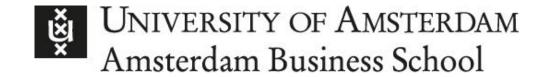
Deep Learning in Robust Optimization

Jannis Kurtz

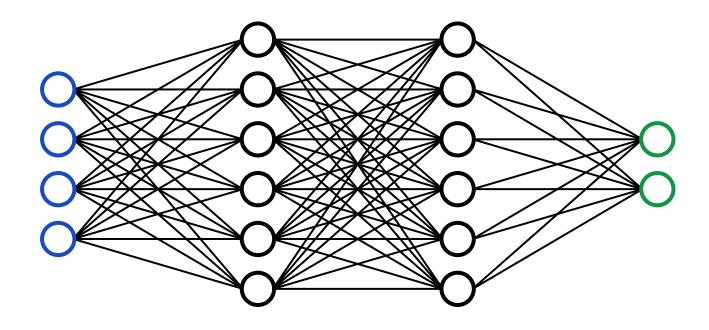


Outline

- I. Neural Networks
- II. Robust Optimization
- III. Construction of Uncertainty Sets

Neural Networks

Neural Networks



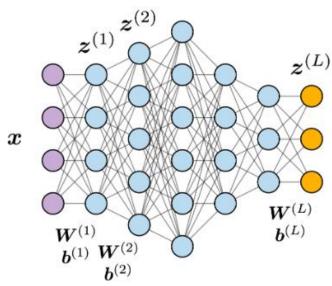
Input Layer Hidden Layers Output Layer

Fully-Connected Neural Networks

Mathematical Description. A fully-connected deep neural network can be represented by the following function:

$$\phi(x) = \left(f^{(L)} \circ f^{(L-1)} \circ \dots \circ f^{(1)}\right)(x)$$

- $f^{(l)}(z) = \sigma(W^{(l)}z + b^{(l)})$
- data point $x \in \mathbb{R}^n$
- \bullet number of Layers L
- weight matrix $W^{(l)} \in \mathbb{R}^{d_l \times d_{l-1}}$, bias $b^{(l)}$
- d_l is the width of the l-th layer
- activation function $\sigma: \mathbb{R} \to \mathbb{R}$ (applied componentwise)



Source: Balestriero et al. - On the Geometry of Deep Learning (2024)

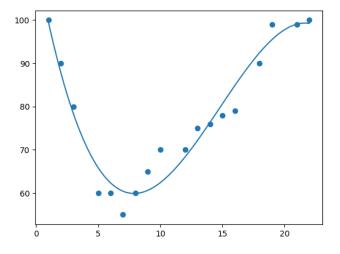
ReLU Activation Function. An often used activation function is the ReLU (Rectified Linear Unit):

$$\sigma(z) = \max\{z, 0\}$$

Regression Models

Regression Models. The goal of a regression model is to accurately predict the label $y \in \mathbb{R}^k$ for a given data point $x \in \mathbb{R}^N$.

- data space \mathcal{X}
- labeled training data: $\mathcal{D} = \{(x^1, y^1), \dots, (x^m, y^m)\} \subset \mathcal{X} \times \mathbb{R}^k$
- fit a **prediction function** $f_w: \mathcal{X} \to \mathbb{R}^k$ to the training data



Deep Learning

Deep Learning. In deep learning we are fitting a neural network to the training data.

- \bullet Define the **neural network structure**: number of layers L and neurons per layer
- Define a loss function $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and a regularizer \mathcal{R} .
- Solve the following optimization problem:

Output of the Neural Network
$$\sum_{j=1}^{m} \ell(\phi_{W,b}(x^j), y^j) + \mathcal{R}(W,b)$$

where
$$W = (W^{(1)}, \dots, W^{(L)})$$
 and $b = (b^{(1)}, \dots, b^{(L)})$.

Solution Methods. Fast and parallelizable methods were developed to tackle huge network sizes and huge amounts of data:

- Usually solved via (stochastic) gradient descent methods.
- No global optimum guaranteed.
- However, also local optima can generalize well on unseen data.

Why Neural Networks?

Expressivity. Neural Networks can approximate very general classes of functions:

• Every continuous function can be approximated up to an arbitrary accuracy $\varepsilon > 0$ by a neural network.

Survey on expressivity: [Gühring, Raslan, & Kutyniok (2020)]

• Every piecewise linear function in dimension n can be exactly represented by a ReLU-NN where the number of layers is at most

$$\lceil \log_2(n+1) \rceil + 1$$

[Arora et al. (2016)]

Backpropagation.

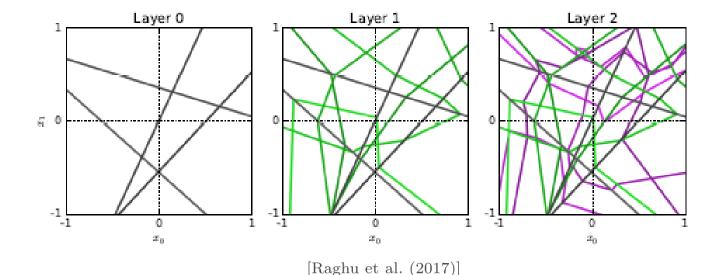
- Calculate the gradient in the parameters W, b of a neural network by applying the chain rule.
- Can be done by iteratively going backwards through the network (backpropagation).
- Can be parallelized.

Piecewise Affine-Linear Functions

ReLU Neural networks are just piecewise affine-linear functions!

- Fix an activation pattern for all neurons.
- The set of data points which fulfill these activations is a polyhedron.
- Output is linear on this polyhedron.

[Wang, Balestriero, & Baraniuk, (2018)]



Set of points which activate a certain neuron:

$$\{x: w^\top x > 0\}$$

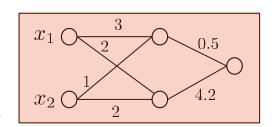
Set of points which deactivate a certain neuron:

$$\{x: w^\top x \le 0\}$$

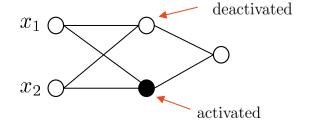
Example

Consider the following trained neural network:

$$\phi(x) = (0.5, 4.2)^{\top} \sigma \left(\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right)$$



Consider the activation pattern:

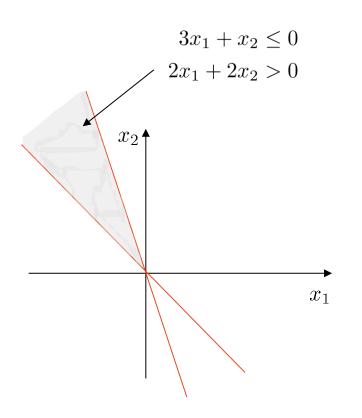


A neuron is activated if the ReLU is positive, i.e.,

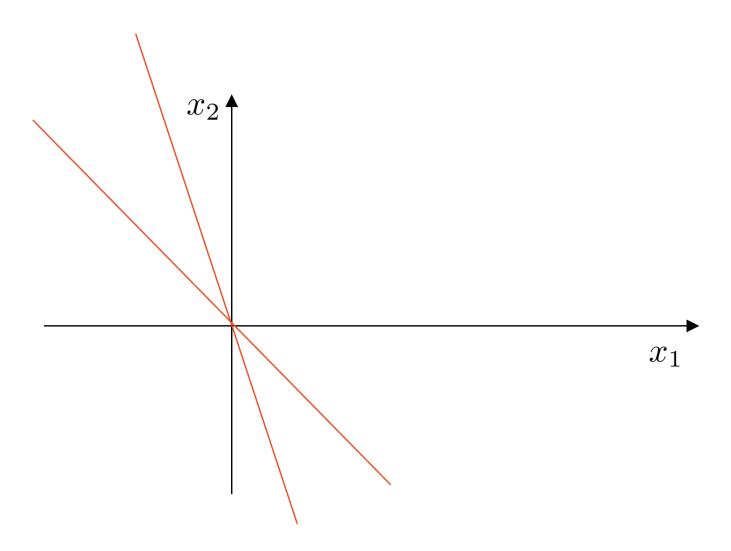
$$\max\{w^{\top}x, 0\} > 0$$

In this region the neural network function is linear:

$$\phi(x) = 0.5 \cdot 0 + 4.2(2x_1 + 2x_2)$$



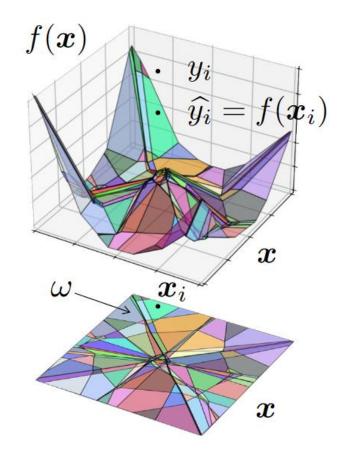
Example



Geometry of Neural Networks

On the Geometry of Deep Learning

Randall Balestriero * Ahmed Imtiaz Humayun † Richard G. Baraniuk ‡



MIP Representable Neural Networks

The evaluation of an **already trained neural network** with ReLU activation function can be modeled by a mixed-integer programming (MIP) formulation:

• For a given data point x the output of the first layer (after activation) is

$$\sigma\left(W^{1}x\right) = \begin{pmatrix} \sigma((w_{1}^{1})^{\top}x) \\ \vdots \\ \sigma((w_{d_{1}}^{1})^{\top}x) \end{pmatrix}$$

where we have ReLU activation $\sigma(z) = \max\{z, 0\}$.

• Each output component $v = \sigma(w^{\top}x)$ can be modeled by the following MIP constraints where M is a large value:

$$w^{\top}x \le v$$

$$w^{\top}x \ge v - Mu$$

$$v \le M(1 - u)$$

$$v \ge 0$$

$$u \in \{0, 1\}$$

Optimizing over Neural Networks

Theorem (Fischetti, M., & Jo, J. (2018)). For a given already trained neural network ϕ_W with ReLU activations the following optimization problem can be modeled as a mixed-integer problem:

$$\min_{x} g(\phi_{W,b}(x))$$
s.t. $x \in \mathcal{X}$.

Literature. Improving the computational performance for the optimization over neural networks:

- Progressive Bound Tightening: ([Tjeng, Xiao, & Tedrake (2017)])
- Lossless compression of Neural Networks: [Serra, Kumar, & Ramalingam (2020)], [ElAraby, Wolf, & Carvalho (2020) and (2023)]
- Bounding and Counting Linear Regions: [Serra, Tjandraatmadja, & Ramalingam (2018)]
- Survey: Huchette, J., Muñoz, G., Serra, T., & Tsay, C. (2023). When deep learning meets polyhedral theory: A survey. arXiv preprint arXiv:2305.00241.

Applications

There are many applications where optimizing over a trained neural network is involved:

• Finding adversarial examples: for a given data point \hat{x} find a similar point $x \in \mathcal{X}$ for which the output of the network changes significantly:

$$\min_{x} \|x - \hat{x}\|$$

$$s.t. \quad \|\phi_{W,b}(x) - \phi_{W,b}(\hat{x})\| \ge \Delta$$

$$x \in \mathcal{X}$$

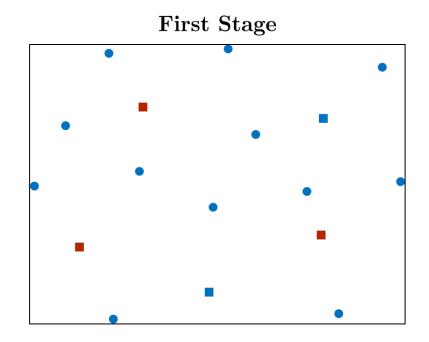
- Counterfactual explanations: similar to adversarial examples
- Robustness analysis: what is the maximum radius in which the output of the neural network does not change significantly.
- **Pruning of neural networks**: find the maximum number of neurons which can be deleted such that the prediction quality of the neural network does not deteriorate too much.
- Training of binarized neural networks: if the weights are restricted to values in $\{-1,0,1\}$ training NNs can be done via MIP.
- Constraint Learning: model "difficult" constraints for which no mathematical expression is known.

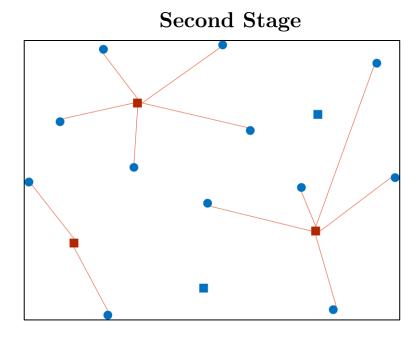
(Two-stage) Robust Optimization

Facility Location under Uncertainty

Two-stage Facility Location. Minimize total opening and transportation costs:

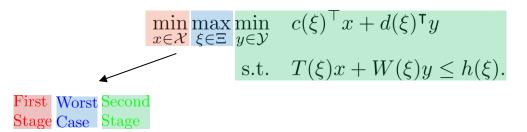
- First Stage: open facilities before uncertain demands are known
- Second Stage: assign customers to open facilities after uncertain demands are known





(Two-stage) Robust Optimization

Problem Definition. We consider two-stage robust optimization problems (2RO) of the following form:

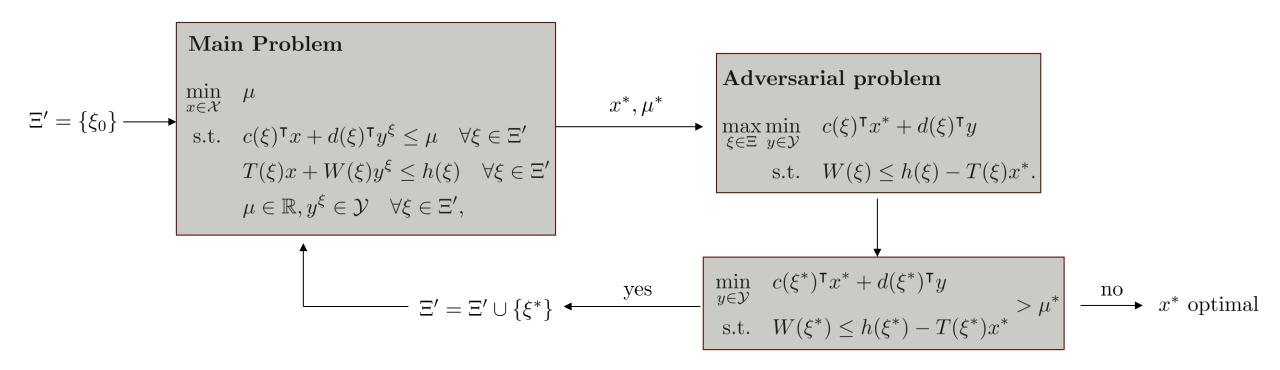


- x: first-stage decisions
- y: second-stage decisions
- ξ : uncertain parameters
- Ξ : convex uncertainty set
- $c(\xi), d(\xi)$: first and second-stage costs
- $T(\xi), W(\xi), h(\xi)$: constraints parameters

2RO is extremely hard to solve especially when

- the second-stage variables are integer,
- the uncertain parameters appear in the constraints.

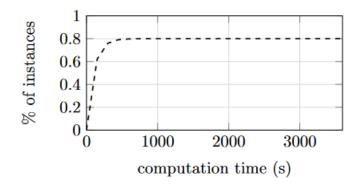
Column-and-Constraint Generation



Literature: CCG for Robust Optimization

Literature

- Objective uncertainty + integer second-stage: (Kämmerling, & Kurtz (2020))
- Constraint uncertainty + continuous second-stage: (Zeng, & Zhao (2013)), (Tsang, Shehadeh, & Curtis (2023))
- Constraint uncertainty + integer second-stage:
 - General method: (Zhao, & Zeng (2012))
 - "Interdiction-type problems": (Lefebvre, Schmidt, & Thürauf (2023))



Neural Two-Stage Robust Optimization

For more details.

J. Dumouchelle, E. Julien, J. Kurtz and E. B. Khalil (2023). Neur2RO: Neural Two-Stage Robust Optimization. The Twelfth International Conference on Learning Representations (ICLR), 2024

Neur2RO

Main Idea. Train a neural network which predicts the optimal value of the second stage problem.

$$NN_{\Theta}(x,\xi) \approx \min_{y \in \mathcal{Y}} \{ c(\xi)^{\mathsf{T}} x + d(\xi)^{\mathsf{T}} y : W(\xi) y \le h(\xi) - T(\xi) x \},$$

Main Problem

$$\min_{x \in \mathcal{X}} \quad \mu$$
s.t.
$$c(\xi)^{\mathsf{T}} x + d(\xi)^{\mathsf{T}} y^{\xi} \leq \mu \quad \forall \xi \in \Xi'$$

$$T(\xi) x + W(\xi) y^{\xi} \leq h(\xi) \quad \forall \xi \in \Xi'$$

$$\mu \in \mathbb{R}, y^{\xi} \in \mathcal{Y} \quad \forall \xi \in \Xi',$$

NN

Main Problem

$$\min_{x \in \mathcal{X}, \mu \in \mathbb{R}} \mu$$
s.t. $\mu \ge NN_{\Theta}(x, \xi) \quad \forall \xi \in \Xi$

Adversarial problem

$$\max_{\xi \in \Xi} \min_{y \in \mathcal{Y}} c(\xi)^{\mathsf{T}} x^* + d(\xi)^{\mathsf{T}} y$$

s.t.
$$W(\xi) y \le h(\xi) - T(\xi) x^*.$$

NN

Adversarial problem

$$\max_{\xi \in \Xi} NN_{\Theta}(x^*, \xi)$$

Neur2RO

Main Idea. Train a neural network which predicts the optimal value of the second stage problem.

$$NN_{\Theta}(x,\xi) \approx \min_{y \in \mathcal{Y}} \{ c(\xi)^{\mathsf{T}} x + d(\xi)^{\mathsf{T}} y : W(\xi) y \le h(\xi) - T(\xi) x \},$$

Main Problem

$$\begin{split} & \underset{x \in \mathcal{X}}{\min} \quad \mu \\ & \text{s.t.} \quad c(\xi)^\intercal x + d(\xi)^\intercal y^\xi \leq \mu \quad \forall \xi \in \Xi' \\ & \quad T(\xi) x + W(\xi) y^\xi \leq h(\xi) \quad \forall \xi \in \Xi' \\ & \quad \mu \in \mathbb{R}, y^\xi \in \mathcal{Y} \quad \forall \xi \in \Xi', \end{split}$$

NN

Main Problem

$$\min_{x \in \mathcal{X}, y \in \mathcal{Y}, \xi_a \in \Xi} c(\xi_a)^{\mathsf{T}} x + d(\xi_a)^{\mathsf{T}} y$$
s.t.
$$W(\xi_a) y + T(\xi_a) x \le h(\xi_a),$$

$$\xi_a \in \arg\max_{\xi \in \Xi'} \left\{ NN_{\Theta}(x, \xi) \right\}$$

Adversarial problem

$$\max_{\xi \in \Xi} \min_{y \in \mathcal{Y}} c(\xi)^{\mathsf{T}} x^* + d(\xi)^{\mathsf{T}} y$$

s.t.
$$W(\xi) y \le h(\xi) - T(\xi) x^*.$$

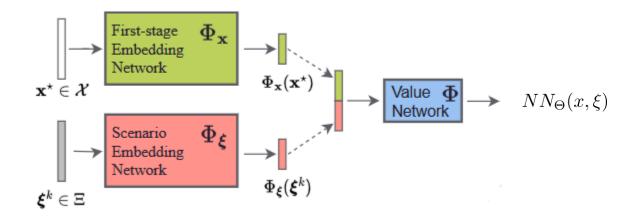
NN

Adversarial problem

 $\max_{\xi \in \Xi} NN_{\Theta}(x^*, \xi)$

 $> \frac{\text{Mixed-integer}}{\text{linear programs}}$

Network Architecture

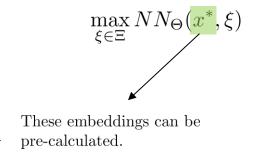


Main Problem

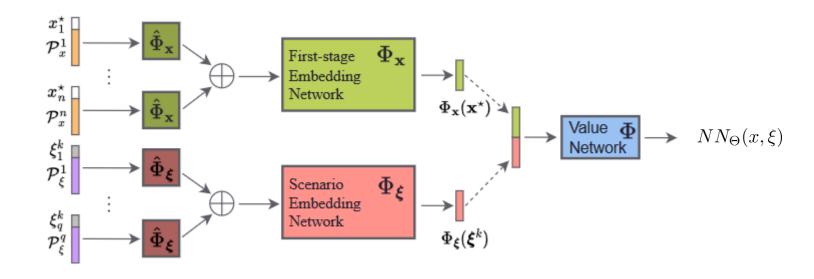
$$\min_{x \in \mathcal{X}, y \in \mathcal{Y}, \xi_a \in \Xi} c(\xi_a)^{\mathsf{T}} x + d(\xi_a)^{\mathsf{T}} y$$
s.t.
$$W(\xi_a) y + T(\xi_a) x \le h(\xi_a),$$

$$\xi_a \in \arg\max_{\xi \in \Xi'} \left\{ NN_{\Theta}(x, \xi) \right\}$$

Adversarial problem



Set-Based Architecture



Hyperparameter	Knapsack	Capital budgeting
$\hat{\Phi}_x$ dimensions	[32, 16]	[16, 4]
Φ_x dimensions	[64, 8]	[32, 8]
$\hat{\Phi}_{\xi}$ dimensions	[32, 16]	[16, 4]
Φ_{ξ} dimensions	[64, 8]	[32, 8]
Φ dimensions	[8]	[8]

Set-based architecture allows for generalization to higher dimensional instances than contained in the training set.

Approximation Guarantee

Assume that the predictions of the neural network can have an error of at most $\alpha > 0$, i.e.

$$|NN_{\Theta}(x,\xi) - \operatorname{val}(x,\xi)| \le \alpha \quad \forall x \in \mathcal{X}, \xi \in \Xi.$$

Theorem. If $|\mathcal{X}|$ is finite and if relatively complete recourse holds, our algorithm converges to a solution $x_{NN} \in \mathcal{X}$ with

$$\max_{\xi \in \Xi} \operatorname{val}(x_{\text{NN}}, \xi) \le \operatorname{opt} + 2\alpha + \varepsilon$$

where opt is the optimal value of the original problem and ε an accuracy parameter.

Experiments: Data Collection & Testing

Data Generation.

- Sample random first stage solutions x
- Sample random scenarios ξ
- Solve second-stage problem for x and ξ to obtain objective value (label)
- randomly sample 500 instances, 10 first-stage decisions per instance, and 50 scenarios per first-stage decision: 250,000 data points
- Can be parallelized.

Training. Train one neural network over training data of all instance sizes.

Experiment: Two-stage Knapsack

Correlation Type	# items	Median Neur2RO	RE BP	Time Neur2RO	es BP	Correlation Type	# items	Median Neur2RO	RE BP	Time Neur2RO	es BP
Uncorrelated	20 30 40 50 60 70 80	1.417 1.188 1.614 1.814 1.146 1.408 0.994	0.000 0.000 0.000 0.000 0.000 0.000	7 9 13 14 24 27 20	0 1 3 12 18 46 388	Almost Strongly Correlated	20 30 40 50 60 70 80	1.798 0.627 0.497 0.019 0.047 0.031 0.106	0.000 0.000 0.000 0.000 0.000 0.031 0.035	7 10 17 13 27 34 26	9 2,708 4,744 8,852 10,261 10,800 10,800
Weakly Correlated	20 30 40 50 60 70 80	1.705 2.236 1.667 1.756 0.772 0.068 0.000	0.000 0.000 0.000 0.000 0.000 0.020 0.345	7 16 45 42 134 32 45	29 454 6,179 8,465 9,242 10,800 10,800	Strongly Correlated	20 30 40 50 60 70 80	1.774 0.670 0.542 0.073 0.000 0.020 0.000	0.000 0.000 0.000 0.000 0.046 0.027 0.032	8 11 20 18 21 28 31	9 2473 5,665 8,240 10,800 10,800 10,800

Instances and Baseline: Arslan, A. N., & Detienne, B. (2022). Decomposition-based approaches for a class of two-stage robust binary optimization problems. INFORMS journal on computing, 34(2), 857-871.

Experiments: Facility Location

# items	Median RE							Times	(second	s)		
	Neur2RO	Neur2RO-pga	Static	k = 2	k = 5	k = 10	Neur2RO	Neur2RO-pga	Static	k = 2	k = 5	k = 10
(5, 10)	0.000	0.000	0.000	0.000	0.000	0.000	5	5	0	31	40	26
(5, 20)	0.000	0.000	0.000	0.000	0.000	0.000	6	6	0	9	17	17
(5, 50)	0.000	0.000	0.000	0.000	0.000	0.000	4	5	0	1614	1381	1404
(10, 10)	0.000	0.000	1.393	0.653	0.000	0.000	7	7	1	2323	4646	5151
(10, 20)	0.000	0.000	2.730	1.280	0.000	0.000	10	7	1	4577	6764	6751
(10, 50)	0.000	0.000	1.103	1.103	0.744	0.186	15	9	27	2342	6519	7241
(20, 20)	0.000	0.000	6.048	3.498	2.841	2.206	15	15	132	10823	10291	10311
(20, 50)	0.000	0.000	5.014	3.396	3.913	3.298	20	17	51	10463	10828	10834

# items	Percent of feasible/found solution)									
	Neur2RO	Neur2RO-pga	Static	k = 2	k = 5	k = 10				
(5, 10)	96	88	100	100	100	100				
(5, 20)	92	80	100	100	100	100				
(5, 50)	100	76	100	100	100	100				
(10, 10)	100	48	100	100	100	100				
(10, 20)	100	36	100	100	100	100				
(10, 50)	100	44	100	100	100	100				
(20, 20)	88	20	100	88	80	84				
(20, 50)	96	8	100	84	96	96				

Instances and Baseline: Subramanyam, A., Gounaris, C. E., & Wiesemann, W. (2020). K-adaptability in two-stage mixed-integer robust optimization. Mathematical Programming Computation, 12, 193-224.2

Experiments: Facility Location

# items		Med	lian RE			Percent	t of feasi	ible/four	nd soluti	ons
	Neur2RO	Static	k = 2	k = 5	k = 10	Neur2RO	Static	k = 2	k = 5	k = 10
(5, 10)	0.000	0.000	0.000	0.000	0.000	96	100	84	80	84
(5, 20)	0.000	0.000	0.000	0.000	0.000	92	100	96	100	88
(5, 50)	0.000	0.000	0.000	0.000	0.000	100	100	76	76	64
(10, 10)	0.000	0.618	0.000	0.000	0.000	100	100	80	64	60
(10, 20)	0.000	2.730	0.430	0.430	0.000	100	100	72	64	68
(10, 50)	0.000	1.103	1.393	0.916	1.023	100	100	72	56	40
(20, 20)	0.000	5.702	2.298	0.000	0.000	88	100	4	4	4
(20, 50)	0.000	5.014	0.557	0.895	-	96	100	4	8	-

Table 8 Facility location median errors at ML termination time (PGA results excluded).

Instances and Baseline: Subramanyam, A., Gounaris, C. E., & Wiesemann, W. (2020). K-adaptability in two-stage mixed-integer robust optimization. Mathematical Programming Computation, 12, 193-224.2

Open Problems

- The approximation bounds we present are quite conservative. Can we derive approximation bounds based on the data distribution?
- Constraint uncertainty has to be investigated more.
- Can other algorithms in robust optimization benefit from NN-support?

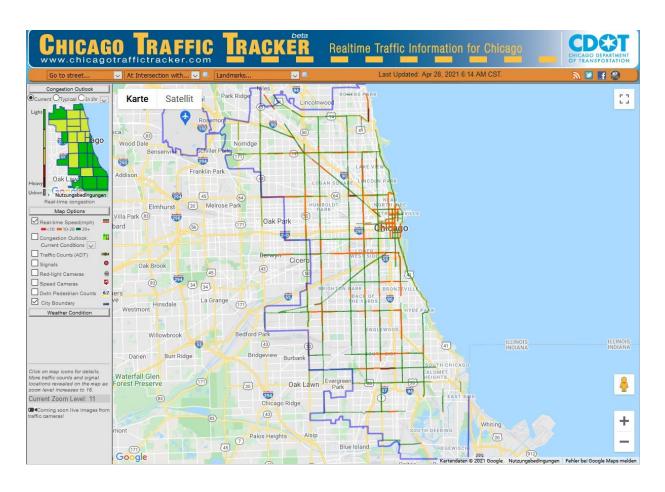
Construct Uncertainty Sets

For more details.

Goerigk, M., & Kurtz, J. (2023). Data-driven robust optimization using deep neural networks. Computers & Operations Research, 151, 106087.

Historical Data

Historical Data. In practice we can often observe historical scenarios $\xi^1, \ldots, \xi^m \in \mathbb{R}^n$.



But how to construct an appropriate uncertainty set from this?

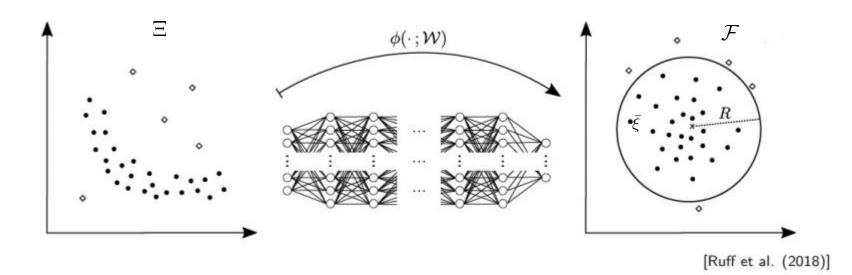
One-Class Deep Learning

Main Idea. Our approach is based on the following idea:

- Train a neural network which detects for a given scenario $\xi \in \Xi$ if it is a realistic scenario or not.
- Also called anomaly detection or One-Class Deep Learning

Approach.

- Train a neural network which maps the data into a new **feature space**
- Find the **smallest ball** in the new space such that all collected scenarios are contained in it



Construction Uncertainy Set

Algorithm.

Input: given historical scenarios ξ^1, \ldots, ξ^m (training data)

1. select a center point $\bar{\xi} \in \mathbb{R}^{d_L}$ and solve (e.g. via stochastic gradient descent)

$$\min_{W^1, \dots, W^L} \ \frac{1}{m} \sum_{i \in [m]} \|\phi(\xi^i, W) - \bar{\xi}\|_2^2 + \frac{\lambda}{2} \sum_{l \in [L]} \|W^l\|_F^2$$

[Ruff et al. (2018)]

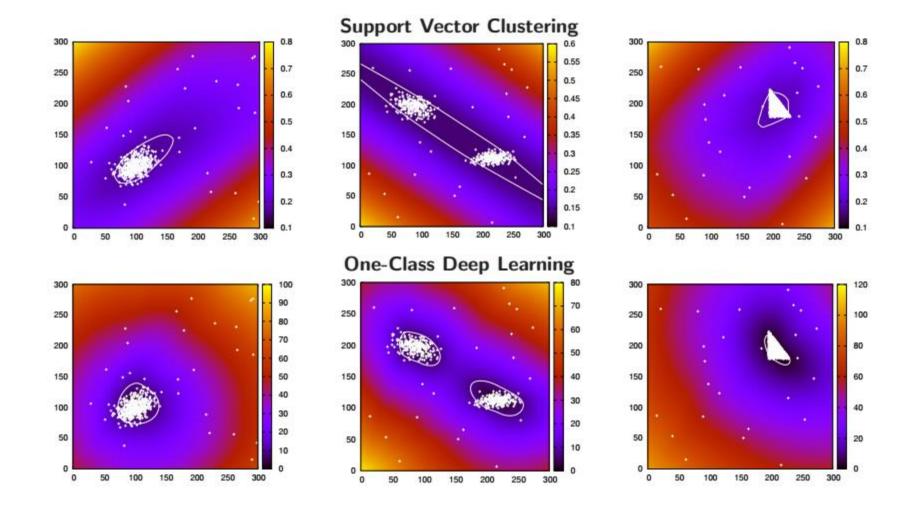
2. determine radius R e.g. as 95%-quantile of

$$r_i := \|\phi(\xi^i, W) - \bar{\xi}\|$$

Return: uncertainty set

$$U := \{ \xi \in \mathbb{R}^n : \|\phi(\xi, W) - \bar{\xi}\|_2 \le R \}$$

2-Dimensional Example



Optimization Algorithm

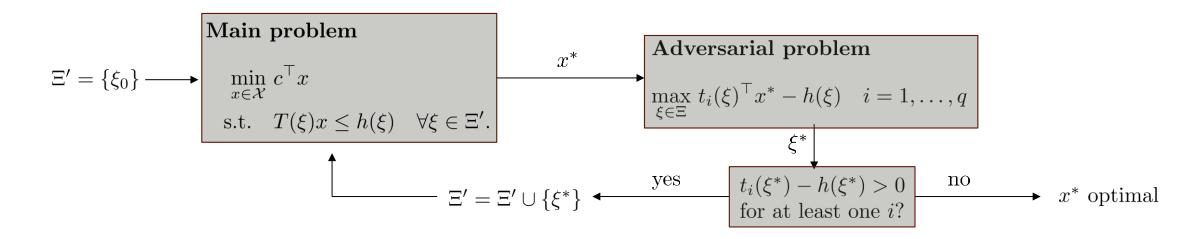
Consider classical robust optimization:

$$\min_{x \in \mathcal{X}} c^{\top} x$$

s.t. $T(\xi)x \le h(\xi) \quad \forall \xi \in \Xi.$

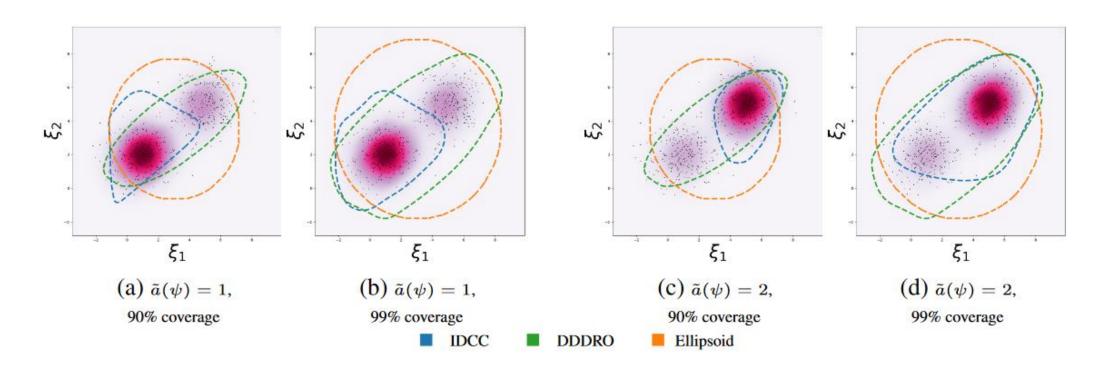
Due to the non-convex structure of the set we cannot use duality theory to solve the robust optimization problem.

Constraint Generation



Extension

Construct uncertainty sets based on contextual information (e.g. weather, day, time).



Chenreddy, A. R., Bandi, N., & Delage, E. (2022). *Data-driven conditional robust optimization*. Advances in Neural Information Processing Systems, 35, 9525-9537.

Conclusion

Summary.

- Trained neural networks can be represented as mixed-integer programs.
- MIP representations can be incorporated into classical CCG algorithms for robust optimization to find close to optimal solutions in seconds.
- MIP representations can be used to model uncertainty sets for robust optimization.

Thank you for your attention!

Robust Optimization Webinar

Season 4 of the Robust Optimization Webinar just started!

Webpage

