d

x ∈ Zn
+

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 74/many

An Extended Original Problem. . .

▶ if we could express the dependency y = g(Axj) with linear constraints in the
original variables x and potentially additional original variables y,

▶ then, our master problem with the cuts we formulated in the λ-variables would
arrive by a Dantzig-Wolfe reformulation of

min ctx
s.t. Ax ≥ b

y ≥ h

Dx ≥ d
y = g(Ax)
x ∈ Zn

+

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 75/many

. . . yields an Extended Pricing Problem

▶ this gives the extended pricing problem

min ctx− πtAx− βty − π0
s.t. Dx ≥ d

y = g(Ax)
x ∈ Zn

+

▶ which is again a (mixed) integer program

▶ Desaulniers, Desrosiers, and Spoorendonk (2011) extend these considerations to
higher rank inequalities

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 76/many

Example: Edge Coloring

Data

undirected graph G = (V,E)

Goal

color all edges such that incident edges receive different colors;
minimize the number of used colors

// note: Vizing’s theorem states that ∆ or ∆+ 1 colors suffice, where ∆ is the maximum degree in G

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 77/many

Example: Edge Coloring

Data

undirected graph G = (V,E)

Goal

color all edges such that incident edges receive different colors;
minimize the number of used colors

// note: Vizing’s theorem states that ∆ or ∆+ 1 colors suffice, where ∆ is the maximum degree in G

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 77/many

Edge Coloring: A Compact Integer Program

χ′(G) = min
∑
c∈C

yc // minimize number of used colors

s.t.
∑
c∈C

xec = 1 e ∈ E // color each edge∑
e∈δ(i)

xec ≤ yc i ∈ V, c ∈ C // avoid conflicts

xec ∈ {0, 1} e ∈ E, c ∈ C // color edge e with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

▶ χ′(G) is called the chromatic index of G.

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 78/many

Edge Coloring: A Set Partitioning Formulation

▶ observation: an edge coloring partitions E into matchings

⇒ Nemhauser & Park (1991) formulate a set partitioning model
// this is the aggregated DW reformulation of the previous original IP

min
∑
j∈J

λj

s.t.
∑
j∈J

ajλj = 1

λj ∈ {0, 1} j ∈ J

▶ with the set J of all matchings in G; the incidence vector aj of matching j ∈ J

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 79/many

Edge Coloring: A Set Partitioning Formulation

▶ solve the LP relaxation by column generation

min
∑
j∈J

λj

s.t.
∑
j∈J

ajλj = 1 [π free]

λj ≥ 0 j ∈ J

▶ the pricing problem is

min

{
1−

∑
e∈E

πexe | x matching in G

}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 80/many

Edge Coloring: A Set Partitioning Formulation

▶ solve the LP relaxation by column generation

min
∑
j∈J

λj

s.t.
∑
j∈J

ajλj = 1 [π free]

λj ≥ 0 j ∈ J

▶ the pricing problem is

min

1−
∑
e∈E

πexe |
∑
e∈δ(i)

xe ≤ 1, i ∈ V, xe ∈ {0, 1}, e ∈ E


@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 80/many

Odd Circuit Cuts

▶ consider an odd circuit C in G

→ we need at least three matchings to cover C

▶ the odd circuit cut derived from C is

in the master problem∑
j∈J

g(aj)λj =

∑
j∈J :j∩C ̸=∅

λj ≥ 3

[βC ≥ 0]

▶ we use a new binary variable yC := g(aj) = 1 ⇐⇒ j intersects C

▶ this leads to an extended pricing problem:

min

{
1−

∑
e∈E

πexe − βCyC | yC ≤
∑
e∈C

xe, x matching, yC ∈ {0, 1}

}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 81/many

Odd Circuit Cuts

▶ consider an odd circuit C in G

→ we need at least three matchings to cover C

▶ the odd circuit cut derived from C is

in the master problem∑
j∈J

g(aj)λj =

∑
j∈J :j∩C ̸=∅

λj ≥ 3

[βC ≥ 0]

▶ we use a new binary variable yC := g(aj) = 1 ⇐⇒ j intersects C

▶ this leads to an extended pricing problem:

min

{
1−

∑
e∈E

πexe − βCyC | yC ≤
∑
e∈C

xe, x matching, yC ∈ {0, 1}

}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 81/many

Odd Circuit Cuts

▶ consider an odd circuit C in G

→ we need at least three matchings to cover C

▶ the odd circuit cut derived from C is in the master problem∑
j∈J

g(aj)λj =
∑

j∈J :j∩C ̸=∅

λj ≥ 3 [βC ≥ 0]

▶ we use a new binary variable yC := g(aj) = 1 ⇐⇒ j intersects C

▶ this leads to an extended pricing problem:

min

{
1−

∑
e∈E

πexe − βCyC | yC ≤
∑
e∈C

xe, x matching, yC ∈ {0, 1}

}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 81/many

Odd Circuit Cuts

▶ consider an odd circuit C in G

→ we need at least three matchings to cover C

▶ the odd circuit cut derived from C is in the master problem∑
j∈J

g(aj)λj =
∑

j∈J :j∩C ̸=∅

λj ≥ 3 [βC ≥ 0]

▶ we use a new binary variable yC := g(aj) = 1 ⇐⇒ j intersects C

▶ this leads to an extended pricing problem:

min

{
1−

∑
e∈E

πexe − βCyC | yC ≤
∑
e∈C

xe, x matching, yC ∈ {0, 1}

}

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 81/many

Odd Circuit Cuts

▶ consider an odd circuit C in G

→ we need at least three matchings to cover C

▶ the odd circuit cut derived from C is in the master problem∑
j∈J

g(aj)λj =
∑

j∈J :j∩C ̸=∅

λj ≥ 3 [βC ≥ 0]

▶ we use a new binary variable yC := g(aj) = 1 ⇐⇒ j intersects C

▶ this leads to an extended pricing problem:

min

{
1−

∑
e∈E

πexe − βCyC | yC ≤
∑
e∈C

xe, x matching, yC ∈ {0, 1}

}
@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 81/many

Odd Circuit Cuts: Extended Pricing Problem

▶ why is this extended pricing problem correct?
// = why does it produce the correct coefficient in the cut?

min 1−
∑
e∈E

πexe − βCyC

s.t.
∑
e∈δ(i)

xe ≤ 1 i ∈ V

yC ≤
∑
e∈C

xe

xe ∈ {0, 1} e ∈ E
yC ∈ {0, 1}

▶ “ yC = 1⇒ j intersects C ” is enforced, but not the converse

▶ however, since βC ≥ 0 there is an incentive to set yC = 1

⇒ at optimality, yC = 1 ⇐⇒ j intersects C

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 82/many

Comparing the Strength of Cutting Planes

▶ cuts on the original are the special case y = g(Ax) = Fx
// the cut can be expressed as a linear function of the original variables, no extra y needed

⇒ master cuts are at least as strong as original cuts

▶ in order to derive a master cut from the original model one may need additional
variables and constraints

▶ this is consistent with the theory of extended formulations

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 83/many

Where we are

▶ not only are cutting planes (on the original) compatible with DW reformulation

▶ DW reformulation enables potentially stronger cutting planes

→ some creativity may be needed to modify the original/pricing problem

Reminder: We want to solve an Integer Program

▶ original problem:

min ctx
s.t. Ax ≤ b

x ∈ X

X = {x ∈ Zn
+ | Dx ≤ d}

So far we only solved Linear Programs

▶ noone ever: “we solved our integer program by column generation!”

So far we only solved Linear Programs

▶ the algorithm to solve integer programs is the LP based B&C algorithm

▶ branch-and-price(-and-cut) means

solving the LP relaxation in each node of the B&C tree by column generation

▶ we solved the root node so far

⇒ we need to branch!

Thou shalt not branch on single Master Variables

▶ branching on single master variables λj = λ∗
j /∈ Z is not advisable

1. the resulting tree is unbalanced :
λj ≤ ⌊λ∗

j⌋ forbids almost nothing; λj ≥ ⌈λ∗
j⌉ enforces much

2. a down branch λj ≤ ⌊λ∗
j⌋ can be very hard to respect in the pricing problem:

how to avoid re-generating λj?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 88/many

Thou shalt not branch on single Master Variables

▶ branching on single master variables λj = λ∗
j /∈ Z is not advisable

1. the resulting tree is unbalanced :
λj ≤ ⌊λ∗

j⌋ forbids almost nothing; λj ≥ ⌈λ∗
j⌉ enforces much

2. a down branch λj ≤ ⌊λ∗
j⌋ can be very hard to respect in the pricing problem:

how to avoid re-generating λj?

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 88/many

Branching on Original Variables

▶ via DW reformulation we arrived at the integer master problem

z∗IMP = min
∑
q∈Q

cqλq +
∑
r∈R

crλr

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b

∑
q∈Q

λq = 1

λq ≥ 0 q ∈ Q

λr ≥ 0 r ∈ R

x =
∑
q∈Q

xqλq +
∑
r∈R

xrλr

x ∈ Zn
+

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 89/many

Branching on Original Variables

▶ when x = x∗ ∈ Zn
+ we are done

▶ otherwise, there is an xi with x∗i /∈ Z+

▶ create two branches via xi ≤ ⌊x∗i ⌋ and xi ≥ ⌈x∗i ⌉

▶ there are two options for doing so

→ imposing the branching constraints in the master or in the pricing
// this is the same as in cutting

▶ these ideas date back to Desrosiers, Soumis, Desrochers (1984)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 89/many

Branching on Original Variables: In the Master

▶ we only consider the down branch; the up branch is analogous
// also called left branch

▶ we impose xi ≤ ⌊x∗i ⌋ in the master problem by adding the constraint∑
q∈Q

xqiλq +
∑
r∈R

xriλr ≤ ⌊x∗i ⌋ [αi]

where xji is the i-th coordinate of xj , j ∈ Q ∪R
// this is like formulating a cutting plane on original variables

▶ we already know how to respect the dual αi in the pricing:

min (ct − πtA)x− αixi − π0
s.t. Dx ≥ d

x ∈ Zn
+

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 90/many

Branching on Original Variables: In the Master

▶ we only consider the down branch; the up branch is analogous
// also called left branch

▶ we impose xi ≤ ⌊x∗i ⌋ in the master problem by adding the constraint∑
q∈Q

xqiλq +
∑
r∈R

xriλr ≤ ⌊x∗i ⌋ [αi]

where xji is the i-th coordinate of xj , j ∈ Q ∪R
// this is like formulating a cutting plane on original variables

▶ we already know how to respect the dual αi in the pricing:

min (ct − πtA)x− αixi − π0
s.t. Dx ≥ d

x ∈ Zn
+

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 90/many

Branching on Original Variables: In the Pricing

▶ alternatively, impose the branching constraint in the pricing

min (ct − πtA)x − π0
s.t. Dx ≥ d

xi ≤ ⌊x∗i ⌋
x ∈ Zn

+

▶ in this variant, we additionally need to forbid master variables that contradict the
branching decision:

→ remove all variables λj from RMP with xji > ⌊x∗i ⌋
→ this is implemented by imposing a local upper bound λj ≤ 0

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 91/many

What Original Variables?

▶ “what if I have no original problem/variables?”
// i.e., “I did not perform a DW reformulation, I just started generating columns!”

▶ you always have original variables!

→ these are the variables of the pricing problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 92/many

What Original Variables?

▶ “what if I have no original problem/variables?”
// i.e., “I did not perform a DW reformulation, I just started generating columns!”

▶ you always have original variables!

→ these are the variables of the pricing problem!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 92/many

But what Happens when the Master is Aggregated?

▶ e.g., our models for vertex coloring

▶ original variables xic carry a color

▶ but master variables λp represent colorless stable sets
// neither do pricing problem variables have any color!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 93/many

But what Happens when the Master is Aggregated?

▶ e.g., our models for vertex coloring

▶ original variables xic carry a color

▶ but master variables λp represent colorless stable sets
// neither do pricing problem variables have any color!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 93/many

We could try a Disaggregation (“Recover the Color”)

1. distribute the value λ∗
p of a λp variable to the corresponding λc

p variables, e.g., evenly

λp = λ∗
p

λ1
p =

λ∗
p

|C| λ2
p =

λ∗
p

|C| λ3
p =

λ∗
p

|C|
. . . λ

|C|
p =

λ∗
p

|C|

2. derive original variable values “as usual”

xi1 =
∑
p:i∈p

λ1
p xi2 =

∑
p:i∈p

λ2
p xi3 =

∑
p:i∈p

λ3
p . . . xi|C| =

∑
p:i∈p

λ|C|
p

▶ besides the “colorless” pricing problem, one now needs (some) “colorful” ones!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 94/many

We could try a Disaggregation (“Recover the Color”)

1. distribute the value λ∗
p of a λp variable to the corresponding λc

p variables, e.g., evenly

λp = λ∗
p

λ1
p =

λ∗
p

|C| λ2
p =

λ∗
p

|C| λ3
p =

λ∗
p

|C|
. . . λ

|C|
p =

λ∗
p

|C|

2. derive original variable values “as usual”

xi1 =
∑
p:i∈p

λ1
p xi2 =

∑
p:i∈p

λ2
p xi3 =

∑
p:i∈p

λ3
p . . . xi|C| =

∑
p:i∈p

λ|C|
p

▶ besides the “colorless” pricing problem, one now needs (some) “colorful” ones!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 94/many

We could try a Disaggregation (“Recover the Color”)

1. distribute the value λ∗
p of a λp variable to the corresponding λc

p variables, e.g., evenly

λp = λ∗
p

λ1
p =

λ∗
p

|C| λ2
p =

λ∗
p

|C| λ3
p =

λ∗
p

|C|
. . . λ

|C|
p =

λ∗
p

|C|

2. derive original variable values “as usual”

xi1 =
∑
p:i∈p

λ1
p xi2 =

∑
p:i∈p

λ2
p xi3 =

∑
p:i∈p

λ3
p . . . xi|C| =

∑
p:i∈p

λ|C|
p

▶ besides the “colorless” pricing problem, one now needs (some) “colorful” ones!

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 94/many

This Always Works

▶ potential disaggregation, then branching on original variables is a complete
branching scheme

▶ originally proposed by Villeneuve et al. (2005)

▶ we could do the disaggregation much better

→ Vanderbeck (2011) uses lexicographic disaggregation

▶ however, drawback always: this (partially) re-introduces the symmetry (in colors)

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 95/many

François is not happy with us the Symmetry

▶ assume: all generated RMP variables λj , j ∈ J ′ will be finally integer
// actually, this may be a bit strong, but it never hurts

⇒ for every subset Ĵ ⊆ J ′ we will have∑
j∈Ĵ

λj = β ∈ Z+ (1)

⇒ provide a rule that, should the current master solution be fractional, identifies a
subset Ĵ ⊆ J for which (1) does not hold

▶ then branch
either

∑
j∈Ĵ

λj ≤ ⌊β⌋ or
∑
j∈Ĵ

λj ≥ ⌈β⌉

▶ Vanderbeck (2000, 2005, 2011) has many wonderful such rules

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 96/many

Popular Special Case: Ryan and Foster (1981)

Ryan and Foster (1981)

Proposition. Let A ∈ {0, 1}m×n. For a fractional basic solution λ∗ /∈ {0, 1}n to the
(LP relaxation of the) set partitioning problem

min
{
ctλ | Aλ = 1,λ ∈ {0, 1}n

}
there exist r, s ∈ [m] with

0 <
∑

j:arj=asj=1

λ∗
j < 1 .

// summing over all subsets Ĵ that contain both elements, r and s

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 97/many

Ryan-Foster Branching for Set Partitioning

▶ with this result, the natural branching disjunction is

wrs :=
∑

j:arj=asj=1

λj = 0 or wrs = 1

▶ there are different ways of actually doing this, Ryan & Foster (1981) suggest to
modify the pricing problem, by adding

xr + xs ≤ 1 or xr = xs

“differ branch” “same branch”

// this can be easily handled in some applications

+ eliminate master variables that contradict the branching decision

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 98/many

If you had 15 More Minutes. . .

▶ Lagrangian relaxation and how it relates to DW reformulation

▶ Benders decomposition

@mluebbecke@mas.to · CO@Work 2024 · Branch-and-Price Crash Course · 99/many

optimizingwithcolumngeneration.github.io

@mluebbecke@mas.to · CO@Work 2024 · Resources · 100/many

optimizingwithcolumngeneration.github.io

BRANCH-AND-PRICE

Jacques Desrosiers

Marco Lübbecke

Guy Desaulniers

Jean Bertrand Gauthier

gerad.ca/en/papers/G-2024-36

@mluebbecke@mas.to · CO@Work 2024 · Resources · 101/many

gerad.ca/en/papers/G-2024-36

	Column Generation
	Dantzig-Wolfe Reformulation
	Dantzig-Wolfe Reformulation for LPs
	Column Generation
	Multiple Subproblems and Aggregation

	Branch-Price-and-Cut
	Cutting Planes
	Branching

