
Machine Learning Augmented 
Branch and Bound for Mixed 
Integer Linear Programming

Andrea Lodi

andrea.lodi@cornell.edu


Joint work with Lara Scavuzzo, Karen Aardal and Neil Yorke-Smith 

CO@Work 2024
ZIB, Berlin, September 23, 2024

 1

mailto:andrea.lodi@cornell.edu


Motivation

The use of Machine Learning (ML) for Combinatorial Optimization (CO) — 
and Mixed-Integer Linear Programming (MILP) — problems has been 
ubiquitous in the last 5-10 years at the very least.


This is due to the incredible success of ML, especially deep learning, in 
beating human capabilities in image recognition, language processing and 
games.


Those successes led to ask natural questions about using modern 
statistical learning in other disciplines, CO being one of them.



The talk 


• First, briefly discusses MILP, a successful story of mathematics, 
algorithms and software development.


• Then, reviews MILP at the time of Artificial Intelligence: 
Methodological directions in which the use of Machine Learning is 
changing and will change (?) MILP.


• And, finishes with some perspectives, challenges and opportunities.

Outline



Schematic Overview  
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Mixed-Integer Linear Programming: Where?






Mixed-Integer Linear Programming: How?
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Branch and Bound (B&B)



MILP Key Features
The current generation of MILP solvers incorporates pretty much everything 
that has been developed since 1958 (Gomory’s seminal work). 


The algorithms can be grouped in four building blocks:


• Preprocessing / Configuration


• Cutting Plane Generation


• Sophisticated Branching Strategies


• Primal Heuristics
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Preprocessing / Configuration
In the preprocessing phase a MILP solver tries to 

• detect certain changes in the input, and 

• configure the algorithm 

so as to likely obtain a better performance of the solution process.


In terms of detection, the MILP is cleaned and potentially strengthened 
by heuristically discovering implications that improve the LP relaxation.


In terms of configuration, MILP solvers have a large amount of 
algorithmic parameters whose effective selection can lead to dramatic 
performance improvements. 
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Cutting Planes
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Cutting Planes (cont.d)
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Many families of cutting planes are part of the 
arsenal of MILP solvers. 


They differ in the way cuts are separated, which 
generally involves the aggregation of the original 
constraints into the so-called base inequality and 
a rounding step.


A good selection criterion is critical to improving 
the LP relaxation while avoiding an excessive 
number of cuts, which would slow down LP 
solving as well as lead to numerical instability.



Branching
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When the process of strengthening the LP relaxation 
(by either preprocessing or cuts) is no longer 
effective, the MILP (associated with any node) is 
split into sub-MILPs by branching.


This is a crucial step in MILP technology with 
dramatic effects on the effectiveness of the process.


In principle, any variable  whose value is 
not integer could be used to branch by imposing   

x*j ∈ ℤp

xj ≤ ⌊x*j ⌋ ∨ xj ≥ ⌊x*j ⌋ + 1
x*



Branching: Variable Selection
However, selecting an ineffective 
variable, i.e., one that does not produce 
any effect in the bound, leads to 
exponential-size B&B trees.


Currently, the best method we know is 
called strong branching and simulates 
branching on any variable, then selecting 
the most effective one.


Of course, this is too expensive, and 
clever simplified versions are used 
(reliability branching).
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Primal Heuristics
Once the MILP solvers have 
started to be reliable, practitioners 
recognized the need of producing 
good feasible solutions early in the 
process.


Primal heuristics are those 
algorithms that are run during B&B 
to either producing feasible 
solutions or improving them. 
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ML-augmented MILP: The Opportunity



Too long


• Expert knowledge of how to make decisions


• Too expensive to compute


• Need for fast approximation



Too heuristic


• No idea which strategy will perform better


• Need a well performing policy


• Need to discover policies



Variable Selection (reprise)

Interestingly, variable selection falls in both 
categories: 


• The best method we know for it (strong 
branching) is expensive (too slow) and, 
in any case, 


• It is a heuristic, i.e., we do not have 
mathematical understanding of what is 
best (too heuristic). 

OR

?



Question

• Can Machine Learning methods as Imitation Learning, 
Reinforcement Learning and all the recent powerful 
techniques (e.g., Deep Learning) and architectures (e.g., 
Graph Neural Networks) help Combinatorial Optimization 
— particularly MILP — algorithms by dealing with the 
issues above (“too slow” and / or “too heuristic”)?



Requirement

• We want to keep the guarantees provided by (exact) CO/
MILP algorithms, namely, 


• feasibility, and


• sometimes optimality.



Decision?

πexpert

π̂ml ^action

action

min distanceDemonstration

Learning Methods

The idea is that there is an expert (an algorithm instead of a human like is common in 
ML) that we want to imitate. Thus, the data is labeled.


The distance of the picture is intended as the loss of not following accurately the 
expert label through the prediction.


Several ML models can be applied, with a significant use of Neural Networks (NNs).



Experience Decision?
π̂ml

^action reward
score

max return

Learning Methods (cont.d)

By demonstration (or imitation), we are restricted to the quality of the expert that we 
cannot improve.


Learning by experience, often combined with a initial imitation phase, allows to 
potentially discover new policies.


It is generally more complex to train.



Learning Process
The learning process is itself one of (inexact) optimization, called training. 


Its ingredients are


• Optimization algorithms


• Hyper-parameters


• Train, validation and test datasets


• Data collection


• Overfitting


• Online vs offline learning 



ML-augmented MILP: Representation 




MILP Representation

The one above is the MILP standard definition. 


It is not necessarily sufficient or fit for the ML task at hand, so the 
question is which characteristics of the MILP to represent and how.

27

min
x

cTx s.t. Ax ≤ b, x ∈ ℤp
+ × ℝn−p

+

?



MILP Representation (cont.d)
There are four desirable properties for such representation:


• Permutation invariance: permuting the order of the variables and/or 
constraints should leave the representation unchanged. 


• Scale invariance: it is preferred to keep values within controlled ranges, 
which helps the learning process.


• Size invariance: the size of the representation should not depend on the size 
of the instance.


• Low computational cost: low cost of extracting, storing and processing data. 
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Representing Variables
We recognized three main ways of representing variables. The tradeoff that needs to 
be found is associated with the desirable properties just discussed.


Khalil et al. (2016) use descriptors gathered in a vector of fixed size. Those 
descriptors aggregate information whose length would otherwise depend on the 
problem size.


Gasse et al. (2019) use a bipartite graph representation whose advantage is 
associated with the mapping into the so-called Graph Neural Networks (GNNs).


Zarpellon et al. (2021) take a different approach, stressing the importance of 
historical information collected in the B&B tree (during execution).
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Representing Variables (cont.d)
Basic Structural LP solution Incumbent Tree statistics

e.g., objective 
coefficients, bounds 

e.g., constraint 
coefficient statistics

e.g., fractionality, value, 
basis 

e.g., current and 
average value

e.g., pseudocosts, 
conflicts

Khalil et al. 
(2016)

Gasse et al. 
(2019)

Zarpellon 
et al. (2021)
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Fig. 5: The bipartite graph representation of an MILP.

also the case for prediction-driven heuristics and neighborhood selection poli-
cies, for which variables are mapped to values or probabilities. In this section,
we will discuss three important approaches to building variable representations
and how they relate to the di↵erent approaches of Section 3.

A straightforward approach to building variable representations is to gather
a number of descriptors into a vector representation for each variable. Khalil
et al. [63] propose a number of such descriptors, including di↵erent statistics
about the set of constraints in which each variable participates. These statistics
aggregate information whose length would otherwise depend on the problem
size. For example, for a variable j 2 I, using the constraint coe�cients {aij}mi=1

would yield a vector whose length depends on m, which is undesirable. On
the contrary, using the average of these coe�cients gives a size-independent
descriptor. This is a necessary step but calls to question which statistics should
be included or excluded in this feature engineering step.

Alternatively, one can use the bipartite graph representation of the MILP
as described in Section 4.1. Gasse et al. [44] were the first to use such rep-
resentation to make predictions about variables, using a GNN as a mapping.
The descriptros associated to the elements in the graph include structural in-
formation, such as constraint coe�cients. This data is not given in the form of
aggregated statistics like before. Instead, the aggregation function is part of the
learnable mappings of the GNN (see Definition 3). Apart from the structural
information, both Khalil et al. [63] and Gasse et al. [44] include information
about the LP solution and other basic variable features such as their objective
coe�cient or variable type. Zarpellon et al. [106] take a di↵erent perspective,
stressing the importance of historical data collected during the B&B tree. This
strategy resembles SCIP’s default branching rule, which considers information
about past branchings, collected conflicts or cuto↵s. The representation used
in Zarpellon et al. [106] includes this variable information and, additionally,
global information about the search tree. They argue that such a description
can uncover shared structures among very diverse MILPs (see Section 3.2).
The information collected includes statistics about the node being processed,

Bipartite Graph Representation 
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From (Bipartite) Graphs to GNNs
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• A (d-dimensional) graph embedding 
 is a function that takes in a graph 

 and a node  and 
returns an element .


• A Graph Neural Network is a 
function that takes as input a graph 

 and an initial 
embedding  and defines a 
recursive embedding  over the 
vertices of G.

ξ
G = (V, E) v ∈ V

ξ(G, v) ∈ ℝd

G = (V, E)
ξ0

ξt
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From (Bipartite) Graphs to GNNs (cont.d)
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The recursion is obtained by 


• First, aggregating the embeddings 
of the neighbors of a node, and


• Second, combining the aggregated 
embeddings of the neighbors with 
the original embedding.


The combination can be obtained, for 
example, through a feed-forward NN 
and one iteration of the process is 
called message passing.



Basic Structural LP solution Incumbent Tree statistics

e.g., objective 
coefficients, bounds 

e.g., constraint 
coefficient statistics

e.g., fractionality, 
value, basis 

e.g., current and 
average value

e.g., pseudocosts, 
conflicts

Khalil et al. 
(2016)

Gasse et al. 
(2019) Implied

Zarpellon et 
al. (2021)

Representing Variables (reprise)



ML-augmented MILP: Learning Tasks 




Learning Tasks: Primal Heuristics
A number of methodologies have been proposed for this purpose. 

Conceptually, they can be split into three main approaches: 

(a) guiding a heuristic search with a starting predicted solution, 

(b) solution improvement via a learned neighborhood selection criterion, and 

(c) learning a schedule to pre-existing heuristic routines.


For (a) and (b), the important concept is that of Large Neighborhood Search. 

The idea is to optimize an auxiliary MILP of smaller size, constructed by reducing 
the feasible region of the original MILP. 

Typically done by fixing the value of some of the variables and optimizing the rest.



f( ⋅ , θ)
ML model

MILP

1
0
0

. 

. 

.

1
1

Reoptimization 
routine 

Primal Heuristics
Guiding a heuristic search with a 
starting predicted solution: 

• The goal is to produce a (partial) 

assignment of the binary variables4 in 
a binary or mixed binary MILP, that 
can then be used to guide the 
search.


• Often, this is obtained by starting 
from a set of collected solutions.


Examples in Ding et al. (2020), Nair et 
al. (2020) and Khalil et al. (2022).
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f( ⋅ , θ)
ML model

Primal Heuristics (cont.d)
Neighborhood selection: 

• which and/or 

• how many variables to unfix and re-

optimize.

The goal is to identify substructures of 
the problem that can be used to 
decompose it into smaller, more 
manageable sub-problems.


Examples in Song et al. (2020), Wu et 
al. (2021) and Liu et al. (2022).




Primal Heuristics (cont.d)

Scheduling of primal heuristics:

• which heuristics to run and/or 

• for how long.


Examples in Hendel et al. (2019), 
Hendel (2022) and Chmiela et al. 
(2021, 2023).


f( ⋅ , θ)
ML model

Heuristic 1 

Heuristic 2 

Heuristic K

.
.
.

Heuristic 3

Budget



Learning Tasks: Variable Selection

Learning to branch has been by far 
the most active area of integration of 
ML into MILP.


Initially, most of the effort has been 
concentrated on approximating 
strong branching, i.e., using strong 
branching as the expert to imitate.

OR

?



Variable Selection: Learning Strong Branching 

Gasse et al. (2019) propose training a GNN to imitate strong branching via behavioral 
cloning. 


Essentially, this means that the actual variable scores are disregard and the focus is on 
learning relative magnitudes among them. 


Through this approach the authors were able to outperform reliability branching, marking 
a breakthrough in the learning to branch literature.

The table gives a summary of different 
learning approaches for branching. 


We use the acronym SL for supervised 
(demonstration) learning and RL for 
reinforcement learning (experience).



Variable Selection: Towards a General Branching Rule
The SL approaches for strong branching specialize to combinatorial structures, 
i.e., they are trained on specific distributions (if not on single instances as for 
online learning).


They fail to generalize.


The approaches by Zarpellon et al. (2021) and Lin et al. (2022) make a significant 
step in overcoming this limitation by doing SL but using information of the B&B 
tree evolution.


The subsequent step is to go beyond demonstration and learning by experience. 


The RL attempts in Etheve et al. (2020) and Scavuzzo et al. (2022) follow this path.



Learning Tasks: Cut Selection
As anticipated, cut selection is a fundamental MILP component.


Several metrics proposed for the purpose of scoring cuts. 


For example, the objective parallelism, measured as the cosine 
of the angle between the objective function and the cut, or the 
cutoff distance, measured as the distance between the cut and 
the LP-relaxation solution. 


More recently, the question of cut selection has been addressed 
with ML-driven predictions. 


Deza and Khalil (2023) recently surveyed the topic in details.



Single-cut Selection 

The idea is to frame the cut selection problem (in the simplified version of one cut at a 
time) as a Markov Decision Process.


Paulus et al. (2022) use imitation learning and essentially their expert is the extension of 
the strong branching idea to cuts: the effect of each cut is simulated by solving an LP.


Tang et al. (2020) use instead RL, which allows to potentially go beyond the greedy 
look-ahead of one step at the price of more complex convergence. 



Learning Tasks: Preprocessing / Configuration

As anticipated, the impact of good configuration or preprocessing has an 
extremely high potential because MILP solvers are highly configurable 
software tools.


Indeed, this is the area in which the success stories have already been 
incorporated in the commercial solvers.


The first of these success stories has been Bonami et al. (2018, 2022), 
where the authors prescribe for each mixed integer quadratic programming 
instance if the quadratic objective function should be linearized or not.


The resulting ML predictor runs in CPLEX default since version 12.10.




Preprocessing / Configuration: Examples

Notably, the method presented in Berthold and Hendel (2021) is used by 
default in FICO Xpress since version 8.9 to decide scaling.



ML-augmented MILP: Perspectives and Challenges 




Generalization: Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com



Generalization: Random Instances

Random iid coefficients a1c1s1 from MipLib 2017 



A Business Perspective
• Many businesses care about 

solving similar problems 
repeatedly


• Solvers do not make any use of 
this aspect


• Power systems and market 
Xavier et al. (2019)


• Schedule 3.8 kWh ($400 billion) 
market annually in the US


• Solved multiple times a day


• 12x speed up combining ML 
and MILP



• One of the fastest non-commercial solvers for MIP


• ~800k lines of code; many advanced features and extensions


•
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https://www.scipopt.org/ 

https://www.ecole.ai/ 

Software: An Example

https://www.scipopt.org/
https://www.ecole.ai/


A Challenge and an Opportunity

Ch: The use of NNs and especially GNNs has proven effective for the 
considered learning tasks. However, computation on NNs is especially 
effective by using GPUs, while classical MILP computation is on CPUs.
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Op: The use of restart mechanisms in MILP is increasing and the chance of 
using the information collected by running the solvers for a limited amount of 
time seems to favor the use of ML even more.



ML-augmented MILP: Summary 




Summary
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