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Branch-and-Price is about

P extending your modeling capabilities

P algorithmically exploiting subproblems that you can solve well



The Cutting Stock Problem
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Example: The Cutting Stock Problem

Data

m rolls of raw material, each of length W > 0; and

n items of length w; > 0 with a demand of b; € Z,i=1,...,n
Goal

cut rolls into items, satisfying all demands, minimizing the number of used rolls
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}

Tij € Ly 1€ [n], je [m] // how often to cut i from j

in our context: this is the “original” or “compact” formulation
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}
m
s.t. Zﬂ?ij > b; i€ [n] // cover all demands
j=1
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}
m
s.t. Zﬂ?ij > b; i€ [n] // cover all demands
j=1
n
Zwixij <WwW VRS [m] // respect roll capacities
=1

Tij € Ly 1€ [n], j€ [m] // how often to cut i from j

in our context: this is the “original” or “compact” formulation
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}
m
s.t. Zﬂ?ij > b; i€ [n] // cover all demands
j=1
n
Zwixij <Wy;, JjE€ [m] // respect roll capacities
=1
Tij € Ly 1€ [n], j€ [m] // how often to cut i from j
y; € {0,1} j € [m] // do we use roll 57

in our context: this is the “original” or “compact” formulation
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The Cutting Stock Problem: An “Assignment Type" Model

» formulation as an integer program; notation [n] := {1,...,n}
m
min Zyj // minimize number of used rolls
7j=1
m
s.t. Zﬂ?ij > b; i€ [n] // cover all demands
j=1
n
Zwixij <Wy;, JjE€ [m] // respect roll capacities
i=1

Tij € Ly 1€ [n], j€ [m] // how often to cut i from j
y; € {0,1} j € [m] // do we use roll 5?

in our context: this is the “original” or “compact” formulation
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Observations on the Compact Model

i.e., they don’t share any variables

» the model contains m independent knapsack constraints (“local™)

// we know well how to solve knapsack problems
n
Z’wil‘zj <W je [m] // respect roll capacities
i=1
> these are “coordinated” by the demand constraints (“global™)

» the model is symmetric in index j: given a feasible solution, any permutation of
the j indices gives an equivalent feasible solution // this is bad
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Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

» how do solutions look like? how can we possibly cut one roll?

> the set P of (encodings of) all feasible cutting patterns is azp = 1
asp = 1
aq n
P = EZCLFIZU)Z'(IZ'SW
a i=1
n

» for each p € P, denote by a;, € Z how often i is cut in p
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Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

» we build a model on these observations, on entire configurations

Ap €EZy pEP /) how often to cut pattern p?

in our context: we call this an “extended” formulation  // well, in fact, it is one
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Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

» we build a model on these observations, on entire configurations

s.t. Z aippAp > b; i€ [n] // cover all demands
peEP
Ap€EZy pEP /) how often to cut pattern p?

in our context: we call this an “extended” formulation  // well, in fact, it is one
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Cutting Stock Problem: Kantorovich (1939), Gilmore & Gomory (1961)

» we build a model on these observations, on entire configurations

min Z Ap // minimimize number of patterns used
peEP
s.t. Z aippAp > b; i€ [n] // cover all demands
peEP

Ap€EZy pEP /) how often to cut pattern p?

in our context: we call this an “extended” formulation  // well, in fact, it is one

» how can we solve even only the LP relaxation of such models?
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Column Generation
B Dantzig-Wolfe Reformulation

HE Branch-Price-and-Cut



Column Generation to solve a Linear Program

> we want to solve the master problem (MP)

Zyp = min Z CjAj
jedJ
s.t. Z aj)\j >b
JjeJ
Aj >0 Vield

> typically, |J| huge
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Column Generation to solve a Linear Program

» but we solve the restricted master problem (RMP), with J" C .J

ZpMp = Min E CjAj
jeJ’

s.t. Z aj)\j >b
jeJ’

A >0 vjeJ

> typically, |J| huge, |J'| small
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Column Generation to solve a Linear Program

» but we solve the restricted master problem (RMP), with J" C .J

ZpMp = Min Z CjAj
jeJ’
s.t. Z aj)\j >b [ﬂ']
jeJ’
Aj >0 vjeJ

> typically, |J| huge, |J'| small
P use e.g., simplex method to obtain optimal primal A and optimal dual 7
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Column Generation to solve a Linear Program

» but we solve the restricted master problem (RMP), with J" C .J

ZpMp = Min Z CjAj
jeJ’
s.t. Z aj)\j >b [71']
jeJ’
Aj >0 vjeJ

> typically, |J| huge, |J'| small
P use e.g., simplex method to obtain optimal primal A and optimal dual 7

» does A solve the master problem to optimality as well?
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Column Generation to solve a Linear Program

» but we solve the restricted master problem (RMP), with J" C .J

ZpMp = Min Z CjAj
jeJ’
s.t. Z aj)\j >b [71']
jeJ’
Aj >0 vjeJ

> typically, |J| huge, |J'| small
P use e.g., simplex method to obtain optimal primal A and optimal dual 7
» does A solve the master problem to optimality as well?

> sufficient optimality condition: ¢;(m) = ¢; — w'a; >0, Vj € J
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Idea for an Algorithm: Explicit Pricing

> this suggests a natural iterative procedure to solve the MP:

solve RMP (with J') to optimality
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> this suggests a natural iterative procedure to solve the MP:

solve RMP (with J') to optimality
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Idea for an Algorithm: Explicit Pricing

> this suggests a natural iterative procedure to solve the MP:

solve RMP (with J') to optimality

compute sign of all ¢j(7), j € J\ J'
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Idea for an Algorithm: Explicit Pricing

> this suggests a natural iterative procedure to solve the MP:

J' e J'U {.7'*}\ solve RMP (with J') to optimality

Aje [if &5+ () < 0

compute sign of all ¢j(7), j € J\ J'

@ @mluebbecke@mas.to - CO®@Work 2024 - Branch-and-Price Crash Course - 11/many



Idea for an Algorithm: Explicit Pricing

> this suggests a natural iterative procedure to solve the MP:

J e J'U {.7'*}\ solve RMP (with J') to optimality

Aje [if &5+ () < 0

stop, if ¢j(7w) > 0Vj compute sign of all ¢j(7), j € J\ J'

> however, this explicit pricing is totally out of the question

i.e., complete enumeration of all variables, these are simply too many
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Better Idea: Implicit Pricing

P instead: solve an auxiliary optimization problem  // implicit enumeration

¢*(m) = min{¢;(w) | j € J}
» this is called the pricing problem, subproblem, oracle, or column generator

— if &*(m) <0, we set J' < J' Uargmin, ;{¢;(m)}
and re-optimize the restricted master problem

— otherwise, i.e., ¢*(m) > 0, there is no j € J with ¢&;(m) <0
and we proved that we solved the master problem to optimality

& keep in mind
this identifies a master variable of negative reduced cost or proves that none exists

Operations
R
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Better Idea: Implicit Pricing

P this is almost the same as before, with a “tiny detail” changed

J «— JU{j }\ solve RMP (with J’) to optimality

stop, if ¢; > 0V compute sign of all ¢j, j € J\ J’
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Better Idea: Implicit Pricing

P this is almost the same as before, with a “tiny detail” changed

J «— JU{j }\ solve RMP (with J’) to optimality

stop, if ¢; > 0V compute sign of = ¢;, j € J\ J'

a most negative
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Summary: The Column Generation Algorithm

algorithm column generation

input: restricted master problem RMP with an initial set J’ C J of variables;
output: optimal solution A to the master problem MP;

repeat
solve RMP to optimality, obtain A and 7r;
solve pricing problem ¢*(7) = min{¢;(x) | j € J};
if ¢*(m) < 0 then
| J' < J'U{j*} with ¢;«(m) = &*(); // add variable );+ to RMP

until ¢*(7) > 0;
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Origins of the Method: Around 1958 in the Western World

A SUGGESTED COMPUTATION FOR MAXIMAL MULTI-
COMMODITY NETWORK FLOWS*

L. R. FORD, JR. anpo D. R. FULKERSON
The RAND Corporation, Santa Monica, California

A simplex computation for an arc-chain formulation of the maximal multi-
commodity network flow problem is proposed. Since the number of variables
in this formulation is too large to be dealt with explicitly, the computation
treats non-basic variables implicitly by replacing the usual method of de-
termining a vector to enter the basis with several applications of a combin-
atorial algorithm for finding a shortest chain joining a pair of points in a
network.

Management Science, 5(1):97-101, 1958
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But already around/before 1951 in the former Soviet Union

Kantorovich and Zalgaller. Calculation of rational cutting of stock, Leningrad, Lenizdat, 1951

RWTHAACHEN
UNIVERSITY
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Example: Cutting Stock: Restricted Master Problem

» solve (restricted) LP relaxation of Kantorovich-Gilmore-Gomory formulation

min Z Ap

peP’
st > apy > b Vi€ [n]
pEP’
A >0 VpeP
with ' C P = {(a1,...,an) € Z" | 37 | wia; < W}

— obtain optimal primal A and optimal dual ! = (71,...,7,)

// one dual variable per demand
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Example: Cutting Stock: Reduced Cost

» reduced cost of A,

alp
(lgp

V=
o

Cp(m) =1—(m1,...,m) -

for all feasible cutting patterns p € P

» again: explicit enumeration of all patterns impracticable
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Example: Cutting Stock: Pricing Problem

P instead: solve auxiliary optimization problem

Q1p

e () = min &(m) = min 1 N
C (7)) = ImIN Cp(7T) = IIN —\T1y..., T .
= D = 1, y In

Anp
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Example: Cutting Stock: Pricing Problem

P instead: solve auxiliary optimization problem

Q1p

e () = min &(m) = min 1 N
C (7T) = 1IN Cp( 77 ) = min — \T1,... s .

peP P peP b o :

Anp

n
=min 1-— g %
i=1

n
s.t. Zwiﬂfi <w
i—1

xi €Z+ i€]n] .
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Example: Cutting Stock: Pricing Problem

P instead: solve auxiliary optimization problem

Q1p

e () = min &(m) = min 1 N
C (7T) = 1IN Cp( 77 ) = min — \T1,... s .
peP P peP b o

Anp

n
=1— max g %
i=1

n
s.t. Zwil‘i <w
i=1
ri €724+ i€n] .

» which is an integer knapsack problem!
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Example: Cutting Stock: Pricing Problem

> two cases for the minimum reduced cost ¢*(7r) = min ¢,():

peP
1. ¢*(m) <0,
that is, (7i);c[n) represents a feasible pattern p = (aip)icjn
P« P U{p};

repeat solving the RMP.

2. ¢(m) >0
proves that there is no negative reduced cost (master variable that
corresponds to a) feasible pattern
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Another Example: Vertex Coloring

Data
G = (V, E) undirected graph

Goal
color all vertices such that adjacent vertices receive different colors, minimizing the
number of used colors // like almost all problems we are interested in, this is NP-hard

Operations
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Another Example: Vertex Coloring

Data
G = (V, E) undirected graph

Goal
color all vertices such that adjacent vertices receive different colors, minimizing the
number of used colors // like almost all problems we are interested in, this is NP-hard

Operations
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Vertex Coloring: Textbook Model

» notation: C set of available colors
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Vertex Coloring: Textbook Model

» notation: C set of available colors

zic €{0,1} i€V,eeC  // colori with ¢?
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Vertex Coloring: Textbook Model

» notation: C set of available colors

s.t. wa =1 icV
ceC

zi. €{0,1} i€V, ceC
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// color each vertex

// color i with ¢?



Vertex Coloring: Textbook Model

» notation: C set of available colors

s.t. Z Tie = 1
ceC
Tic + Ljc <1

Tic € {07 1}

@ @mluebbecke@mas.to - CO®@Work 2024 - Branch-and-Price Crash Course -

1eV // color each vertex

ij € E, ce C // avoid conflicts

1€V,ceC  // coloriwith ¢?
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Vertex Coloring: Textbook Model

» notation: C set of available colors

@ @mluebbecke@mas.to -

s.t.

CO®@Work 2024 -

D wie=1

ceC
Tic + Tje < 1
Tie < Ye

Zie € {0, 1}
ye € {0,1}

Branch-and-Price Crash Course -

1eV

iJjeE, cel
1€V, cel
i1eV,cel
ceC

22 /many

// color each vertex

// avoid conflicts
// couple x and y
// color i with ¢?

// do we use color c?



Vertex Coloring: Textbook Model

» notation: C set of available colors

X(G) = min Zyc // minimize number of used colors

ceC
s.t. Z Tie = 1 1eV // color each vertex
ceC
Tic +Tje < 1 ij € E, ce C // avoid conflicts
Tie < Ye 1€V, cel // couple x and y
zic € {0,1} i€V,ceC  // coloriwith ¢?
Ye € {07 1} ceC // do we use color c?

» x(G) is called the chromatic number of G.
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Defects of the Textbook Model

» the LP relaxation is extremely weak

» optimal fractional solution, e.g.,
Lic, = X4, = 05,1V
Yo, =y =05
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Defects of the Textbook Model

» the LP relaxation is extremely weak

» optimal fractional solution, e.g.,
Lic, = X4, = 05,1V
Yo, =y =05

» model symmetry in C': for every feasible z;., y. and a permutation ¢ : C — C,
also Tig(c)r Yg(c) is feasible

] </ <] _
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An Alternative Model based on Color Classes

» observation: every color class forms an independent/stable set

» coloring: a partition of the vertex set V' into independent sets
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An Alternative Model based on Color Classes

» the set P of (encodings of) all independent sets in G is

aj
P = €013 ai+a; <1 VijeE
ajv|

» for each p € P, denote by a;, € {0, 1} whether vertex i is contained in
independent set p
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Vertex Coloring: Master Problem

Ap € {0,1} p € P // do we use independent set p?
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Vertex Coloring: Master Problem

s.t. Z aipp =1 1€V /] every vertex must be covered
peP
Ap € {0,1} p € P // do we use independent set p?
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Vertex Coloring: Master Problem

min Z Ap // minimimize number of sets used
peEP
s.t. Z aipp =1 1€V /] every vertex must be covered
peP

Ap € {0,1} p € P // do we use independent set p?

P the LP relaxation gives a master problem
» solve it by column generation

— dual variables 7" = (71, ..., ), one per vertex
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Vertex Coloring: Pricing Problem

» the pricing problem looks like

alp

¢ () = mi Gy() = min 1 ( -
C (7)) = min C,(77) = min —\1,...,T .
pEP P pEP b IV

a\vip
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Vertex Coloring: Pricing Problem

» the pricing problem looks like

A1p
7*( ) i 7( ) in 1 ( V) e
C |\7T) = 1IN Cp|( 77T ) = MmN 7 e, T .
pEP P pEP b IV
avip

= min 1—5 ;X4

eV
s.t. i t+x; <1 ijeEER
x; €{0,1} ieV .
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Vertex Coloring: Pricing Problem

» the pricing problem looks like

alp

¢ () = mi Gy() = min 1 ( -
C (7)) = min C,(77) = min —\1,...,T .
pEP P pEP b IV

a\vip

=1- maXE T T

9%
s.t. i t+ax; <1 ijeER
x; €{0,1} ieV .

» which is a maximum weight independent set problem!
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Tiny Numerical Example

(@) (d) P = {de,odo, oo, Lo, oFn oL}
min )"<i/° + )‘W + )\Kﬁ:ﬁ + )\o@. + )\.@/. + )\o@.
s. t. >\.<ﬁ;/a + )"<i/'
)\OQ/O + /\oq/.
Ao

Ag. + Ag. + At e
Ao s Aoy Ade s Ada s Ag., A
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Tiny Numerical Example

(a) (@) P = {<ie, <o who i wdn e} 5 MP

stable sets are encoded by their incidence vectors

min)\@—i—)\o@o—i- )\Kﬁ:ﬁ—i-/\o@.-f- )"<i/'+ )\o@.

s. t. >\.<ﬁ;/a + )"<i/' + ())\o@, = 1 [ﬂ'a]
)\OQ/O + 1 )\oq/, =1 [71’ b]
)\0@:/, + 0 /\ﬂ/\I/- =1 [7T C]
)\o@/. + )\.<I/. + 1 Aaq/, = 1 [7T d]
>\‘<I/° , )‘°<I/° , >\°<i/° , )\(4/. , )\‘<i/’ , )‘ﬂ/\I/- > 0
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Tiny Numerical Example

(a) (@) P = {Se, <o, <hn, Lo }

min Ay, + Ag. + Age + 0 Ag.
s. t. >\.<ﬁ;/a
Aot
Ao
A
>\‘<I/° , )‘°<I/° R >\°<i/° , )\(4/.
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=1
=1
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> 0




Tiny Numerical Example

» RMP optimal: Ay =Ag.=Ag.=As.=1, mu=m=m.=m3=1

P pricing:
c'(m) =min 1 — 7w,xq — MxY — TeXe — Takg
Tq + Ty < 1
Tq + T < 1
xy + X < 1
Te + rg <1
Tq , xp Te zqg € {0,1}
= we see that for the two missing variables c4.=cs.= -1

= we add )\.@/. or )‘°<I/° to the RMP, and iterate
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Tiny Numerical Example

» observe: an optimal (“fractional”) solution to the MP is e.g.,

)\.Q/, = )‘°<f/’ = )‘ﬂ/\I/- =1
» the dual bound we obtain from this solution is 3

» compare: the dual bound we obtain from the original LP relaxation is 1!

— it is a coincidence that this solution is integer and the dual bound is tight
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Initialization: How to choose an initial P’?

> e.g., for the vertex coloring problem:

P = U{(al,...,a|v|)t} with a, :{ (1) Z;«:éz

eV

i.e., one stable set per vertex, consisting of that single vertex
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Initialization: How to choose an initial P’?

> e.g., for the vertex coloring problem:
P = J{(ar, - oap)y with ay =4 + V50
= | 1ye-5 0y S0 v
eV
i.e., one stable set per vertex, consisting of that single vertex

» or use a heuristic
» or artificial variables (“phase I")

» or use Farkas pricing
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Practically Important: Several Pricing Problems

> in applications we often have different, say K’ many “types” of objects

// different types of vehicles, containers, material, persons, ...

Zyp = min Z Z ck)\k

kG[K ]EJk

Y D alN>b [q]

ke[K]jEIk
AF >0 Vk € [K]| V) € Jj,
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Practically Important: Several Pricing Problems

> the K classes of variables have their respective own “realms”

A pEPL AL pE P S pePr

> this requires K pricing problems: ¢**(7) = min{é?(ﬂ') |j € Ji}, ke K]

> the optimality condition becomes: 5;?(71') = c;? - wtaf >0, Vk € [K]|Vj € Jy
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Dual Bounds on the Master Problem Optimum

Interpretation of reduced costs in linear programs in general
» ¢;(m) is the potential objective improvement when \; is increased by one unit
P assume that we know a k with Z)\j < k for any A-solution
Jj€J
= current objective function value cannot be improved by more than & - mi§1 cj()
jE
Lemma (Lagrangian bound)

Given the optimal values of the RMP and pricing problem, zryp and ¢*(7), then
ZrRMP + £ - € (1) < 2yp

when column generation stops, i.e., when ¢* = 0, the bound becomes tight
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Dual Bounds on the Master Problem Optimum

—— zZrMP + KE(T)

*

v N

” “ﬂ VW

: H"‘ : : : : : *

100 200 300 400 500 600 700 800 900

iteration
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Tailing Off and Early Termination

» tailing off: the slow convergence at the end of the column generation process

P given a dual bound on the master optimum, we could stop generating columns
when a certain (relative) quality is reached, called early termination
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Question

» how do we arrive at such models like Kantorovich-Gilmore-Gomory's?



H Column Generation

Dantzig-Wolfe Reformulation

2.1 Dantzig-Wolfe Reformulation for LPs
2.2 Column Generation

2.3 Multiple Subproblems and Aggregation

B Branch-Price-and-Cut



Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron
For P C R™, the following are equivalent:
1. P is a polyhedron

2. There are finite sets {x,},c0, {X }rer € R™ such that
P = COHV({Xq}qu) + cone({xr}TGR) // “P is finitely generated”

» choose {x,},cq (resp. {X,},cr) as P's extreme points (resp. extreme rays)
| FOWIM
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Minkowski (1896), Farkas (1902), Weyl (1935)
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.\o

» choose {x,},cq (resp. {X,},cr) as P's extreme points (resp. extreme rays)
| FOWIM
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Minkowski (1896), Farkas (1902), Weyl (1935)

Outer and Inner Representation of a Polyhedron
For P C R™, the following are equivalent:
1. P is a polyhedron

2. There are finite sets {x,},c0, {X }rer € R™ such that
P = COHV({Xq}qGQ) + cone({xr}TGR) // “P is finitely generated”

» choose {x,},cq (resp. {X,},cr) as P's extreme points (resp. extreme rays)
| FOWIM
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» so let’s use this!



Dantzig-Wolfe Reformulation for LPs (1960, 1961)

> we will now equivalently reformulate what we call in this context the

original model 2fp = min c'x
s.t. Ax > b
Dx > d
x > 0
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Dantzig-Wolfe Reformulation for LPs (1960, 1961)

> we will now equivalently reformulate what we call in this context the

original model 2fp = min c'x
s.t. Ax > b
x > 0

» identify two sets of constraints, typically
and everything else.

e.g., network flow constraints, etc.
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Dantzig-Wolfe Reformulation for LPs (1960, 1961)

original formulation zip = min c'x
s.t. Ax > b

> idea: apply Farkas-Minkowski-Weyl on

O
R

extreme points {x,},cq, extreme rays {x;, },cr of
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Dantzig-Wolfe Reformulation for LPs (1960, 1961)

extreme points {x,},cq, extreme rays {x;, },cr of

express every as

=Z AgXq + Z/\TXT

qeQ reR
Z Ag =1 // convexity constraint
qeqQ
Ag >0 q€Q
AN >0 re R
and substitute this in Ax > b and cx.
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Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of

@ @mluebbecke@mas.to -

min ¢!

s.t.

CO®@Work 2024 -

in Ax > b and ctx

Z AgXq +

q€eQ

A Z/\qxq +

q€eqQ
pIRY
q€Q

Aq

Branch-and-Price Crash Course -

> ATX7,>

reR
3 ATXT) > b
reER
=1
>0  qge@
A >0 re R
44 /many



Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of in Ax > b and c'x and some rearranging
min Z/\qctxq + Zx\rcth
q€Q reR
st. > AgAx, + > AAx.>b
qeEQ reR
DN =1
qe@
Ag >0 q€Q
Ar >0 reR

@ @mluebbecke@mas.to - CO®@Work 2024 - Branch-and-Price Crash Course - 44/many



Dantzig-Wolfe Reformulation for LPs (1960, 1961)

substitution of in Ax > b and c¢'x and some rearranging and renaming
min Z)\ qu + Z)\ ch
qeQ =icq reR ::
) N qu + D AAx.>b
qeQ ::aq reR =:a,
Z Ag =1
q€Q
Aq >0 q€Q

Ar >0 reR
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Dantzig-Wolfe Reformulation for LPs (1960, 1961)

leads to an extended linear program which we call the Dantzig-Wolfe master problem

2yp = min Zcq)\q + ZCT)‘T

qeQ reR
s.t. Zanq + ZaT,A,,, >b
qeqQ reR
pRY =1
q€Q
A >0  qge@

A >0 reR

by construction, this LP is equivalent to the original LP, i.e., z{p = 23p
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What did we just do?

we discovered this nice theorem by Minkowski, Weyl, and Farkas

we reformulated part of the constraints of an LP according to this theorem

I vwvw

because we can!

> now we have an equivalent LP with a gigantic number of variables

1

but this doesn't scare us!  // because we know column generation

4

that makes it quite obvious what comes next ...



The Dantzig-Wolfe Restricted Master Problem

ZhMp = min Z CqNg + Z Cr Ay

qeQ’ reR’
s.t. Z agh; + Z a\. >b [x]
qeQ’ reR’
PR =1 [m)
qeQ’
Ag >0 q€qQ
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Reduced Cost Computation

» for the reduced cost formula we distinguish two cases
— for Ay, ¢ € Q:
_ t a, t
Cq:Cq—(Tl',Wo)(lq> = ¢g—ma,;—m
= ctxq - ’ﬂ'tAXq — T
— for \,, r € R:
~ t a t
Cr:CT_(ﬂ-aWO)(OT> = C —Tay
= c'x, — A%,

> we need to compute ¢* = min{min ¢,, min ¢, }
qeQ reR
RWTH
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Dantzig-Wolfe Pricing Problem

» in words: find an extreme point x,, ¢ € () with minimum ¢, and/or an extreme
ray x,.,7 € R with minimum ¢,
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Dantzig-Wolfe Pricing Problem

» in words: find an extreme point x,, ¢ € () with minimum ¢, and/or an extreme
ray x,.,7 € R with minimum ¢,

> to this end, consider an “almost correct” problem néinR ctxj — ﬁtij — T
JEQU

// the objective function (reduced cost) is off by a constant —mq for rays
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Dantzig-Wolfe Pricing Problem

» in words: find an extreme point x,, ¢ € () with minimum ¢, and/or an extreme

ray x,.,7 € R with minimum ¢,

> to this end, consider an “almost correct” problem min ctxj — ﬁtij — T

JEQUR
// the objective function (reduced cost) is off by a constant —mq for rays

» () and R index the extreme points/extreme rays of !

// and we know how to obtain these extreme points/rays

Operations
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Dantzig-Wolfe Pricing Problem

» in words: find an extreme point x,, ¢ € () with minimum ¢, and/or an extreme
ray x,.,7 € R with minimum ¢,

t

> to this end, consider an “almost correct” problem min c'x; — ﬁtij — T

JEQUR
// the objective function (reduced cost) is off by a constant —mq for rays

» leading to the Dantzig-Wolfe pricing problem

beauty alert!

zhp = min (¢! —7'A)x — m

s. t.

» () and R index the extreme points/extreme rays of !

// and we know how to obtain these extreme points/rays

P the pricing problem is again a linear program

Operations.
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Dantzig-Wolfe Pricing Problem

th for z5p = mi ol A)x —
ree cases for zpp 1;{1121{)1{(0 ' A)x — o }
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Dantzig-Wolfe Pricing Problem

th for z5p = mi ol A)x —
ree cases for zpp 1;{1121{)1{(0 ' A)x — o }

*
1. 2pp = —
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Dantzig-Wolfe Pricing Problem

three cases for zjp = min {(c' — 7' A)x — 7 | }
x>0
1. zpp = —oo = we identified an extreme ray x,«, 7" € R with ¢« <0

— add variable \,- to the RMP
with cost ¢'x,« and column coefficients (AET*>

// the precise value of ¢« is not relevant in this case, so we “accept” the wrong objective function
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Dantzig-Wolfe Pricing Problem

three cases for zjp = min {(c' — 7' A)x — 7 | }
x>0
1. zpp = —oo = we identified an extreme ray x,«, 7" € R with ¢« <0

— add variable \,- to the RMP
with cost ¢'x,« and column coefficients (AET*>

// the precise value of ¢« is not relevant in this case, so we “accept” the wrong objective function

2. —00o < zpp <0
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Dantzig-Wolfe Pricing Problem

three cases for zjp = min {(c' — 7' A)x — 7 | }
x>0
1. zpp = —oo = we identified an extreme ray x,«, 7" € R with ¢« <0

— add variable \,+ to the RMP
with cost ¢!x,+ and column coefficients <A>Sr*>

// the precise value of ¢« is not relevant in this case, so we “accept” the wrong objective function

2. —o00 < zpp < 0 = we identified an extreme point x,+,¢* € @ with ¢+ <0
— add variable )\,+ to the RMP

. .. Ax
with cost ctxq* and column coefficients ( 1" )
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Dantzig-Wolfe Pricing Problem

three cases for zjp = min {(c' — 7' A)x — 7 | }
x>0
1. zpp = —oo = we identified an extreme ray x,«, 7" € R with ¢« <0

— add variable \,+ to the RMP
with cost ¢!x,+ and column coefficients <A>Sr*>

// the precise value of ¢« is not relevant in this case, so we “accept” the wrong objective function

2. —o00 < zpp < 0 = we identified an extreme point x,+,¢* € @ with ¢+ <0
— add variable )\,+ to the RMP

. .. Ax
with cost ctxq* and column coefficients ( 1" )

3. 0< zpp
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Dantzig-Wolfe Pricing Problem

three cases for zjp = min {(c' — 7' A)x — 7 | }
x>0
1. zpp = —oo = we identified an extreme ray x,«, 7" € R with ¢« <0

— add variable \,+ to the RMP
with cost ¢!x,+ and column coefficients <A>Sr*>

// the precise value of ¢« is not relevant in this case, so we “accept” the wrong objective function

2. —o00 < zpp < 0 = we identified an extreme point x,+,¢* € @ with ¢+ <0
— add variable )\,+ to the RMP

. .. Ax
with cost ctxq* and column coefficients ( 1" )

3. 0 < zpp = there isno j € QU R with ¢; < 0.
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Projecting back to the Original Variables

» by construction, we can always obtain an original x solution from a master A

solution via
X = Z AgXq + Z A Xy
qeQ reR

P this projection becomes interesting when we are interested in integer solutions
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Wrap-Up

> we Dantzig-Wolfe reformulated a subset of constraints of a linear program
P these constraints are exactly those that appear in the pricing problem
> feasible solutions to these constraints “define” the meaning of the master variables

> this “effect” becomes even more visible when working with integer programs

& keep in mind

the variables (and constraints) of the pricing problem are from the original LP



Block-Diagonal Structure

> many models in practice have a block-diagonal structure  // we know this already

min  cix! + chx® + - + cthK

s.t. A1X1 + A2X2 + -+ AKXK >b
D1X1 Z d1
D2X2 > dy

» K bins, K colors, K vehicles, K blocks, ...
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Block-Diagonal Structure: Reformulate the Block Constraints

» in a Dantzig-Wolfe context, the constraints

X1
X2

(Al Ay .. AK) . >b /)= Ax>Db

XK

are “complicating” because they involve all variables, whereas

Dy X1 d;
Do X2 do

. > . // = Dx>d
Dy XK dg

are “easier” since they decompose into independent subsystems r
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Block-Diagonal Structure: Dantzig-Wolfe Reformulation

> key idea: reformulate each = {x¥ > 0| Dyx* > d;} individually

> use extreme points {xF},c, and extreme rays {x¥},cr, of

> like before, express every , k€ [K], as
ko k ko k
S Y
qukt TeRk
k —
5 .
q€Qk
Al >0  qeQ

N> 0  reR,

K K
> and substitute this in > Aux" > band Y cix.
k=1 k=1
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Block-Diagonal Structure: Development of the MP

K K
» substitution of in ZAA;X]‘" > b and Zc};xk yields

K
ZC}; Z )\qxq + Z e xch
k=1

q€Q reRy

K
S [ S+ Y ] 2

k=1 q€Qk reRy,
pRY =1 k€ [K]
qEQk
Ay >0  kelK],qeQy

N >0 ke[K],r <R,

T -
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Block-Diagonal Structure: Development of the MP

K

» substitution of in ZAAX > b and chx yields
k=1 k=1
K K
kot ok kot k
53 ekt - 3 Y e
k=1qcQ; k=1r1ERy,
S SD SRTRIC I B DF It
k=1 q€Qy k=1reRy
k —
PR =1
q€Qk
Al >0

q
M >0
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Block-Diagonal Structure: Development of the MP

K
» substitution of in Z Apx" > b and chx yields
k=1 k=1
K
n Y e+ Y e
k=1 qeQy, ok k=1rcRy ook
=:cg Cr
K
E T A+ 3 Y At b
k=1 qeQy \,—/ k=1rcRy _".ak
:4aq :al
k
>N =1 k€ [K]
qEQK
AP 0
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Block-Diagonal Structure: Development of the MP

> we arrive, again, at the Dantzig-Wolfe master problem

D 3D RIS 3) PPt

k=1qeQy k=1rcR;
K
S Y+ Y Y abzb [
k=1 q€Qy k=1reRy
>N =1 [z} ke [K]
q€Qy
A >0 k€ [K], g€ Qx

>0 ke[K], re R
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Block-Diagonal Structure: Multiple Pricing Problems

» we now have K Dantzig-Wolfe pricing problems

_ min c',;xf —TFtAkX;? — 7k
JEQRURY

» which, again, we solve as

_ : ¢ t k k
zppr = min (¢ — w Ag)x" — 7p

s. t.

» column generation stops when 0 < z{p . Vk € [K]
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(Not so) special Case: Aggregation of Identical Subproblems

> if, e.g., we perform a DW reformulation on the vertex coloring textbook model

> we arrive at stable sets in many different colors and master constraints

> =1 i€V

pEP1:ED
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(Not so) special Case: Aggregation of Identical Subproblems

> if, e.g., we perform a DW reformulation on the vertex coloring textbook model

> we arrive at stable sets in many different colors and master constraints

o+ Y X =1 i€V

pEP1:ED pEP2ED
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(Not so) special Case: Aggregation of Identical Subproblems

> if, e.g., we perform a DW reformulation on the vertex coloring textbook model

> we arrive at stable sets in many different colors and master constraints

o+ D N+ YN =1 i€V

pEP1:ED pEP2ED pEP3ED
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(Not so) special Case: Aggregation of Identical Subproblems

> if, e.g., we perform a DW reformulation on the vertex coloring textbook model

> we arrive at stable sets in many different colors and master constraints

SN+ D u+ D N4+ D =1 dev

pEP1:ED pEP2:iEP pEP3ED pEP|c| €D

> but the stable sets are “all the same!” (and pricing problems are “the same”)
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(Not so) special Case: Aggregation of Identical Subproblems

> if, e.g., we perform a DW reformulation on the vertex coloring textbook model

> we arrive at stable sets in many different colors and master constraints

SR SRS S S S R
pEP:iEDP pEP1:ED pEP2:iEP pEP3ED pEP|c|EP

» but the stable sets are “all the same!” (and pricing problems are “the same”)

= aggregate \, = )\]1) + )\}2, + -+ /\LC'\ p € P // colorless representation
and use only one “colorless” pricing problem
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Mark my Words!

> even if you neva eva DW reformulate an IP in your lives, this is useful stuff



Dantzig-Wolfe and Column Generation for LPs

. Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}
i “pricing problem”
\\ T T -\
\ \

° e o e °
! .= - —\\ RN ~
- ‘\‘— - \\\ ) 7 “ n
<5 | e master problem
 JDEN e ° e, e
~ \ \ v’
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\ \\ 4
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Dantzig-Wolfe and Column Generation for LPs: Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}

“pricing problem”

° ° ° ° °
S
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Dantzig-Wolfe and Column Generation for LPs: Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}

“pricing problem”
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Dantzig-Wolfe and Column Generation for LPs

. Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}
i “pricing problem”
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\ \

° e o e °
! .= - —\\ RN ~
- ‘\‘— - \\\ ) 7 “ n
<5 | e master problem
 JDEN e ° e, e
~ \ \ v’
~ \
\ \\ 4
\\ \ 4
\ \‘\ P
° o A L. °

\ ~ P \
\ ¢ _ -="
\ -
-
-

@ @mluebbecke@mas.to - CO®Work 2024

Branch-and-Price Crash Course

- 59/many




Dantzig-Wolfe and Column Generation for LPs

. Pictorially
{xeQ"|Dx>d} N {xeQ"|Ax > b}

“pricing problem”
e
“master problem”
4
\\ ,
\ ~
[ ]

» not tighter than standard LP relaxation
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Briefly Pause

» but the pricing problems we have seen were integer programs!



Dantzig-Wolfe Reformulation for IPs: Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}

pricing problem
T
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° e o ° °
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» not tighter than standard LP relaxation
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Dantzig-Wolfe Reformulation for IPs: Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}

“pricing problem”

“master problem”

@ @mluebbecke@mas.to - CO®@Work 2024 - Branch-and-Price Crash Course - 61/many



Dantzig-Wolfe Reformulation for IPs: Pictorially

{xeQ"|Dx>d} N {xeQ"|Ax > b}

“pricing problem”

“master problem”

> for integer programs: partial convexification, possibly stronger
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H Column Generation
B Dantzig-Wolfe Reformulation

Branch-Price-and-Cut
3.1 Cutting Planes
3.2 Branching



Strong and Stronger

> using a Dantzig-Wolfe reformulation, we may obtain a stronger relaxation

> we can try to strengthen it even more by adding cutting planes

skip to branching



Cutting Planes in the Original Variables

» let us assume that we know a set of

» how do they present themselves in the master problem?
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DW Reformulated Cutting Planes appear in the Master

» cuts /'x > f are treated in the same way as Ax > b

min Zcq)\q + ZCT)\T

q€Q ré€R
s.t. Z agh, + Zaﬁ\r >b [n]
q€Q reER
Z FX(/)\(/ + Z Fx M\ > (]
qe () “R ,fr
Z )\q =1 [m
q€Q
Aq >0 qEQ

A >0 reR
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Small Modifications in the Pricing Problem

» the cuts’ dual variables o impact the reduced cost calculation

min (¢! —7fA—a'lx — m
s.t.

» the pricing problem'’s domain formally stays the same!

// “the pricing problem structure does not change”

— specialized algorithms for the pricing problem may still work

» from a solution x* to the pricing problem one computes the cuts’ coefficients in

the master problem as usual as /'x*  // the cuts are "lifted”

@ @mluebbecke@mas.to - CO®@Work 2024 - Branch-and-Price Crash Course - 66/many :‘4 Sperations



Algorithmic Modifications: Pricing and Cutting

initialize the RMP as usual

loop

solve the MP to optimality via column generation to obtain \*;
project A* back to original variables x*;

call separation algorithms on x*;

if this produces a cut then

add to the RMP with dual variable «;

respect «v in objective function of the pricing problem;
else
| break;
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Experimental Strength of Cutting Planes in Original Variables

> we performed an experiment on many (mixed) integer programs (“instances”);
for each instance compute the integrality gap (2{p — 2{p)/2{ p; then report

— the portion of the gap that is closed by the DW reformulation

— the // those, SCIP can separate

» details in the Ph.D. thesis by Jonas Witt (2019)
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Experimental Strength of Cutting Planes in Original Variables
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Experimental Strength of Cutting Planes in Original Variables



Experimental Strength of Cutting Planes from Original

P attempt of an interpretation: DW reformulation is so strong that generic cutting
planes (from original) are already “implied”  // what we observed for vertex coloring

» a formal proof of such results is an open research topic

» partial answers in the Ph.D. thesis by Jonas Witt (2019)

» still, in practice, adding (problem specific) cuts appears to be indispensable for a
good performance
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Where we are

» it is not either reformulation or cutting planes

> the large body of literature on cutting planes can be combined with Dantzig-Wolfe

— usually, only the objective function of the pricing problem needs adaptation

// when cuts involve zero cost variables of the pricing problem, constraints may change

» empirically, most strengthening is to be expected from problem specific cuts



Cutting Planes in the Master Variables

P assuming integer master variables,  // which we can always do
we want to formulate

P this is also the case when the MP is stated as a “pattern based model,” not
arriving as a DW reformulation

> challenge: when these cuts don’t stem from a counterpart in original variables,
how can we know their coefficients in the pricing problem?

— we will have to construct a counterpart in extended original variables!

Operations
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Cutting Planes in the Master Variables

» the master problem with cuts in the A-variables reads

min Zcq)\q + Zcr)\r

qeqQ reR
s.t. Z ag, + Za,«)\,n >b [n]
qeQ ré€R

S+ YgA >h [4]

qeqQ reR
Z Agq =1 [mo]
q€Q
Ag >0
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We restrict ourselves to Rank-1 Inequalities

» let us consider rank-1 inequalities, i.e., cut coefficients ¢, depend only on a;:

= g(a;) = 9(Ax;)
dagh, + Y aA>b [x]
qeQ reR
18]
» the cut coefficients g, impact the reduced cost computation:

min c'x — 7l Ax — B'y(Ax) — 7
s.t.
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An Extended Original Problem. ..

» if we could express the dependency v = ¢(Ax;) with linear constraints in the
original variables x and potentially additional original variables v,

» then, our master problem with the would
arrive by a Dantzig-Wolfe reformulation of

min cfx

st. Ax > b

Dx > d
(Ax)
x € 7t
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...yields an Extended Pricing Problem

P this gives the extended pricing problem

min c'x — 7lAx — By — 7
s.t. Dx > d
(Ax)
x € 7

» which is again a (mixed) integer program

» Desaulniers, Desrosiers, and Spoorendonk (2011) extend these considerations to
higher rank inequalities
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Example: Edge Coloring

Data
undirected graph G = (V, E)
Goal

color all edges such that incident edges receive different colors;
minimize the number of used colors
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Example: Edge Coloring

Data
undirected graph G = (V, E)

Goal
color all edges such that incident edges receive different colors;
minimize the number of used colors

O

// note: Vizing's theorem states that A or A + 1 colors suffice, where A is the maximum degree in G

Operations
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Edge Coloring: A Compact Integer Program

XI(G) = min Z Ye // minimize number of used colors

ceC
s.t. Z.’L’ec =1 ec kb // color each edge
ceC
Z Tee < Ye 1€V, ceC // avoid conflicts
e€d(i)
ZTec € {0,1} e€ E,ceC // color edge e with ¢?
ye €{0,1} ceC // do we use color ¢?

» '(Q) is called the chromatic index of G.
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Edge Coloring: A Set Partitioning Formulation

» observation: an edge coloring partitions E into matchings C& O

= Nembhauser & Park (1991) formulate a set partitioning model
// this is the aggregated DW reformulation of the previous original IP

min Z)\j
jeJ
s.t. Zaj)\j =1

J€J
No€ {01} jeJd

» with the set .J of all matchings in G; the incidence vector a; of matching j € J
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Edge Coloring: A Set Partitioning Formulation

P solve the LP relaxation by column generation

min Z Aj

jeJ

s.t. Zaj)\j =1 [ free]
jed

)\j > 0 jed

» the pricing problem is

min {1 — Z TeZe | X matching in G}

ecE
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Edge Coloring: A Set Partitioning Formulation

P solve the LP relaxation by column generation

min Z Aj

jed

s.t. Zaj)\j =1 [ free]
jeJ

)\j > 0 jed

P the pricing problem is

min{1—=> mexe| > 2. <1, i€V, 2.€{0,1}, e€ E
ecE e€s(i)
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Odd Circuit Cuts

» consider an odd circuit C'in G

— we need at least three matchings to cover C
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Odd Circuit Cuts

» consider an odd circuit C'in G

— we need at least three matchings to cover C

» the odd circuit cut derived from C'is

Yoo =3

JET:GNCHD
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Odd Circuit Cuts

» consider an odd circuit C'in G

— we need at least three matchings to cover C

» the odd circuit cut derived from C' is in the master problem

Z (aj)A; = Z Aj > 3 [Be=(]

jeJ JET:GNCHD
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Odd Circuit Cuts

» consider an odd circuit C'in G

— we need at least three matchings to cover C

» the odd circuit cut derived from C' is in the master problem
> alax = N =3 [Be =0
jeJ JET:GNCHD
> we use a new binary variable ;¢ := g(a;) =1 <= j intersects C
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Odd Circuit Cuts

» consider an odd circuit C'in G

— we need at least three matchings to cover C

» the odd circuit cut derived from C' is in the master problem
> alax = N =3 [Be =0
jeJ JET:GNCHD
> we use a new binary variable ;¢ := g(a;) =1 <= j intersects C

> this leads to an extended pricing problem:

ming 1 — Z TeZe — Boyc | < Z T, X matching,
eck ecC
RWTH
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Odd Circuit Cuts: Extended Pricing Problem

» why is this extended pricing problem correct?

// = why does it produce the correct coefficient in the cut?

min 1— Zﬂ‘el'e — Bo

ecE
s.t. Z Te < 1 eV
e€d (i)
< Yo

ecC

z. € {0,1} e€FE
> “yc=1= jintersects C'" is enforced, but not the converse
» however, since S > 0 there is an incentive to set =1

= at optimality, =1 <= j intersects C
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Comparing the Strength of Cutting Planes

P cuts on the original are the special case

// the cut can be expressed as a linear function of the original variables, no extra y needed

= master cuts are at least as strong as original cuts

» in order to derive a master cut from the original model one may need additional
variables and constraints

» this is consistent with the theory of extended formulations

Operations
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Where we are

» not only are cutting planes (on the original) compatible with DW reformulation
» DW reformulation enables potentially stronger cutting planes

— some creativity may be needed to modify the original /pricing problem



Reminder: We want to solve an Integer Program

» original problem:

min c'x
st. Ax <
X €

={xeZ} | Dx<d}



So far we only solved Linear Programs

P> noone ever: “we solved our integer program by column generation!”



So far we only solved Linear Programs

» the algorithm to solve integer programs is the LP based B&C algorithm

» branch-and-price(-and-cut) means
solving the LP relaxation in each node of the B&C tree by column generation

» we solved the root node so far

= we need to branch!



Thou shalt not branch on single Master Variables

> branching on single master variables \; = A} ¢ 7Z is not advisable
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Thou shalt not branch on single Master Variables

> branching on single master variables \; = A} ¢ 7 is not advisable

1. the resulting tree is unbalanced:
Aj < [A}] forbids almost nothing; A; > [A}] enforces much

2. a down branch \; < L/\;‘J can be very hard to respect in the pricing problem:
how to avoid re-generating \;?
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Branching on Original Variables

» via DW reformulation we arrived at the integer master problem

@ @mluebbecke@mas.to

2iyp = min Zcq)\q + ZC”)‘T

qeQ reR
s.t. Zaq/\q + ZaT)"" >b
qeQ reR
>
q€eQ
Aq >0 qgeq
AN>0 reR
X = Z Xq)\q + ZXT/\T
qeQ reR
n
x € ZY
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Branching on Original Variables

» when x = x* € Z'} we are done

v

otherwise, there is an x; with =} ¢ Z_

> create two branches via z; < |z} | and x; > [z}]

» there are two options for doing so

— imposing the branching constraints in the master or in the pricing

// this is the same as in cutting

> these ideas date back to Desrosiers, Soumis, Desrochers (1984)
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Branching on Original Variables: In the Master

» we only consider the down branch; the up branch is analogous
// also called left branch

> we impose z; < |z¥] in the master problem by adding the constraint

Z xqi)\q + Z xri)\r < Lx;,kj [az]

qeQ reR

where xj; is the i-th coordinate of x;, j € QUR

// this is like formulating a cutting plane on original variables
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Branching on Original Variables: In the Master

» we only consider the down branch; the up branch is analogous
// also called left branch

> we impose z; < |z¥] in the master problem by adding the constraint

Z xqi)\q + Z xri)\r < Lx;,kJ [az]

qeQ reR

where xj; is the i-th coordinate of x;, j € QUR

// this is like formulating a cutting plane on original variables

> we already know how to respect the dual «; in the pricing:

min (¢! — 7l A)x — a;x; — ™

s.t. Dx > d
x € 7
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Branching on Original Variables: In the Pricing

> alternatively, impose the branching constraint in the pricing

min (¢! — 7fA)x — 7

s.t. Dx > d
z; < |z7]
x € 7

P in this variant, we additionally need to forbid master variables that contradict the
branching decision:

1

remove all variables \; from RMP with z;; > |z} ]

l

this is implemented by imposing a /ocal upper bound A\; <0
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What Original Variables?

» “what if | have no original problem /variables?”
// i.e., "l did not perform a DW reformulation, | just started generating columns!”
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What Original Variables?

» “what if | have no original problem/variables?”
// i.e., “I did not perform a DW reformulation, | just started generating columns!”

» you always have original variables!

— these are the variables of the pricing problem!
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But what Happens when the Master is Aggregated?

> e.g., our models for vertex coloring

> original variables x;. carry a color
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But what Happens when the Master is Aggregated?

> e.g., our models for vertex coloring

> original variables x;. carry a color

» but master variables )\, represent colorless stable sets

// neither do pricing problem variables have any color!
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We could try a Disaggregation (“Recover the Color")

1. distribute the value A} of a A, variable to the corresponding A7, variables, e.g., evenly
= )\*
Ap

//

/\

C Ap
YIS
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We could try a Disaggregation (“Recover the Color")

1. distribute the value A} of a A, variable to the corresponding A7, variables, e.g., evenly

_ *

Ap = A5
AX AX X C X
1 _ p 2 _ \p 3 _ p ‘|i1)
=101 M= M0 Ap =10

2. derive original variable values “as usual”

. E IC]
cee I‘,|(~‘ - )‘p
PpED PpHED PHED
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We could try a Disaggregation (“Recover the Color")

1. distribute the value A} of a A, variable to the corresponding A7, variables, e.g., evenly
Ap = Ap

A5 A5
1 p 2 p
AL = A2 =

2 3 : .. ICl _ /\;
e MEE M Ay =7
2. derive original variable values “as usual”
_ 1 _ 2 _ 3 C
Tl = E Ay Tig = E Ay, Tizg = E Ay e Tyo = 5 )\‘ |
PHED pEpP pED

pHi€p
> besides the “colorless” pricing problem, one now needs (some) “colorful” ones!
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This Always Works

> potential disaggregation, then branching on original variables is a complete
branching scheme

» originally proposed by Villeneuve et al. (2005)

> we could do the disaggregation much better
— Vanderbeck (2011) uses lexicographic disaggregation

» however, drawback always: this (partially) re-introduces the symmetry (in colors)
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Francois is not happy with #s the Symmetry

> assume: all generated RMP variables \;, j € J’ will be finally integer
// actually, this may be a bit strong, but it never hurts

— for every subset J C .J' we will have
Y N=BeZy (1)
jeJ

= provide a rule that, should the current master solution be fractional, identifies a
subset J C J for which (1) does not hold

» then branch
either Z)\j < |B] or Z/\j > [B]

JjeJ jej

» Vanderbeck (2000, 2005, 2011) has many wonderful such rules
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Popular Special Case: Ryan and Foster (1981)

Ryan and Foster (1981)
Proposition. Let A € {0,1}™*". For a fractional basic solution A* ¢ {0,1}" to the
(LP relaxation of the) set partitioning problem

min {ct)\ | AX=1,X € {0, 1}"}

there exist r, s € [m] with

0< > X<l

Jiarj=as;=1

// summing over all subsets .J that contain both elements, 7 and s
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Ryan-Foster Branching for Set Partitioning

» with this result, the natural branching disjunction is

Wyg 1= Z Aj=0 or Wyrg = 1

Jiarj=as;=1

> there are different ways of actually doing this, Ryan & Foster (1981) suggest to
modify the pricing problem, by adding

T t+xs <1 or Ty = T

“differ branch” “same branch”
// this can be easily handled in some applications

+ eliminate master variables that contradict the branching decision
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If you had 15 More Minutes. . .

» Lagrangian relaxation and how it relates to DW reformulation

» Benders decomposition
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optimizingwithcolumngeneration.github.io

enera IOI'I

Eduardo Uchoa | Artur Pessoa | Lorenza Moreno
RWTH
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optimizingwithcolumngeneration.github.io

BRANCH-AND-PRICE

Jacques Desrosiers
Marco Liibbecke
Guy Desaulniers

Jean Bertrand Gauthier

gerad.ca/en/papers/G-2024-36
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