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Neural Networks
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Fully-Connected Neural Networks

Mathematical Description. A fully-connected deep neural network can be represented by the following func-

tion:

o) = (f o fE 0

FOE) =o(WDz 4 p1)
data point z € R"

number of Layers L

weight matrix W) € Raxdi-1_ hiag p)
d; is the width of the [-th layer

activation function o : R — R (applied componentwise)
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Source: Balestriero et al. - On the Geometry of Deep Learning (2024)

ReLU Activation Function. An often used activation function is the ReLU (Rectified Linear Unit):

o(z) = max{z,0}



Regression Models

Regression Models. The goal of a regression model is to accurately predict the label y € RF for a given data point
z € RV,

e data space X
e labeled training data: D = {(2!,y!),..., (2™, y™)} C X x R¥

e fit a prediction function f, : X — R* to the training data

100 4

90

80+

70 4

60+




Deep Learning

Deep Learning. In deep learning we are fitting a neural network to the training data.
e Define the neural network structure: number of layers L and neurons per layer
e Define a loss function /: R x R — R and a regularizer R.

e Solve the following optimization problem:
Output of the Neural

Network

m 4
min > Udwa(a’),y’) + R(W,b)
©og=l

where W = (WM, ... . WE)) and b = (b)), ..., b)),

Solution Methods. Fast and parallelizable methods were developed to tackle huge network sizes and huge amounts
of data:

e Usually solved via (stochastic) gradient descent methods.
e No global optimum guaranteed.

e However, also local optima can generalize well on unseen data.



Why Neural Networks?

Expressivity. Neural Networks can approximate very general classes of functions:

e Fuvery continuous function can be approximated up to an arbitrary accuracy € > 0 by a neural network.
Survey on expressivity: [Giihring, Raslan, & Kutyniok (2020)]

o Fvery piecewise linear function in dimension n can be exactly represented by a ReLU-NN where the number of layers is
at most
[logo(n+1)] +1
[Arora et al. (2016)]

Backpropagation.
e Cualculate the gradient in the parameters W, b of a neural network by applying the chain rule.
e Can be done by iteratively going backwards through the network (backpropagation).

e Can be parallelized.

[LeCun, Bengio, & Hinton (2015)]



Piecewise Affine-Linear Functions

ReLU Neural networks are just piecewise affine-linear functions!
e Fix an activation pattern for all neurons.
e The set of data points which fulfill these activations is a polyhedron.

o Output is linear on this polyhedron. [Wang, Balestriero, & Baraniuk, (2018)]

Set of points which activate a certain]
neuron:

{z:w'z >0}

Set of points which deactivate a
certain neuron:

{z:w'2 <0}

[Raghu et al. (2017)]



Example

Consider the following trained neural network:

o(z) = (0.5,4.2) o ((

) ) ) deactivated 3r1 + 220 <0
Consider the activation pattern: 1 o ! ?
201 + 229 > 0
Lo
T~ activated \ T2t
\
A neuron is activated if the ReLU is positive, i.e., \
AN
T
max{w x,0} >0 N

v

L1

In this region the neural network function is linear:

d(x) =0.5-0+4.2(221 + 2x2)



Example




Geometry of Neural Networks

On the Geometry of Deep Learning

Randall Balestriero * Ahmed Imtiaz Humayun Richard G. Baraniuk *




MIP Representable Neural Networks

The evaluation of an already trained neural network with ReLLU activation function can be modeled by a
mixed-integer programming (MIP) formulation:

e For a given data point x the output of the first layer (after activation) is
o (ler:) =

where we have ReLLU activation o(z) = max{z,0}.

e Each output component v = o(w' ) can be modeled by the following MIP constraints where M is a large value:

T

w r <o

wT:L'Z'U—Mu
v < M(1—u)
v >0

u € {0,1}



Optimizing over Neural Networks

Theorem (Fischetti, M., & Jo, J. (2018)). For a given already trained neural network ¢y with ReLU activations
the following optimization problem can be modeled as a mixed-integer problem:

min g(dw,p(z))
st. rxeX.

Literature. Improving the computational performance for the optimization over neural networks:
e Progressive Bound Tightening: ([Tjeng, Xiao, & Tedrake (2017)])

e Lossless compression of Neural Networks: [Serra, Kumar, & Ramalingam (2020)], [ElAraby, Wolf, &
Carvalho (2020) and (2023)]

e Bounding and Counting Linear Regions: [Serra, Tjandraatmadja, & Ramalingam (2018)]

e Survey: Huchette, J., Munoz, G., Serra, T., & Tsay, C. (2023). When deep learning meets polyhedral theory:
A survey. arXiv preprint arXiv:2305.00241.




Applications

There are many applications where optimizing over a trained neural network is involved:

e Finding adversarial examples: for a given data point z find a similar point x € X for which the output of
the network changes significantly:

min ||z — &
€T

st |owp(z) — dwp(2)|| = A
reX

e Counterfactual explanations: similar to adversarial examples

e Robustness analysis: what is the maximum radius in which the output of the neural network does not
change significantly.

e Pruning of neural networks: find the maximum number of neurons which can be deleted such that the
prediction quality of the neural network does not deteriorate too much.

e Training of binarized neural networks: if the weights are restricted to values in {—1,0,1} training NNs
can be done via MIP.

e Constraint Learning: model “difficult” constraints for which no mathematical expression is known.



(Two-stage) Robust
Optimization



Facility Location under Uncertainty

Two-stage Facility Location. Minimize total opening and transportation costs:

o First Stage: open facilities before uncertain demands are known

e Second Stage: assign customers to open facilities after uncertain demands are known

First Stage

Second Stage




(Two-stage) Robust Optimization

Problem Definition. We consider two-stage robust optimization problems (2RO) of the following form:

- . T
a d(é)T
gy O ety

— st T(E)z +W(E)y < h(€).

First Worst
Stage Case

e 1: first-stage decisions 2RO is extremely hard to solve especially when
e y: second-stage decisions e the second-stage variables are integer,
e &: uncertain parameters e the uncertain parameters appear in the constraints.

e —: convex uncertainty set
o c(&),d(&): first and second-stage costs

o T(&),W(&),R(E): constraints parameters




Column-and-Constraint Generation

== {50

Main Problem

min g x
THEAT x .,
st. c(O)Te+dE)Ty* <pu VECE g
Tz +W(E)y* <h() VEeF
pneRy ey VeeZ,
yes
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Adversarial problem

m i Tx* +d(&)T
e c(§)Tx* +d(§)Ty

s.t. W(E) < h(§) —T(€)z™.

|

ggg c(§)Tz™ +d(§")Ty
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Literature: CCG for Robust Optimization

Literature
e Objective uncertainty + integer second-stage: (Kimmerling, & Kurtz (2020))

e Constraint uncertainty + continuous second-stage: (Zeng, & Zhao (2013)), (Tsang, Shehadeh, & Curtis
(2023))

e Constraint uncertainty + integer second-stage:

— General method: (Zhao, & Zeng (2012))
— “Interdiction-type problems”: (Lefebvre, Schmidt, & Thiirauf (2023))
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Stolen from [Lefebvre, Schmidt, & Thiirauf (2023)]



Neural Two-Stage Robust
Optimization

For more details.
J. Dumouchelle, E. Julien, J. Kurtz and E. B. Khalil (2023). Neur2R0O: Neural Two-Stage Robust Optimization. The
Twelfth International Conference on Learning Representations (ICLR), 2024



Neur2RO

Main Idea. Train a neural network which predicts the optimal value of the second stage problem.

NNe(r,§) = ;%15{6(5)% +d(©)Ty : W&y < h(§) = T(§)z},

Main Problem

min
reEX H

st. c(€)Te+dE)Ty* <p VEeE
Tz +W(Ey* <h() VEeZ
peRy ey VeEeZ,

NN

v

Adversarial problem

i To* 4 d(€)T
depmily oSl Gy

s.t. W(§y < h(§) —T(Hz"

NN

Main Problem

min
reX,ueR

st. p> NNe(z,§)

VEe &

v

Adversarial problem

N N, *
max o(z*,§)




Neur2RO

Main Idea. Train a neural network which predicts the optimal value of the second stage problem.

NNe(z,§) = gg;{}{C(&)TfB +d(§)Ty : W(y < h(§) —T(§)x},

Main Problem
Main Problem

min [

TeX NN . : - d g T

S.t. C(f)TﬁC—I—d(f)TyE < VE € = ;,Jegc-é%lyn,gaea C(E ) L (§ ) Yy
T(€)z+W(Ey* <h() VEeZ st W(a)y +T(€a)z < h(&a),
peR Yy ey veed §u € argmaxeez { NNe(z, )}

v

Adversarial problem X Mixed-integer
NN Adversarial problem / linear programs
maxmin ¢(§)Tx" + d(&)Ty > )
£€E yey I?&XNN@(.’E ,€)
€=

s.t. W(§y < h(§) —T(Hz"




Network Architecture

First-stage q)x
—> | Embedding —:»H L
] MNetwork *“‘A
x* € X Fx(x7)  [Vaive™ @
Network
Scenario @E ¥
—» | Embedding _;.H
Network .
£k e = "I)E{E ]
Main Problem
min c(&a)Tx + d(&)Ty

TeEX , YyeV £, EE
s.t. W(&)y+T(&)x < h(&a),

§a € argmaxecz {NN@(x, 5)}

—>» NNog(z,§)

Adversarial problem

max N Ng(z", &)

565‘/

These embeddings can be

» pre-calculated.



Set-Based Architecture

i
Py ~a First-stage Py
: —>

,Pi_ ./” Network

Scenario @ ¢

Hyperparameter | Knapsack | Capital budgeting
¢, dimensions 32, 16] [16, 4]

®,. dimensions (64, 8] [3 8]

®, dimensions (32, 16] (16, 4]

®, dimensions (64, 8] 32, §]
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Set-based architecture allows for
generalization to higher dimensional
instances than contained in the
training set.



Approximation Guarantee

Assume that the predictions of the neural network can have an error of at most o > 0, i.e.

INNg(z,&) —val(z,8)| <a Vre X, £e€E.

Theorem. If |X| is finite and if relatively complete recourse holds, our algorithm converges to a solution rnyy € X
with

rglax val (NN, &) < opt +2a+ ¢
€=

where opt is the optimal value of the original problem and £ an accuracy parameter.




Experiments: Data Collection & Testing

Data Generation.
e Sample random first stage solutions x
e Sample random scenarios &
e Solve second-stage problem for z and £ to obtain objective value (label)

e randomly sample 500 instances, 10 first-stage decisions per instance, and 50 scenarios per first-stage decision:
250,000 data points

e Can be parallelized.

Training. Train one neural network over training data of all instance sizes.



Experiment: Two-stage Knapsack

Correlation # items Median RE Times Correlation | # items Median RE Times
Type NeurZ2RO BP | NeurZRO BP Type Neur2RO BP | Neur2RO BP
20 1.417  0.000 7 0 20 1.798  0.000 7 9
30 1.188  0.000 9 1 30 0.627  0.000 10 2,708
40 1.614  0.000 13 3 Almost 40 0.497  0.000 17 4,744
Uncorrelated 50 1.814  0.000 14 12 Strongly 50 0.019  0.000 13 8,852
60 1.146  0.000 24 18 Correlated 60 0.047  0.000 27 10,261
70 1.408  0.000 27 46 70 0.031 0.031 34 10,800
80 0.994  0.000 20 388 80 0.106 0.035 26 10,800
20 1.705  0.000 7 29 20 1.774  0.000 8 9
30 2.236  0.000 16 454 30 0.670 0.000 11 2473
. 40 1.667 0.000 45 6,179 ; ’ 40 0.542  0.000 20 5,665
g;;';i o 50 1.756  0.000 42 8465 Eﬁl’;ﬁe ; 50 0.073  0.000 18 8240
60 0.772  0.000 134 9,242 60 0.000 0.046 21 10,800
70 0.068 0.020 32 10,800 70 0.020 0.027 28 10,800
30 0.000  0.345 45 10,800 30 0.000 0.032 31 10,800

Instances and Baseline: Arslan, A. N., & Detienne, B. (2022). Decomposition-based approaches for a class of two-stage robust binary optimization
problems. INFORMS journal on computing, 34(2), 857-871.



Experiments: Facility Location

# items Median RE Times (seconds)

Neur2RO Neur2RO-pga Static k=2 k=05 k=10|Neur2RO Neur2RO-pga Static k=2 k=5 k=10
(5, 10) 0.000 0.000 0.000 0.000 0.000 0.000 5 5 0 31 40 26
(5, 20) 0.000 0.000 0.000 0.000 0.000 0.000 6 6 0 9 17 17
(5, 50) 0.000 0.000 0.000 0.000 0.000 0.000 4 5 0 1614 1381 1404
(10, 10) 0.000 0.000 1.393 0.653 0.000 0.000 7 7 1 2323 4646 5151
(10, 20) 0.000 0.000 2.730 1.280 0.000 0.000 10 7 1 4577 6764 6751
(10, 50) 0.000 0.000 1.103 1.103 0.744 0.186 15 9 27 2342 6519 7241
(20, 20) 0.000 0.000 6.048 3.498 2.841 2.206 15 15 132 10823 10291 10311
(20, 50) 0.000 0.000 5.014 3396 3913 3.298 20 17 51 10463 10828 10834
# items Percent of feasible/found solution)

Neur2RO Neur2RO-pga Static k=2 k=5 k=10
(5, 10) 96 88 100 100 100 100
(5,20) 92 80 100 100 100 100
(5, 50) 100 76 100 100 100 100
(10, 10) 100 48 100 100 100 100
(10, 20) 100 36 100 100 100 100
(10, 50) 100 44 100 100 100 100
(20, 20) 38 20 100 88 80 84
(20, 50) 96 8 100 84 96 96

Instances and Baseline: Subramanyam, A., Gounaris, C. E., & Wiesemann, W. (2020). K-adaptability in two-stage mixed-integer robust optimization.
Mathematical Programming Computation, 12, 193-224.2



Experiments: Facility Location

# items Median RE Percent of feasible/found solutions
Neur2RO Static k=2 k=5 k=10|Neur2RO Static k=2 k=5 k=10
(5, 10) 0.000 0.000 0.000 0.000 0.000 96 100 84 80 84
(5, 20) 0.000 0.000 0.000 0.000 0.000 92 100 96 100 88
(5, 50) 0.000 0.000 0.000 0.000 0.000 100 100 76 76 64
(10, 10) 0.000 0.618 0.000 0.000 0.000 100 100 80 64 60
(10, 20) 0.000 2.730 0.430 0.430 0.000 100 100 72 64 68
(10, 50) 0.000 1.103 1.393 0916 1.023 100 100 72 56 40
(20, 20) 0.000 5.702 2.298 0.000 0.000 88 100 4 4 4
(20, 50) 0.000 5.014 0.557 0.895 - 96 100 4 8 -

Table 8 Facility location median errors at ML termination time (PGA results excluded).

Instances and Baseline: Subramanyam, A., Gounaris, C. E., & Wiesemann, W. (2020). K-adaptability in two-stage mixed-integer robust optimization.
Mathematical Programming Computation, 12, 193-224.2



Open Problems

e The approximation bounds we present are quite conservative. Can we derive approximation bounds based on
the data distribution?

e Constraint uncertainty has to be investigated more.

e Can other algorithms in robust optimization benefit from NN-support?




Construct Uncertainty Sets

For more details.
Goerigk, M., & Kurtz, J. (2023). Data-driven robust optimization using deep neural networks. Computers & Operations
Research, 151, 106087.



Historical Data

Historical Data. In practice we can often observe historical scenarios £1,...,™ € R™.
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But how to construct an

appropriate uncertainty set
from this?




One-Class Deep Learning

Main Idea. Our approach is based on the following idea:

e Train a neural network which detects for a given scenario & € = if it is a realistic scenario or not.

e Also called anomaly detection or One-Class Deep Learning

Approach.

e Train a neural network which maps the data into a new feature space

e Find the smallest ball in the new space such that all collected scenarios are contained in it

—
—
e

L]

[Ruff et al. (2018)]



Construction Uncertainy Set

Algorithm.
Input: given historical scenarios ¢!, ..., ™ (training data)

1. select a center point & € R and solve (e.g. via stochastic gradient descent)

. 1 i o112 A 12
pin Z1 lo(e', W) —€l3+5 > IW'II%

i€[m le[L]

2. determine radius R e.g. as 95%-quantile of
ri = (|6, W) — €|
Return: uncertainty set

U= {€€R": |$(6,W) — &2 < R}

[Ruff et al. (2018)]




2-Dimensional Example
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Optimization Algorithm

Consider classical robust optimization:
min ¢’z
zekX

st. T(&)x < h(f) VEeE.

Due to the non-convex structure of the set we cannot use duality theory to solve the robust optimization problem.

Constraint Generation

Main problem
- Adversarial problem
B = — »| minc'z >
o} i max :(6) T2 —h(E) i=1,...,q
st. Tz < h(€) VEeZ. =2

f*l
T - = 1 < yes ti(§*) —h(€*)>0] 1O ot
==EU{e} - for at least one 77 > @7 optimal




Extension

Construct uncertainty sets based on contextual information (e.g. weather, day, time).

& s R - A &
() a(y) = 1. (b) a(w) =1, (c) a(y) = 2. (d) a(y) = 2.
90% coverage 99% coverage 90% coverage 99% coverage

W IDCC B DDDRO W Ellipsoid

Chenreddy, A. R., Bandi, N., & Delage, E. (2022). Data-driven conditional robust optimization. Advances in Neural
Information Processing Systems, 35, 9525-9537.



Conclusion

Summary.
e Trained neural networks can be represented as mixed-integer programs.

e MIP representations can be incorporated into classical CCG algorithms for robust optimization to find close to
optimal solutions in seconds.

e MIP representations can be used to model uncertainty sets for robust optimization.

Thank you for your attention!



Robust Optimization Webinar

Season 4 of the Robust Optimization Webinar just started!

I3 Robust Optimization Webinar

September 6 m Ecole Polytechnique Fédérale de Lausanne
September 20 | Hoda Bidkhori George Mason University
Delft University of Technology
October 4
Mlchael Hartisch | Friedrich-Alexander-Universitat Erlangen-Nilrnberg
October 18 | Adam Kasperskl Wroctaw University of Science and Technology
November1l | Merve Bodur University of Edinburgh
November 15 | Bart van Parys Centrum Wiskunde & Informatica (CWI)
November 29 Vrije Universiteit Amsterdam
RWTH Aachen University
December 13
Martina Cerulli University of Salerno
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