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Public Transport...

... is often operated periodically

→ Periodic Timetable Optimization

Images: Rolf Heinrich, Köln, CC-BY 3.0; J.C, CC-BY-SA 4.0; Trouper3000, CC-BY-SA 4.0; all via commons.wikimedia.org; Niels Lindner

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 3 / 37



Public Transport...

... is often operated periodically

→ Periodic Timetable Optimization
Images: Rolf Heinrich, Köln, CC-BY 3.0; J.C, CC-BY-SA 4.0; Trouper3000, CC-BY-SA 4.0; all via commons.wikimedia.org; Niels Lindner

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 3 / 37



Public Transport Planning Cycle

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Duty Scheduling

Crew Scheduling

Real-Time Management

strategic

long-term

many decision makers

operational

short-term

few decision makers

Bussieck et al.: Discrete optimization in public rail transport, 1997

Liebchen: Periodic timetable optimization in public transport, 2006
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Timetable Optimization

Informal Definition

A timetable is an assignment of arrival and departure times to a given set of trips.

Feasibility

What makes a valid timetable?

I realistic travel times (lower and upper bounds on driving times, ...)

I conflict-freeness (sufficient headway between trains, station capacities, ...)

Optimization Objectives

What makes a good timetable?

I passenger perspective: short travel times (in particular: transfers)

I operator perspective: efficient resource usage (vehicles, drivers)

I railway infrastructure manager perspective: sell all track capacities

I disposition perspective: maximize robustness

Observation: These goals are partially conflicting!

Success Stories

I U-Bahn Berlin (Germany) (Liebchen, 2008)

I S-tog København (Denmark) (Nielsen et al., 2006; Villumsen, 2006)

I Nederlandse Spoorwegen (Netherlands) (Kroon et al., 2009)

I BLS (Switzerland) (Gamacho, 2012)
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A Line Network: Tokyo

Tokyo Metro Co., Ltd.
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Periodic Timetabling in Public Transport

Line Network, 3 bidirectional lines
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Periodic Timetabling in Public Transport

Event-Activity Network
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Periodic Timetabling in Public Transport

Event-Activity Network

Events:

• arrival

◦ departure

Activities:

→ drive, dwell, turn

→ transfer

. . .
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Periodic Timetabling in Public Transport

[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753

Periodic Event Scheduling Instance

Bounds:

I driving times

I minimum transfer times

I maximum dwell times

I minimum headway times

I . . .

Weights:

I passenger load

I turnaround penalties

I . . .

Period time:

I e.g., T = 60 for 1 hour,

resolution of 1 minute
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Periodic Event Scheduling Problem (PESP)

Given

G event-activity network,

T ∈ N period time,

` ∈ RA(G)
≥0 lower bounds,

u ∈ RA(G)
≥0 upper bounds,

w ∈ RA(G)
≥0 weights,

the Periodic Event Scheduling Problem

(PESP) is to find

π ∈ [0, T)V(G) periodic timetable,

x ∈ RA(G) periodic tension

such that

(1) πj − πi ≡ xij mod T for all ij ∈ A(G),

(2) ` ≤ x ≤ u,

(3) w>x is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

We can formulate PESP as the following mixed

integer program:

Minimize
∑

ij∈A(G)

wijxij

s.t. πj − πi + Tpij = xij, ij ∈ A(G),

`ij ≤ xij ≤ uij, ij ∈ A(G),

0 ≤ πi < T, i ∈ V(G),

pij ∈ Z, ij ∈ A(G).

This uses integer variables pij (periodic offsets)

for each edge ij ∈ A(G) to model the modulo T

constraints.

Note 1: This is formally not quite a MIP, as the

constraints πi < T should be replaced with

πi ≤ T − ε for a suitable ε > 0.

Note 2: Equivalently, one may minimize w>y,

where y := x − ` is the periodic slack.
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PESP: Example

A B C D

EFGH

[7, 7], 0

[7, 7], 0

[6, 6], 0

[6, 6], 0

[2, 11], 1

[5, 14], 1 [5, 14], 1

[2, 11], 1

[3, 12], 1[3, 12], 1

PESP instance, period time T = 10, arcs labeled with [`, u],w

Let’s find an optimal integer-valued timetable for this PESP instance by hand.

First observation: If π and x are optimal, then xij = [πj − πi − `ij]10 + `ij for all edges
ij, as xij ≡ πj − πi mod 10 and xij is the smallest such number with xij ≥ `ij. Due to the
bounds, we have xAB = xGH = 7 and xCD = xEF = 6, hence we can substitute πB by

πA + 7 modulo 10 and similarly πD, πF , πH.

Second observation: Now any assignment of integer values to πA, πC, πE, πG

produces a feasible periodic timetable, as all remaining edges have uij − `ij = T − 1.
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PESP: Example

Hence the objective value is∑
ij∈A(G)

wijxij = [πA − πH − `HA]10 + [πC − πB − `BC]10 + [πC − πF − `FC]10

+ [πE − πD − `DE]10 + [πG − πB − `BG]10 + [πG − πF − `FG]10

+ `HA + `BC + `FC + `DE + `BG + `FG

= [πA − πG]10 + [πC − πA − 9]10 + [πC − πE − 1]10

+ [πE − πC − 9]10 + [πG − πA − 2]10 + [πG − πE − 8]10 + 20

Observe that

[πA − πG]10 + [πG − πA − 2]10 ∈ {8, 18}
[πC − πE − 1]10 + [πE − πC − 9]10 ∈ {0, 10}
[πC − πA − 9]10 + [πG − πE − 8]10 ∈ [0, 18].

We conclude that the optimal objective value is at least 28. In fact,

(πA, πC, πE, πG) = (0, 9, 8, 6) has an objective value of 28 and is hence optimal.
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PESP: Example

0

A

7

B

9

C

5

D

8

E

4

F

6

G

3

H

7+ 0

7+ 0

6+ 0

6+ 0

2+ 0

5+ 4 5+ 0

2+ 0

3+ 03+ 4

PESP instance, period time T = 10, edges labeled with [`, u],w

We conclude that (πA, πB, πC, πD, πE, πF , πG, πH) = (0, 7, 9, 5, 8, 4, 6, 3) is an optimal

periodic timetable. The weighted periodic tension is 28, and the weighted periodic

slack is 8.
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PESP: Example

A B C D

EFGH

[7, 7], 0

[7, 7], 0

[6, 6], 0

[6, 6], 0

[2, 11], 1

[5, 14], 1 [5, 14], 1

[2, 11], 1

[3, 12], 1[3, 12], 1

Less painful: Formulate and solve the MIP:

Minimize xBC + xBG + xDE + xFC + xFG + xHA

s.t. πB − πA + 10pAB = xAB 0 ≤ πA ≤ 9

πC − πB + 10pBC = xBC 0 ≤ πB ≤ 9

...
...

7 ≤ xAB ≤ 7 pAB ∈ Z
2 ≤ xBC ≤ 11 pBC ∈ Z

...
...
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Complexity of PESP

Theorem

The PESP Feasibility Problem is NP-complete for every fixed T ≥ 3.

In more words, given (G, T, `, u,w) for a fixed value of T ≥ 3, the problemwhether

there exists a periodic timetable πwith tension x such that ` ≤ x ≤ u is NP-complete.

Proof.

The 3-Coloring Problem is NP-complete (Garey, Johnson, Stockmeyer, 1976): Given

an undirected graph H, is there a 3-coloring, i.e., a function f : V(H) → {0, 1, 2} such
that f (i) 6= f (j) for all {i, j} ∈ E(H)?

a 3-colorable graph, not 2-colorable
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Complexity of PESP

Proof (cont.)

In particular, the T-Coloring Problem, where f is allowed to take values in

{0, 1, . . . , T − 1}, is NP-complete for any fixed T ≥ 3.

We reduce T-Coloring to PESP Feasibility, the membership of the latter in NP being

clear. For a T-Coloring instance H, define G by arbitrarily orienting the edges in H. We

keep T and set `ij := 1, uij := T − 1 for all ij ∈ A(G). Weights do not influence the

feasibility, we can choose them arbitrarily.

(⇒) Let f be a T-coloring of H. Then π := f is a feasible periodic timetable, as

xij := [πj − πi]T = [f (j)− f (i)]T ∈ {1, . . . , T − 1} for all ij ∈ A(G)

is a feasible periodic tension.

(⇐) Conversely, if π is a feasible periodic timetable and x is a tension for π, then
f := π is a T-coloring of H, as

[f (j)− f (i)]T = [xij]T ∈ [1, T − 1] for all ij ∈ A(G)

implies f (i) 6= f (j) for all ij ∈ A(G).
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More Complexity

Lemma

If G is a tree, then there is an optimal solution (π, x)with x = `, and π can be

computed in linear time, e.g., by depth-first search.

A B C D

F E

[7, 8] [0, 1] [8, 9]

[6, 7]

[2, 11]

Theorem (Lindner and Reisch, 2022)

For any k ≥ 2, PESP Feasibility is weakly NP-complete on graphs of treewidth≤ k.

I In particular, PESP is NP-hard on planar graphs.

I For event-activity networks of treewidth≤ k, there is an O(|V(G)| · Tk) dynamic

program that solves PESP (to optimality).
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The Role of Cycles

Question

Let x ∈ RA(G). When does a periodic timetable π ∈ [0, T)V(G) exist for which x is a

periodic tension, i.e., xij ≡ πj − πi mod T for all ij ∈ A(G)?

A Necessary Condition

Let C be a directed cycle in Gwith vertex sequence (i0, i1, . . . , in)with i0 = in. Let

(π, x) be a feasible pair of periodic timetable and tension. Then

∑
a∈C

xa =
n−1∑
k=0

xik,ik+1
≡

n−1∑
k=0

(πik+1
− πik ) = 0 mod T (telescoping sum).

Hence feasible periodic tensions must add up to an integer multiple of T along any

directed cycle.

Practical Consequence: If there are cycles in G, then it might be infeasible to have

travel times at lower bounds.
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Transfers Without Waiting?

0

Warschauer Str. dep

0

Ostkreuz arr

0

Ostkreuz dep

0 Ostkreuz arr

0 Ostkreuz dep

0 Treptower Park arr

0 Treptower Park dep0Treptower Park arr

0Treptower Park dep

0 Warschauer Str. arr0

Warschauer Str. dep

Excerpt of an event-activity network

for three lines (S7, S8, S9) of the S-

Bahn Berlin network near Ostkreuz

The necessary condition holds for the

yellow cycle. If T = 10 min, then the

sum of activity durations must be an

integer mutliple of 10 minutes.

Suppose each transfer takes at least 2

min. If all three transfer times are sup-

posed to be at this lower bound, then

the sum of the three driving times in

the cycle must be 4 min modulo 10.

In practice, each of those is around 2

min. This does not fit together! We

hencemust increasedrivingor transfer

times to be feasible.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 19 / 37



Transfers Without Waiting?

0

Warschauer Str. dep

0

Ostkreuz arr

0

Ostkreuz dep

0 Ostkreuz arr

0 Ostkreuz dep

0 Treptower Park arr

0 Treptower Park dep0Treptower Park arr

0Treptower Park dep

0 Warschauer Str. arr0

Warschauer Str. dep

Excerpt of an event-activity network

for three lines (S7, S8, S9) of the S-

Bahn Berlin network near Ostkreuz

The necessary condition holds for the

yellow cycle. If T = 10 min, then the

sum of activity durations must be an

integer mutliple of 10 minutes.

Suppose each transfer takes at least 2

min. If all three transfer times are sup-

posed to be at this lower bound, then

the sum of the three driving times in

the cycle must be 4 min modulo 10.

In practice, each of those is around 2

min. This does not fit together! We

hencemust increasedrivingor transfer

times to be feasible.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 19 / 37



Transfers Without Waiting?

0

Warschauer Str. dep

0

Ostkreuz arr

0

Ostkreuz dep

0 Ostkreuz arr

0 Ostkreuz dep

0 Treptower Park arr

0 Treptower Park dep0Treptower Park arr

0Treptower Park dep

0 Warschauer Str. arr0

Warschauer Str. dep

Excerpt of an event-activity network

for three lines (S7, S8, S9) of the S-

Bahn Berlin network near Ostkreuz

The necessary condition holds for the

yellow cycle. If T = 10 min, then the

sum of activity durations must be an

integer mutliple of 10 minutes.

Suppose each transfer takes at least 2

min. If all three transfer times are sup-

posed to be at this lower bound, then

the sum of the three driving times in

the cycle must be 4 min modulo 10.

In practice, each of those is around 2

min. This does not fit together! We

hencemust increasedrivingor transfer

times to be feasible.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 19 / 37



Transfers Without Waiting?

0

Warschauer Str. dep

0

Ostkreuz arr

0

Ostkreuz dep

0 Ostkreuz arr

0 Ostkreuz dep

0 Treptower Park arr

0 Treptower Park dep0Treptower Park arr

0Treptower Park dep

0 Warschauer Str. arr0

Warschauer Str. dep

Excerpt of an event-activity network

for three lines (S7, S8, S9) of the S-

Bahn Berlin network near Ostkreuz

The necessary condition holds for the

yellow cycle. If T = 10 min, then the

sum of activity durations must be an

integer mutliple of 10 minutes.

Suppose each transfer takes at least 2

min. If all three transfer times are sup-

posed to be at this lower bound, then

the sum of the three driving times in

the cycle must be 4 min modulo 10.

In practice, each of those is around 2

min. This does not fit together! We

hencemust increasedrivingor transfer

times to be feasible.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 19 / 37



Cycle Space & Cyclomatic Number

Let G be a digraph. Choosing standard bases, the incidence matrix D of G induces a

Z-linear map

ZA(G) D−→ ZV(G), (xij)ij∈A(G) 7→

 ∑
ij∈δ+(i)

xij −
∑

ji∈δ−(i)

xji


i∈V(G)

.

Definition

C(G) := ker A is the cycle space of G.

In other words, C(G) is the space of allZ-linear combinations of integral circulations,

i.e., integral flows (with arbitrary signs) where flow conservation holds everywhere.

By construction, C(G) is a freeZ-module, i.e., a free abelian group.

Definition

The cyclomatic number µ(G) of G is defined as the rank of the cycle space C(G), i.e.,
the dimension of theQ-vector space C(G)⊗Z Q.
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Oriented, Directed and Undirected Cycles

Definition
I An oriented cycle in G is a vector γ ∈ {−1, 0, 1}A(G) ∩ C(G).
I A directed cycle in G is an oriented cycle γ with γ ≥ 0.

I An undirected cycle in G is a vector γ ∈ C(G)⊗Z F2.

+1

−1

+1

0

0 0

0

+1

+1

+1 +1

−1

+2

+1

+1

+ =

↓mod 2 ↓
1

1

1

0

0 0

0

1

1

1 1

1

0

1

1

+ =

Observations: The definitions of (un)directed cycles agree with the previous ones.

Addition of undirected cycles in C(G)⊗Z F2 is given by the symmetric difference.
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Fundamental Cycle Bases

Assume that G is weakly connected, so that G has a spanning tree S. We call each arc

in A(G) \ A(S) a co-tree arc. Adding an arbitrary co-tree arc ij to S produces a simple

oriented cycle γ in G consisting of ij as forward arc, i.e., γij = 1, and the arcs of the

unique j-i-path in S. This is the fundamental cycle of ij.

blue: spanning tree

Theorem

Let S be an arbitrary spanning tree of a weakly connected digraph G. Then the set of

fundamental cycles of the co-tree arcs w.r.t. S form aZ-basis of the cycle space C(G).
In particular, µ(G) = |A(G)| − |V(G)|+ 1.
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Fundamental Cycle Bases

Proof.

Since |A(S)| = |V(G)| − 1, we obtain µ := |A(G)| − |V(G)|+ 1 co-tree arcs a1, . . . , aµ
and hence µ fundamental cycles γa1 , . . . , γaµ . Linear independence is clear: Any

fundamental cycle has precisely one co-tree arc, and γai is the only fundamental

cycle containing ai. More formally, if
∑µ

i=1 λiγ
ai = 0 for some λi ∈ Z, then

comparing the i-th entries yields λi = 0 for all i.

Now let ζ ∈ C(G) be arbitrary and consider ζ ′ := ζ −
∑µ

i=1 ζaiγ
ai . The entry of ζ ′ at

any co-tree arc ai vanishes, so that {a ∈ A(G) | ζ ′a 6= 0} is contained in A(S). But S
contains no circulation and hence ζ ′ = 0.

Corollary

If G has c weakly connected components, then µ(G) = |A(G)| − |V(G)|+ c.

We call a basis for C(G) consisting of the fundamental cycles of some spanning tree

(forest) a fundamental cycle basis.
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Fundamental Cycle Basis Example

In the example from Slide 18, this is the corresponding fundamental cycle basis:

A B C D

H G F E

γ1 γ2 γ3

The cycles γ1 and γ3 use only forward arcs, whereas γ2 uses two backward arcs.

The cycle space C(G) is generated by the rows of the following cycle matrix:

HA AB BG BC FC CD DE GH FG EF

γ1 1 1 1 0 0 0 0 1 0 0

γ2 0 0 −1 1 −1 0 0 0 1 0

γ3 0 0 0 0 1 1 1 0 0 1

Observe that the submatrix on the last three columns – the ones corresponding to

the co-tree arcs – is the identity matrix.
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More Cycle Bases

Let G be a digraph, B a set of µ(G) oriented cycles.

Definition

I B is an integral cycle basis if B is aZ-basis of C(G).
I B is an undirected cycle basis if B reduces to an F2-basis of C(G)⊗Z F2.

We already proved that every fundamental cycle basis is integral. Taking any integral

cycle basis modulo 2 generates C(G)⊗Z F2, and the latter space has dimension µ(G),
as, e.g., our proof also shows that fundamental cycle bases are undirected. In

particular we have the implications

fundamental ⇒ integral ⇒ undirected.

The reverse implications do not hold in general.

Undirected Graphs

C(G)⊗Z F2 is the natural cycle space for an undirected graph G, its dimension over

F2 equals µ(G). The cycle spaces of any two orientations of G are isomorphic.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 25 / 37



More Cycle Bases

Let G be a digraph, B a set of µ(G) oriented cycles.

Definition

I B is an integral cycle basis if B is aZ-basis of C(G).
I B is an undirected cycle basis if B reduces to an F2-basis of C(G)⊗Z F2.

We already proved that every fundamental cycle basis is integral. Taking any integral

cycle basis modulo 2 generates C(G)⊗Z F2, and the latter space has dimension µ(G),
as, e.g., our proof also shows that fundamental cycle bases are undirected. In

particular we have the implications

fundamental ⇒ integral ⇒ undirected.

The reverse implications do not hold in general.

Undirected Graphs

C(G)⊗Z F2 is the natural cycle space for an undirected graph G, its dimension over

F2 equals µ(G). The cycle spaces of any two orientations of G are isomorphic.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 25 / 37



More Cycle Bases

Let G be a digraph, B a set of µ(G) oriented cycles.

Definition

I B is an integral cycle basis if B is aZ-basis of C(G).
I B is an undirected cycle basis if B reduces to an F2-basis of C(G)⊗Z F2.

We already proved that every fundamental cycle basis is integral. Taking any integral

cycle basis modulo 2 generates C(G)⊗Z F2, and the latter space has dimension µ(G),
as, e.g., our proof also shows that fundamental cycle bases are undirected. In

particular we have the implications

fundamental ⇒ integral ⇒ undirected.

The reverse implications do not hold in general.

Undirected Graphs

C(G)⊗Z F2 is the natural cycle space for an undirected graph G, its dimension over

F2 equals µ(G). The cycle spaces of any two orientations of G are isomorphic.

Niels Lindner: Periodic Timetable Optimization in Public Transport CO@Work 2024 Zuse Institute Berlin, September 26, 2024 25 / 37



Cycle Matrices and Determinants

Cycle Matrix

If B is a cycle basis, we can consider the cycle matrix Γ ∈ {−1, 0, 1}B×A(G) having the

oriented cycles in B as rows.

Determinant of a Cycle Basis

For a spanning forest S of G, define ΓS as the square submatrix obtained from the

columns belonging to the co-forest arcs A(G) \ A(S). The determinant of B is defined

as det(B) := | det(ΓS)|.

Theorem (Liebchen, Rizzi, 2007)

(1) The determinant of a cycle basis is well-defined and positive.

(2) B is an undirected cycle basis if and only if detB is odd.

(3) B is an integral cycle basis if and only if detB = 1.

(4) B is a fundamental cycle basis if and only if Γ can be permuted in such a way that

it contains the µ(G)× µ(G) identity matrix in its last µ(G) columns.
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Cycle Periodicity Property

Theorem (Cycle periodicity property – Liebchen, Peeters, 2009)

Let G be a digraph, x ∈ RA(G). Then the following are equivalent:

(1) there is a π ∈ [0, T)V(G) such that for all ij ∈ A(G) holds xij ≡ πj − πi mod T,

(2) γ>x ≡ 0 mod T for all oriented cycles γ in G,

(3) Γx ≡ 0 mod T for any cycle matrix Γ of an integral cycle basis for G.

7 2 6

3

627

7 9
5

0 7 9 5

3 6 4 8

7 + 7 + 7 + 9 = 30

2 − 5 + 2 − 9 = −10

6 + 3 + 6 + 5 = 20

Remark: We can rephrase (1) as: There is a π such that x ≡ D>π mod T , where D is

the incidence matrix of G. This allows for a conceptually simple algebraic proof in

terms of graph homology: The following sequence of abelian groups is exact:

ZV(G) D>

−−→ ZA(G) Γ−→ C(G) → 0.
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Cycle Periodicity Property

Theorem (Cycle periodicity property – Liebchen, Peeters, 2009)

Let G be a digraph, x ∈ RA(G). Then the following are equivalent:

(1) there is a π ∈ [0, T)V(G) such that for all ij ∈ A(G) holds xij ≡ πj − πi mod T,

(2) γ>x ≡ 0 mod T for all oriented cycles γ in G,

(3) Γx ≡ 0 mod T for any cycle matrix Γ of an integral cycle basis for G.

Proof.

(1)⇒ (2): Telescoping sum as for directed cycles, but nowwith signs.

(2)⇒ (3): The rows of Γ consist of oriented cycles.

(3)⇒ (2): Any oriented cycle γ is an integer linear combination of the rows of Γ
(Z-basis property).
(2)⇒ (1): W.l.o.g. G is weakly connected. Let S be a spanning tree. We construct a

periodic timetable π by depth-first search along S, so that xij ≡ πj − πi mod T . For a

co-tree arc ij ∈ A(G) \ A(S), let p be the unique j-i-path in S and γ the fundamental

cycle associated to ij. Set xij := [−p>x]T . Then

πj − πi ≡ πj − πi + p>x − p>x ≡ γ>x + xij ≡ xij mod T.
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Cycle-based MIP Formulation

The cycle periodicity property allows a cycle-basedmixed-integer programming

formulation for PESP:

Minimize w>x

s.t. Γx = Tz,

` ≤ x ≤ u,

z ∈ ZB.

Here, (G, T, `, u,w) is a PESP instance, and B is an integral cycle basis for Gwith cycle

matrix Γ. The z-variables model the modulo T constraints (cycle offsets).

Remarks

I The timetable-based MIP formulation has |A(G)| integral variables, the
cycle-based one has only µ(G) variables. However, the range of the integer
variables is typically larger in the cycle-based formulation.

I Periodic timetables are only implicit in the cycle-based MIP formulation. They

can be reconstructed by depth-first search as in the proof of the cycle

periodicity property.
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PESP: Example with Cycle-Based MIP

A B C D

EFGH

[7, 7], 0

[7, 7], 0

[6, 6], 0

[6, 6], 0

[2, 11], 1

[5, 14], 1 [5, 14], 1

[2, 11], 1

[3, 12], 1[3, 12], 1

PESP instance, period time T = 10, arcs labeled with [`, u],w

Minimize xBC + xBG + xDE + xFC + xFG + xHA

s.t. xAB + xBG + xGH + xHA = 10z1 z1 ∈ Z
xBC − xFC + xFG − xBG = 10z2 z2 ∈ Z
xCD + xDE + xEF + xFC = 10z3 z3 ∈ Z

7 ≤ xAB ≤ 7

2 ≤ xBC ≤ 11

...
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LP Relaxations

Lemma

For both MIP formulations, x = ` is an optimal solution to the natural LP relaxation.

Proof.

For the incidence-based formulation, set

π := 0, x := `, p := `/T.

Then certainly

πj − πi + Tpij = ` = x.

For the cycle-based formulation, set

x := `, z := Γx/T.

Then clearly Γx = Tz.

Upshot: Dropping integrality constraints makes the LP worthless. This is disastrous

for branch-and-cut!
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Odijk’s Cycle Inequalities

Theorem (Cycle inequalities – Odijk, 1994)

Let (G, T, `, u,w) be a PESP instance and let γ be an oriented cycle in G. Then the

following cycle inequality is valid for all feasible periodic tensions x:⌈
γ>
+ `− γ>

−u

T

⌉
≤ γ>x

T
≤

⌊
γ>
+u− γ>

−`

T

⌋
,

where γ+ := max(0, γ) ∈ {0, 1}A(G) and γ− := max(0,−γ) ∈ {0, 1}A(G) are the
positive and negative parts of γ, respectively.

Proof.

Since γ = γ+ − γ−, we have

γ>
+ `− γ>

−u ≤ γ>x ≤ γ>
+u− γ>

−`.

It remains to note that γ>x/T is integer by the cycle periodicity property.

Note: Odijk’s cycle inequalities provide bounds on the cycle offset variables z.
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Example: Cycle Inequalities as Cutting Planes

PESP instance with period time T = 10:

[1, 2], 11

drive

[3, 6], 11

drive

[1, 2], 11

drive

[1, 2], 11

drive

[3, 6], 11

drive

[1, 2], 11

drive [1,
1
0],

1
0

tu
rn

[1
,1
0
],
1
0

tu
rn

[1
,7
],
0

h
e
a
d
w
a
y [1,

7],
0

h
e
a
d
w
a
y

γ1 γ2 γ3

courtesy: Christian Liebchen and Berenike Masing

Relaxation Optimal weighted slack

LP relaxation 0

+ γ>
2 x ≥ 10

⌈
3+1+3+1

10

⌉
= 10 γ>

2 x = 3+ 1+ 3+ 3 = 10 0

+ γ>
1 x ≥ 10

⌈
1+1+1−7

10

⌉
= 0 γ>

1 x = 1+ + 1− 1 = 0

+ γ>
3 x ≥ 10

⌈
1+1+1−7

10

⌉
= 0 γ>

3 x = 1+ 1+ 1− 3 = 0 0

+ (γ1 + γ2)>x ≥ 10
⌈
10
10

⌉
= 10 (γ1 + γ2)>x = 0

+ (γ2 + γ3)>x ≥ 10
⌈
10
10

⌉
= 10 (γ2 + γ3)>x = 10 0

+ (γ1 + γ2 + γ3)>x ≥ 10
⌈
12
10

⌉
= 20 (γ1 + γ2 + γ3)>x = 20 80

PESP MIP 80
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Final Remarks on PESP

Remarks on MIP

I PESP is computationally very hard. Evenmedium-sized instances can be very

challenging. Benchmarking library: timpasslib.aalto.fi/pesplib.html
I Nevertheless, PESP-based MIP models are applied in practice.

I The timetable-based MIP formulation is empirically better for finding feasible

solutions more quickly.

I The cycle-based MIP formulation, in particular with cutting plane techniques,

produces empirically smaller branch-and-bound trees and better dual bounds.

More to Discover

I combinatorics of optimal solutions: spanning tree structures, modulo network

simplex (Nachtigall and Opitz, 2008)

I geometry of timetables: tropical neighborhood search (Bortoletto, Lindner,

Masing 2022, 2024)

I model extensions: line planning, track allocation, vehicle scheduling (Masing,

Lindner, Liebchen, 2023a, 2023b)
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Final Remarks on PESP

Remarks on MIP

I PESP is computationally very hard. Evenmedium-sized instances can be very

challenging. Benchmarking library: timpasslib.aalto.fi/pesplib.html
I Nevertheless, PESP-based MIP models are applied in practice.

I The timetable-based MIP formulation is empirically better for finding feasible

solutions more quickly.

I The cycle-based MIP formulation, in particular with cutting plane techniques,

produces empirically smaller branch-and-bound trees and better dual bounds.

More to Discover

I combinatorics of optimal solutions: spanning tree structures, modulo network

simplex (Nachtigall and Opitz, 2008)

I geometry of timetables: tropical neighborhood search (Bortoletto, Lindner,

Masing 2022, 2024)

I model extensions: line planning, track allocation, vehicle scheduling (Masing,

Lindner, Liebchen, 2023a, 2023b)
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ConcurrentPESP
Concurrent Framework for Periodic Timetable Optimization

Improving Heuristics

Modulo Network Simplex

Tropical Neighborhood Search

Maximum Cuts

Solution Pool

Exact Methods

Branch & Cut

Gurobi/CPLEX/SCIP interface

several MIP formulations

dynamic cutting planes

Starting Heuristics

SAT Solver

Network Strategies

Preprocessing

Shrinking Heuristics

Graph Partitioning

for each network

...trades off by far more than just concurrency

...holds primal and dual records for all 22 PESPlib instances

(Borndörfer, Lindner, Roth, 2020)
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Try It Yourself

Can you find an optimal periodic timetable? �

https://www.zib.de/lindner/tdm22/pesp.html

The rules are as follows:

I The period time is T = 10 minutes.

I Transfers take at least 2 minutes.

I Driving times need to be exactly as

indicated in the line network.

I Dwelling at stations must be between 1

and 5minutes.

I Turnarounds must be between 3 and 5

minutes.

L

M N

A

Y

B

Z

4min 8min
6min

7min

7min

5min
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