
Machine Learning Augmented
Branch and Bound for Mixed
Integer Linear Programming

Andrea Lodi

andrea.lodi@cornell.edu

Joint work with Lara Scavuzzo, Karen Aardal and Neil Yorke-Smith

CO@Work 2024
ZIB, Berlin, September 23, 2024

￼1

mailto:andrea.lodi@cornell.edu

Motivation

The use of Machine Learning (ML) for Combinatorial Optimization (CO) —
and Mixed-Integer Linear Programming (MILP) — problems has been
ubiquitous in the last 5-10 years at the very least.

This is due to the incredible success of ML, especially deep learning, in
beating human capabilities in image recognition, language processing and
games.

Those successes led to ask natural questions about using modern
statistical learning in other disciplines, CO being one of them.

The talk

• First, briefly discusses MILP, a successful story of mathematics,
algorithms and software development.

• Then, reviews MILP at the time of Artificial Intelligence:
Methodological directions in which the use of Machine Learning is
changing and will change (?) MILP.

• And, finishes with some perspectives, challenges and opportunities.

Outline

Schematic Overview
Slide courtesy of N. Yorke-Smith

Y. Bengio, A. Lodi, A. Prouvost: Machine Learning for Combinatorial
Optimization: a Methodological Tour d’Horizon, EJOR 2021, 405-421

J. Kotary, F. Fioretto, P. Van Hentenryck, B. Wilder: End-to-End
Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

L. Scavuzzo, K. Aardal, A. Lodi, N. Yorke-Smith: Machine Learning
Augmented Branch and Bound for Mixed Integer Linear Programming,
arXiv:2402.05501, 2024,

Mathematical Programming https://doi.org/10.1007/s10107-024-02130-y

Learning to
Configure

ML-augmented
CO / MILP

Combinatorial
Optimization

Learning to
Branch and Cut

Learning
Heuristics

ML-augmented MILP

Mixed-Integer Linear Programming: Where?

Mixed-Integer Linear Programming: How?

9

OPT

Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ ℤp
+ × ℝn−p

+

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

Slide courtesy of E. Khalil

Branch and Bound (B&B)

MILP Key Features
The current generation of MILP solvers incorporates pretty much everything
that has been developed since 1958 (Gomory’s seminal work).

The algorithms can be grouped in four building blocks:

• Preprocessing / Configuration

• Cutting Plane Generation

• Sophisticated Branching Strategies

• Primal Heuristics

10

Preprocessing / Configuration
In the preprocessing phase a MILP solver tries to

• detect certain changes in the input, and

• configure the algorithm

so as to likely obtain a better performance of the solution process.

In terms of detection, the MILP is cleaned and potentially strengthened
by heuristically discovering implications that improve the LP relaxation.

In terms of configuration, MILP solvers have a large amount of
algorithmic parameters whose effective selection can lead to dramatic
performance improvements.

11

Cutting Planes

12

Cutting Planes (cont.d)

13

Many families of cutting planes are part of the
arsenal of MILP solvers.

They differ in the way cuts are separated, which
generally involves the aggregation of the original
constraints into the so-called base inequality and
a rounding step.

A good selection criterion is critical to improving
the LP relaxation while avoiding an excessive
number of cuts, which would slow down LP
solving as well as lead to numerical instability.

Branching

14

When the process of strengthening the LP relaxation
(by either preprocessing or cuts) is no longer
effective, the MILP (associated with any node) is
split into sub-MILPs by branching.

This is a crucial step in MILP technology with
dramatic effects on the effectiveness of the process.

In principle, any variable whose value is
not integer could be used to branch by imposing

x*j ∈ ℤp

xj ≤ ⌊x*j ⌋ ∨ xj ≥ ⌊x*j ⌋ + 1
x*

Branching: Variable Selection
However, selecting an ineffective
variable, i.e., one that does not produce
any effect in the bound, leads to
exponential-size B&B trees.

Currently, the best method we know is
called strong branching and simulates
branching on any variable, then selecting
the most effective one.

Of course, this is too expensive, and
clever simplified versions are used
(reliability branching).

15

OR

?

Primal Heuristics
Once the MILP solvers have
started to be reliable, practitioners
recognized the need of producing
good feasible solutions early in the
process.

Primal heuristics are those
algorithms that are run during B&B
to either producing feasible
solutions or improving them.

16

ML-augmented MILP: The Opportunity

Too long

• Expert knowledge of how to make decisions

• Too expensive to compute

• Need for fast approximation

Too heuristic

• No idea which strategy will perform better

• Need a well performing policy

• Need to discover policies

Variable Selection (reprise)

Interestingly, variable selection falls in both
categories:

• The best method we know for it (strong
branching) is expensive (too slow) and,
in any case,

• It is a heuristic, i.e., we do not have
mathematical understanding of what is
best (too heuristic).

OR

?

Question

• Can Machine Learning methods as Imitation Learning,
Reinforcement Learning and all the recent powerful
techniques (e.g., Deep Learning) and architectures (e.g.,
Graph Neural Networks) help Combinatorial Optimization
— particularly MILP — algorithms by dealing with the
issues above (“too slow” and / or “too heuristic”)?

Requirement

• We want to keep the guarantees provided by (exact) CO/
MILP algorithms, namely,

• feasibility, and

• sometimes optimality.

Decision?

πexpert

π̂ml ^action

action

min distanceDemonstration

Learning Methods

The idea is that there is an expert (an algorithm instead of a human like is common in
ML) that we want to imitate. Thus, the data is labeled.

The distance of the picture is intended as the loss of not following accurately the
expert label through the prediction.

Several ML models can be applied, with a significant use of Neural Networks (NNs).

Experience Decision?
π̂ml

^action reward
score

max return

Learning Methods (cont.d)

By demonstration (or imitation), we are restricted to the quality of the expert that we
cannot improve.

Learning by experience, often combined with a initial imitation phase, allows to
potentially discover new policies.

It is generally more complex to train.

Learning Process
The learning process is itself one of (inexact) optimization, called training.

Its ingredients are

• Optimization algorithms

• Hyper-parameters

• Train, validation and test datasets

• Data collection

• Overfitting

• Online vs offline learning

ML-augmented MILP: Representation

MILP Representation

The one above is the MILP standard definition.

It is not necessarily sufficient or fit for the ML task at hand, so the
question is which characteristics of the MILP to represent and how.

27

min
x

cTx s.t. Ax ≤ b, x ∈ ℤp
+ × ℝn−p

+

?

MILP Representation (cont.d)
There are four desirable properties for such representation:

• Permutation invariance: permuting the order of the variables and/or
constraints should leave the representation unchanged.

• Scale invariance: it is preferred to keep values within controlled ranges,
which helps the learning process.

• Size invariance: the size of the representation should not depend on the size
of the instance.

• Low computational cost: low cost of extracting, storing and processing data.

28

Representing Variables
We recognized three main ways of representing variables. The tradeof that needs to
be found is associated with the desirable properties just discussed.

Khalil et al. (2016) use descriptors gathered in a vector of fixed size. Those
descriptors aggregate information whose length would otherwise depend on the
problem size.

Gasse et al. (2019) use a bipartite graph representation whose advantage is
associated with the mapping into the so-called Graph Neural Networks (GNNs).

Zarpellon et al. (2021) take a different approach, stressing the importance of
historical information collected in the B&B tree (during execution).

29

Representing Variables (cont.d)
Basic Structural LP solution Incumbent Tree statistics

e.g., objective
coefficients, bounds

e.g., constraint
coefficient statistics

e.g., fractionality, value,
basis

e.g., current and
average value

e.g., pseudocosts,
conflicts

Khalil et al.
(2016)

Gasse et al.
(2019)

Zarpellon
et al. (2021)

32 Lara Scavuzzo et al.

minx c1x1 + · · · + cnxn

a11x1 + · · · + a1nxn  b1

...

am1x1 + · · · + amnxn  bm

C1

...

Cm

x1

...

xn

a11

amn

Fig. 5: The bipartite graph representation of an MILP.

also the case for prediction-driven heuristics and neighborhood selection poli-
cies, for which variables are mapped to values or probabilities. In this section,
we will discuss three important approaches to building variable representations
and how they relate to the di↵erent approaches of Section 3.

A straightforward approach to building variable representations is to gather
a number of descriptors into a vector representation for each variable. Khalil
et al. [63] propose a number of such descriptors, including di↵erent statistics
about the set of constraints in which each variable participates. These statistics
aggregate information whose length would otherwise depend on the problem
size. For example, for a variable j 2 I, using the constraint coe�cients {aij}mi=1

would yield a vector whose length depends on m, which is undesirable. On
the contrary, using the average of these coe�cients gives a size-independent
descriptor. This is a necessary step but calls to question which statistics should
be included or excluded in this feature engineering step.

Alternatively, one can use the bipartite graph representation of the MILP
as described in Section 4.1. Gasse et al. [44] were the first to use such rep-
resentation to make predictions about variables, using a GNN as a mapping.
The descriptros associated to the elements in the graph include structural in-
formation, such as constraint coe�cients. This data is not given in the form of
aggregated statistics like before. Instead, the aggregation function is part of the
learnable mappings of the GNN (see Definition 3). Apart from the structural
information, both Khalil et al. [63] and Gasse et al. [44] include information
about the LP solution and other basic variable features such as their objective
coe�cient or variable type. Zarpellon et al. [106] take a di↵erent perspective,
stressing the importance of historical data collected during the B&B tree. This
strategy resembles SCIP’s default branching rule, which considers information
about past branchings, collected conflicts or cuto↵s. The representation used
in Zarpellon et al. [106] includes this variable information and, additionally,
global information about the search tree. They argue that such a description
can uncover shared structures among very diverse MILPs (see Section 3.2).
The information collected includes statistics about the node being processed,

Bipartite Graph Representation

v

N1
N2

N3

ξt
N1

ξt
v

ξt
N2

ξt
N3

From (Bipartite) Graphs to GNNs

32

ξt
v

ξt
N1 ξt

N2 ξt
N3

+ + =

comb

ξt+1
v

• A (d-dimensional) graph embedding
 is a function that takes in a graph

 and a node and
returns an element .

• A Graph Neural Network is a
function that takes as input a graph

 and an initial
embedding and defines a
recursive embedding over the
vertices of G.

ξ
G = (V, E) v ∈ V

ξ(G, v) ∈ ℝd

G = (V, E)
ξ0

ξt

v

N1
N2

N3

ξt
N1

ξt
v

ξt
N2

ξt
N3

From (Bipartite) Graphs to GNNs (cont.d)

33

ξt
v

ξt
N1 ξt

N2 ξt
N3

+ + =

comb

ξt+1
v

The recursion is obtained by

• First, aggregating the embeddings
of the neighbors of a node, and

• Second, combining the aggregated
embeddings of the neighbors with
the original embedding.

The combination can be obtained, for
example, through a feed-forward NN
and one iteration of the process is
called message passing.

Basic Structural LP solution Incumbent Tree statistics

e.g., objective
coefficients, bounds

e.g., constraint
coefficient statistics

e.g., fractionality,
value, basis

e.g., current and
average value

e.g., pseudocosts,
conflicts

Khalil et al.
(2016)

Gasse et al.
(2019) Implied

Zarpellon et
al. (2021)

Representing Variables (reprise)

ML-augmented MILP: Learning Tasks

Learning Tasks: Primal Heuristics
A number of methodologies have been proposed for this purpose.

Conceptually, they can be split into three main approaches:

(a) guiding a heuristic search with a starting predicted solution,

(b) solution improvement via a learned neighborhood selection criterion, and

(c) learning a schedule to pre-existing heuristic routines.

For (a) and (b), the important concept is that of Large Neighborhood Search.

The idea is to optimize an auxiliary MILP of smaller size, constructed by reducing
the feasible region of the original MILP.

Typically done by fixing the value of some of the variables and optimizing the rest.

f(⋅ , θ)
ML model

MILP

1
0
0

.

.

.

1
1

Reoptimization
routine

Primal Heuristics
Guiding a heuristic search with a
starting predicted solution:

• The goal is to produce a (partial)

assignment of the binary variables4 in
a binary or mixed binary MILP, that
can then be used to guide the
search.

• Often, this is obtained by starting
from a set of collected solutions.

Examples in Ding et al. (2020), Nair et
al. (2020) and Khalil et al. (2022).

̂xn−1

Starting
 solution

̂x
.
.
.

̂x1

.

.

.
MILP
solver

New
 solution

̂x

̂xn−2

MILP

f(⋅ , θ)
ML model

Primal Heuristics (cont.d)
Neighborhood selection:

• which and/or

• how many variables to unfix and re-

optimize.

The goal is to identify substructures of
the problem that can be used to
decompose it into smaller, more
manageable sub-problems.

Examples in Song et al. (2020), Wu et
al. (2021) and Liu et al. (2022).

Primal Heuristics (cont.d)

Scheduling of primal heuristics:

• which heuristics to run and/or

• for how long.

Examples in Hendel et al. (2019),
Hendel (2022) and Chmiela et al.
(2021, 2023).

f(⋅ , θ)
ML model

Heuristic 1

Heuristic 2

Heuristic K

.
.
.

Heuristic 3

Budget

Learning Tasks: Variable Selection

Learning to branch has been by far
the most active area of integration of
ML into MILP.

Initially, most of the effort has been
concentrated on approximating
strong branching, i.e., using strong
branching as the expert to imitate.

OR

?

Variable Selection: Learning Strong Branching

Gasse et al. (2019) propose training a GNN to imitate strong branching via behavioral
cloning.

Essentially, this means that the actual variable scores are disregard and the focus is on
learning relative magnitudes among them.

Through this approach the authors were able to outperform reliability branching, marking
a breakthrough in the learning to branch literature.

The table gives a summary of different
learning approaches for branching.

We use the acronym SL for supervised
(demonstration) learning and RL for
reinforcement learning (experience).

Variable Selection: Towards a General Branching Rule
The SL approaches for strong branching specialize to combinatorial structures,
i.e., they are trained on specific distributions (if not on single instances as for
online learning).

They fail to generalize.

The approaches by Zarpellon et al. (2021) and Lin et al. (2022) make a significant
step in overcoming this limitation by doing SL but using information of the B&B
tree evolution.

The subsequent step is to go beyond demonstration and learning by experience.

The RL attempts in Etheve et al. (2020) and Scavuzzo et al. (2022) follow this path.

Learning Tasks: Cut Selection
As anticipated, cut selection is a fundamental MILP component.

Several metrics proposed for the purpose of scoring cuts.

For example, the objective parallelism, measured as the cosine
of the angle between the objective function and the cut, or the
cutoff distance, measured as the distance between the cut and
the LP-relaxation solution.

More recently, the question of cut selection has been addressed
with ML-driven predictions.

Deza and Khalil (2023) recently surveyed the topic in details.

Single-cut Selection

The idea is to frame the cut selection problem (in the simplified version of one cut at a
time) as a Markov Decision Process.

Paulus et al. (2022) use imitation learning and essentially their expert is the extension of
the strong branching idea to cuts: the effect of each cut is simulated by solving an LP.

Tang et al. (2020) use instead RL, which allows to potentially go beyond the greedy
look-ahead of one step at the price of more complex convergence.

Learning Tasks: Preprocessing / Configuration

As anticipated, the impact of good configuration or preprocessing has an
extremely high potential because MILP solvers are highly configurable
software tools.

Indeed, this is the area in which the success stories have already been
incorporated in the commercial solvers.

The first of these success stories has been Bonami et al. (2018, 2022),
where the authors prescribe for each mixed integer quadratic programming
instance if the quadratic objective function should be linearized or not.

The resulting ML predictor runs in CPLEX default since version 12.10.

Preprocessing / Configuration: Examples

Notably, the method presented in Berthold and Hendel (2021) is used by
default in FICO Xpress since version 8.9 to decide scaling.

ML-augmented MILP: Perspectives and Challenges

Generalization: Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com

Generalization: Random Instances

Random iid coefficients a1c1s1 from MipLib 2017

A Business Perspective
• Many businesses care about

solving similar problems
repeatedly

• Solvers do not make any use of
this aspect

• Power systems and market 
Xavier et al. (2019)

• Schedule 3.8 kWh ($400 billion)
market annually in the US

• Solved multiple times a day

• 12x speed up combining ML
and MILP

• One of the fastest non-commercial solvers for MIP

• ~800k lines of code; many advanced features and extensions

•

51

https://www.scipopt.org/

https://www.ecole.ai/

Software: An Example

https://www.scipopt.org/
https://www.ecole.ai/

A Challenge and an Opportunity

Ch: The use of NNs and especially GNNs has proven effective for the
considered learning tasks. However, computation on NNs is especially
effective by using GPUs, while classical MILP computation is on CPUs.

52

Op: The use of restart mechanisms in MILP is increasing and the chance of
using the information collected by running the solvers for a limited amount of
time seems to favor the use of ML even more.

ML-augmented MILP: Summary

Summary

55

