
Building upon MIP and ``classical'' optimization
techniques to learn robust deep neural networks
- MIP and OR for AI

Builds on joint workwith RuthMisener, Calvin Tsay, Alexander Thebelt, and Shudian Zhao

CO@Work 2024
ZIB Berlin

Jan Kronqvist

Optimization and Systems Theory, Department of Mathematics
KTH Royal Institute of Technology, Stockholm, Sweden; jankr@kth.se

IN THIS LECTURE

» How to use MIP to find adversarial examples of a deep neural network (DNN).

» How to utilize a few adversarial examples to fine-tune a DNN.
» My goals for this lecture:

» Show that classical optimization (MIP and nonlinear programming) is also highly
relevant for AI.

» Show that by simple techniques, we can greatly improve robustness.
» Give you an introduction to the areas and present you with some open challenges!

CO@Work MIP and OR for AI Jan Kronqvist 2

IN THIS LECTURE

» How to use MIP to find adversarial examples of a deep neural network (DNN).

» How to utilize a few adversarial examples to fine-tune a DNN.
» My goals for this lecture:

» Show that classical optimization (MIP and nonlinear programming) is also highly
relevant for AI.

» Show that by simple techniques, we can greatly improve robustness.
» Give you an introduction to the areas and present you with some open challenges!

CO@Work MIP and OR for AI Jan Kronqvist 3

THE LECTURE IS BASED ON

1. Embedding ReLU DNNs in MIPs
Collaboration with Ruth Misener, Calvin Tsay, and Alexander Thebelt at Imperial
College London.

» Based on the papers
» Partition-based formulations for mixed-integer optimization of trained ReLU neural

networks, NeurIPS 2021, Tsay, Kronqvist, Thebelt, and Misener
[click to read paper]

» P-split formulations: A class of intermediate formulations between big-M and convex
hull for disjunctive constraints, ArXiv 2024, Kronqvist, Misener, and Tsay
[click to read paper]

2. Robust training
Collaboration with Shudian Zhao (Postdoc at KTH)

» Based on the papers
» A constrained optimization approach to improve robustness of neural networks,

Pre-print 2024, Zhao, Kronqvist
[click to read paper]

CO@Work MIP and OR for AI Jan Kronqvist 4

https://proceedings.neurips.cc/paper_files/paper/2021/file/17f98ddf040204eda0af36a108cbdea4-Paper.pdf
https://arxiv.org/abs/2202.05198
https://www.researchgate.net/publication/384232023_A_constrained_optimization_approach_to_improve_robustness_of_neural_networks

ADVERTISEMENTS

» There will be aMIP computational competition 2025! An official
announcement and details are coming soon.

» A chance to make it into the MIP hall of fame.©

» I’m often searching for new postdocs and PhD students. Email me jankr@kth.se

» Check out the MINLP solver SHOT https://shotsolver.dev/shot

CO@Work MIP and OR for AI Jan Kronqvist 5

https://shotsolver.dev/shot

ADVERTISEMENTS

» There will be aMIP computational competition 2025! An official
announcement and details are coming soon.

» A chance to make it into the MIP hall of fame.©

» I’m often searching for new postdocs and PhD students. Email me jankr@kth.se

» Check out the MINLP solver SHOT https://shotsolver.dev/shot

CO@Work MIP and OR for AI Jan Kronqvist 6

https://shotsolver.dev/shot

ADVERTISEMENTS

» There will be aMIP computational competition 2025! An official
announcement and details are coming soon.

» A chance to make it into the MIP hall of fame.©

» I’m often searching for new postdocs and PhD students. Email me jankr@kth.se

» Check out the MINLP solver SHOT https://shotsolver.dev/shot

CO@Work MIP and OR for AI Jan Kronqvist 7

https://shotsolver.dev/shot

BACKGROUND AND MOTIVATION

WHAT IS ROBUSTNESS ABOUT AND WHY SHOULD YOU CARE

Deep neural nets (DNNs) are known to be sensitive to adversarial perturbations.
– This means that DNNs are often easily fooled!

CO@Work MIP and OR for AI Jan Kronqvist 9

WHAT IS ROBUSTNESS ABOUT AND WHY SHOULD YOU CARE

Deep neural nets (DNNs) are known to be sensitive to adversarial perturbations.
– This means that DNNs are often easily fooled!

CO@Work MIP and OR for AI Jan Kronqvist 10

SAFETY CONCERNS

This sensitivity is a huge risk in real-world applications!

Example: Eykholt et al. showed that you can successfully change the classification of
traffic sign by adding “graffiti” to the sign

Figure: Misclassified traffic signs by adversarial perturbations. Images from Eykholt et al.
[2].

Recommended reading
1. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In International Conference on Learning

Representations (ICLR).

2. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., ... & Song, D. (2018). Robust physical-world attacks on deep learning visual
classification. In Proceedings of the IEEE conference on computer vision and pattern recognition.

CO@Work MIP and OR for AI Jan Kronqvist 11

ROBUSTNESS

» We don’t want the DNN’s classification of an image ximage to change if we make a
small perturbation δ to the image.

» For a given metric ∥ · ∥ and perturbation radius ε, we want ximage + δ to have the
same classification for all ∥δ∥ ≤ ε.

(a) Original image,
classified as 9

(b) Classified as 4,
∥δ∥1 ≤ 4

(c) Classified as 4,
∥δ∥∞ ≤ 0.05

CO@Work MIP and OR for AI Jan Kronqvist 12

ROBUSTNESS

Let’s formally define what we mean by robust.

» Assume we are given a set of training data Xtrain = {xi, yi}ki=1, with inputs xi and
correct labels yi.

» We have trained a DNN that correctly classifies a subset of the training data
Xcorr ⊂ Xtrain.

Definition

We say that the DNN is robust, with a given metric ∥ · ∥ and perturbation radius ε, if
xi + δ is classified as yi for all (xi, yi) ∈ Xcorr and for all ∥δ∥ ≤ ϵ.

How to check if a DNN is robust?
We can use MIP to verify if the DNN is robust and to find perturbations δ that
result in misclassifications.

» MIP to the rescue!

CO@Work MIP and OR for AI Jan Kronqvist 13

ROBUSTNESS

Let’s formally define what we mean by robust.

» Assume we are given a set of training data Xtrain = {xi, yi}ki=1, with inputs xi and
correct labels yi.

» We have trained a DNN that correctly classifies a subset of the training data
Xcorr ⊂ Xtrain.

Definition

We say that the DNN is robust, with a given metric ∥ · ∥ and perturbation radius ε, if
xi + δ is classified as yi for all (xi, yi) ∈ Xcorr and for all ∥δ∥ ≤ ϵ.

How to check if a DNN is robust?
We can use MIP to verify if the DNN is robust and to find perturbations δ that
result in misclassifications.

» MIP to the rescue!

CO@Work MIP and OR for AI Jan Kronqvist 14

ROBUSTNESS

Let’s formally define what we mean by robust.

» Assume we are given a set of training data Xtrain = {xi, yi}ki=1, with inputs xi and
correct labels yi.

» We have trained a DNN that correctly classifies a subset of the training data
Xcorr ⊂ Xtrain.

Definition

We say that the DNN is robust, with a given metric ∥ · ∥ and perturbation radius ε, if
xi + δ is classified as yi for all (xi, yi) ∈ Xcorr and for all ∥δ∥ ≤ ϵ.

How to check if a DNN is robust?
We can use MIP to verify if the DNN is robust and to find perturbations δ that
result in misclassifications.

» MIP to the rescue!

CO@Work MIP and OR for AI Jan Kronqvist 15

ROBUSTNESS

Let’s formally define what we mean by robust.

» Assume we are given a set of training data Xtrain = {xi, yi}ki=1, with inputs xi and
correct labels yi.

» We have trained a DNN that correctly classifies a subset of the training data
Xcorr ⊂ Xtrain.

Definition

We say that the DNN is robust, with a given metric ∥ · ∥ and perturbation radius ε, if
xi + δ is classified as yi for all (xi, yi) ∈ Xcorr and for all ∥δ∥ ≤ ϵ.

How to check if a DNN is robust?

We can use MIP to verify if the DNN is robust and to find perturbations δ that
result in misclassifications.

» MIP to the rescue!

CO@Work MIP and OR for AI Jan Kronqvist 16

ROBUSTNESS

Let’s formally define what we mean by robust.

» Assume we are given a set of training data Xtrain = {xi, yi}ki=1, with inputs xi and
correct labels yi.

» We have trained a DNN that correctly classifies a subset of the training data
Xcorr ⊂ Xtrain.

Definition

We say that the DNN is robust, with a given metric ∥ · ∥ and perturbation radius ε, if
xi + δ is classified as yi for all (xi, yi) ∈ Xcorr and for all ∥δ∥ ≤ ϵ.

How to check if a DNN is robust?
We can use MIP to verify if the DNN is robust and to find perturbations δ that
result in misclassifications.

» MIP to the rescue!

CO@Work MIP and OR for AI Jan Kronqvist 17

ENCODING A DEEP NEURAL NETWORK AS S MIP

DEEP NEURAL NETWORKS

Input 1

Input 2

Output 1

Output 2

We are focusing on the ReLU activation function as it is MIP representable.

» To verify robustness or find adversarial perturbations, we want to optimize over
the inputs to produce a certain output.

» For example, maximize (Output 1 - Output 2).

CO@Work MIP and OR for AI Jan Kronqvist 19

LET'S FOCUS ON A SINGLE NODE IN THE DNN

Consider a single node in the DNN.

...

...

b
y = max

(
0,w⊤x+ b

)1

2

w1

x2

xn−1

xn

wn

We can represent the node by the
disjunctive constraint[

y = 0
w⊤x+ b ≤ 0

]
∨
[

y ≥ 0
y = w⊤x+ b

]
- Let’s see how we can write this
in MIP form.

CO@Work MIP and OR for AI Jan Kronqvist 20

LET'S FOCUS ON A SINGLE NODE IN THE DNN

Consider a single node in the DNN.

...

...

b
y = max

(
0,w⊤x+ b

)1

2

w1

x2

xn−1

xn

wn

We can represent the node by the
disjunctive constraint[

y = 0
w⊤x+ b ≤ 0

]
∨
[

y ≥ 0
y = w⊤x+ b

]
- Let’s see how we can write this
in MIP form.

CO@Work MIP and OR for AI Jan Kronqvist 21

MIP OF A RELU

We have the disjunctive constraint[
y = 0

w⊤x+ b ≤ 0

]
∨
[

y ≥ 0
y = w⊤x+ b

]
.

Let’s rewrite the disjunctive constraint slightly y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 .

Let’s introduce two binary variables σ0 and σ1. We use these as “indicators” if
σ0 = 1, then the first set of constraints must be satisfied, and with σ1 = 1, the other
set must be satisfied.

» We must enforce one set of constraints and relax the other set. We use the
big-M approach.

» We need the largest value y can take for any input x that we care about. We
denote this by ymax, and ymin as the smallest valuew⊤x+ b can take.

CO@Work MIP and OR for AI Jan Kronqvist 22

MIP OF A RELU

We have the disjunctive constraint[
y = 0

w⊤x+ b ≤ 0

]
∨
[

y ≥ 0
y = w⊤x+ b

]
.

Let’s rewrite the disjunctive constraint slightly y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 .

Let’s introduce two binary variables σ0 and σ1. We use these as “indicators” if
σ0 = 1, then the first set of constraints must be satisfied, and with σ1 = 1, the other
set must be satisfied.

» We must enforce one set of constraints and relax the other set. We use the
big-M approach.

» We need the largest value y can take for any input x that we care about. We
denote this by ymax, and ymin as the smallest valuew⊤x+ b can take.

CO@Work MIP and OR for AI Jan Kronqvist 23

MIP OF A RELU

We have the disjunctive constraint y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 .

Let’s introduce two binary variables σ0 and σ1. We use these as “indicators” if
σ0 = 1, then the first set of constraints must be satisfied, and with σ1 = 1, the other
set must be satisfied.

» We must enforce one set of constraints and relax the other set. We use the
big-M approach.

» We need the largest value y can take for any input x that we care about. We
denote this by ymax, and ymin as the smallest valuew⊤x+ b can take.

CO@Work MIP and OR for AI Jan Kronqvist 24

MIP OF A RELU

We can now represent the disjunctive constraint y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 ,

by

y ≥ 0, (9)

y ≤ ymaxσ1, (10)

y ≤ w⊤x+ b− ymin(1− σ1), (11)

y ≥ w⊤x+ b, (12)

σ1 ∈ {0, 1}. (13)

This is the so-called Big-M formulation that was presented in
» Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017

» Fischetti, M. and Jo J.. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):296–309, 2018.

CO@Work MIP and OR for AI Jan Kronqvist 25

MIP OF A RELU

We can now represent the disjunctive constraint y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 ,

by y ≤ ymax(1− σ0), (1)

y ≥ 0, (2)

w⊤x+ b ≤ ymax(1− σ0), (3)

y ≥ 0, (4)

y ≤ w⊤x+ b− ymin(1− σ1), (5)

y ≥ w⊤x+ b, (6)

σ0 + σ1 = 1, (7)

σ0, σ1 ∈ {0, 1}. (8)

If we substitute in σ0 = 1− σ1 and remove some redundant constraints, we gety ≥ 0, (9)

y ≤ ymaxσ1, (10)

y ≤ w⊤x+ b− ymin(1− σ1), (11)

y ≥ w⊤x+ b, (12)

σ1 ∈ {0, 1}. (13)

This is the so-called Big-M formulation that was presented in
» Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017
» Fischetti, M. and Jo J.. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):296–309, 2018.

CO@Work MIP and OR for AI Jan Kronqvist 26

MIP OF A RELU

We can now represent the disjunctive constraint y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 ,

by y ≤ ymax(1− σ0), (1)

y ≥ 0, (2)

w⊤x+ b ≤ ymax(1− σ0), (3)

y ≥ 0, (4)

y ≤ w⊤x+ b− ymin(1− σ1), (5)

y ≥ w⊤x+ b, (6)

σ0 + σ1 = 1, (7)

σ0, σ1 ∈ {0, 1}. (8)

If we substitute in σ0 = 1− σ1 and remove some redundant constraints, we get

y ≥ 0, (9)

y ≤ ymaxσ1, (10)

y ≤ w⊤x+ b− ymin(1− σ1), (11)

y ≥ w⊤x+ b, (12)

σ1 ∈ {0, 1}. (13)

This is the so-called Big-M formulation that was presented in
» Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017
» Fischetti, M. and Jo J.. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):296–309, 2018.

CO@Work MIP and OR for AI Jan Kronqvist 27

MIP OF A RELU

We can now represent the disjunctive constraint y ≤ 0
y ≥ 0

w⊤x+ b ≤ 0

 ∨

 y ≥ 0
y ≤ w⊤x+ b
y ≥ w⊤x+ b

 ,

by
y ≥ 0, (9)

y ≤ ymaxσ1, (10)

y ≤ w⊤x+ b− ymin(1− σ1), (11)

y ≥ w⊤x+ b, (12)

σ1 ∈ {0, 1}. (13)

This is the so-called Big-M formulation that was presented in
» Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017

» Fischetti, M. and Jo J.. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):296–309, 2018.

CO@Work MIP and OR for AI Jan Kronqvist 28

MIP OF A RELU

Takeaway:
We can represent any node with a ReLU activation function in a DNN by

y ≥ 0, (9)

y ≤ ymaxσ1, (10)

y ≤ w⊤x+ b− ymin(1− σ1), (11)

y ≥ w⊤x+ b, (12)

σ1 ∈ {0, 1}. (13)

CO@Work MIP and OR for AI Jan Kronqvist 29

EXAMPLE

Consider the small neural network

N1 N2

x1 ∈ [lb, ub]

x2 ∈ [lb, ub]

z
x1

x2
y

Input
layer

Hidden
layer

Ouput
layer

The input-output relation of the network is given by

y = max {f1(x), 0} ,
z = max {f2(y1), 0} ,

where f1(x) = w1x1 +w2x2 + b1, f2(x) = w3y1 + b2.

We have the parameters: w1 = 5,w2 = −4, b1 = 3,w3 = −2, b2 = 50,
and x1 ∈ [−10, 10] , x2 ∈ [−5, 5].

CO@Work MIP and OR for AI Jan Kronqvist 30

EXAMPLE CONT.

For node N1 the output is given by

y = max {5x1 − 4x2 + 3, 0} ,

and we know x1 ∈ [−10, 10] , x2 ∈ [−5, 5].

We get ymax and ymin by simple bound propagation

ymin = 5(−10)− 4(5) + 3 = −67,

ymax = 5(10)− 4(−5) + 3 = 73.

We plug this into the big-M constraints and get

y ≥ 0,

y ≤ 73σ1,

y ≤ 5x1 − 4x2 + 3 + 67(1− σ1),

y ≥ 5x1 − 4x2 + 3,

σ1 ∈ {0, 1}.

CO@Work MIP and OR for AI Jan Kronqvist 31

EXAMPLE CONT.

For node N1 the output is given by

y = max {5x1 − 4x2 + 3, 0} ,

and we know x1 ∈ [−10, 10] , x2 ∈ [−5, 5].
We get ymax and ymin by simple bound propagation

ymin = 5(−10)− 4(5) + 3 = −67,

ymax = 5(10)− 4(−5) + 3 = 73.

We plug this into the big-M constraints and get

y ≥ 0,

y ≤ 73σ1,

y ≤ 5x1 − 4x2 + 3 + 67(1− σ1),

y ≥ 5x1 − 4x2 + 3,

σ1 ∈ {0, 1}.

CO@Work MIP and OR for AI Jan Kronqvist 32

EXAMPLE CONT.

For node N1 the output is given by

y = max {5x1 − 4x2 + 3, 0} ,

and we know x1 ∈ [−10, 10] , x2 ∈ [−5, 5].
We get ymax and ymin by simple bound propagation

ymin = 5(−10)− 4(5) + 3 = −67,

ymax = 5(10)− 4(−5) + 3 = 73.

We plug this into the big-M constraints and get

y ≥ 0,

y ≤ 73σ1,

y ≤ 5x1 − 4x2 + 3 + 67(1− σ1),

y ≥ 5x1 − 4x2 + 3,

σ1 ∈ {0, 1}.
CO@Work MIP and OR for AI Jan Kronqvist 33

EXAMPLE CONT.

For node N2 the output is given by

z = max {−2y+ 50, 0} ,

and we know y ∈ [0, 73]. The bounds on z are given simply by

zmin = −2(−73) + 50 = −96,

zmax = −2(0) + 50 = 50.

We plug this into the big-M constraints and get

z ≥ 0,

z ≤ 50σ2,

z ≤ −2y+ 50 + 96(1− σ2),

z ≥ −2y+ 50,

σ2 ∈ {0, 1}.

CO@Work MIP and OR for AI Jan Kronqvist 34

EXAMPLE CONT.

For node N2 the output is given by

z = max {−2y+ 50, 0} ,

and we know y ∈ [0, 73]. The bounds on z are given simply by

zmin = −2(−73) + 50 = −96,

zmax = −2(0) + 50 = 50.

We plug this into the big-M constraints and get

z ≥ 0,

z ≤ 50σ2,

z ≤ −2y+ 50 + 96(1− σ2),

z ≥ −2y+ 50,

σ2 ∈ {0, 1}.

CO@Work MIP and OR for AI Jan Kronqvist 35

EXAMPLE CONT.

We can now, for example, find the inputs x1 and x2 that maximize the output by
solving the MILP

max z
s.t. y ≥ 0,

y ≤ 73σ1,

y ≤ 5x1 − 4x2 + 3 + 67(1− σ1),

y ≥ 5x1 − 4x2 + 3,

z ≥ 0,

z ≤ 50σ2,

z ≤ −2y+ 50 + 96(1− σ2),

z ≥ −2y+ 50,

σ1 ∈ {0, 1}
σ2 ∈ {0, 1}
x1 ∈ [−10, 10], x2 ∈ [−5, 5].

CO@Work MIP and OR for AI Jan Kronqvist 36

MIP OF RELU DNNS

» The big-M formulation of ReLU neural networks is simple and works well for
relatively small networks (a few hundred nodes).

» The problem of finding an adversarial perturbation to image ximg can be
formulated as

maximize misclassification (14)

s.t. big-M constraints for each RelU node, (15)

xinput = ximg + δ, (16)

∥δ∥ ≤ ε. (17)

» The resulting MIP problems are difficult to solve and often have a very weak
continuous relaxation.

CO@Work MIP and OR for AI Jan Kronqvist 37

MIP OF RELU DNNS

» The big-M formulation of ReLU neural networks is simple and works well for
relatively small networks (a few hundred nodes).

» The problem of finding an adversarial perturbation to image ximg can be
formulated as

maximize misclassification (14)

s.t. big-M constraints for each RelU node, (15)

xinput = ximg + δ, (16)

∥δ∥ ≤ ε. (17)

» The resulting MIP problems are difficult to solve and often have a very weak
continuous relaxation.

CO@Work MIP and OR for AI Jan Kronqvist 38

MIP OF RELU DNNS

» The big-M formulation of ReLU neural networks is simple and works well for
relatively small networks (a few hundred nodes).

» The problem of finding an adversarial perturbation to image ximg can be
formulated as

maximize misclassification (14)

s.t. big-M constraints for each RelU node, (15)

xinput = ximg + δ, (16)

∥δ∥ ≤ ε. (17)

» The resulting MIP problems are difficult to solve and often have a very weak
continuous relaxation.

CO@Work MIP and OR for AI Jan Kronqvist 39

CONTINUOUS RELAXATION OF THE TWO NODE EXAMPLE

Figure: Upper and lower bounds of the network’s output for the continuous relaxation of our
two node example. The blue surface represents the output of the neural network.

The relaxations get increasingly worse with the network’s number of nodes and
layers.

The big-M formulation of DNNs works because of themagic of MIP solvers.

CO@Work MIP and OR for AI Jan Kronqvist 40

CONTINUOUS RELAXATION OF THE TWO NODE EXAMPLE

Figure: Upper and lower bounds of the network’s output for the continuous relaxation of our
two node example. The blue surface represents the output of the neural network.

The relaxations get increasingly worse with the network’s number of nodes and
layers.

The big-M formulation of DNNs works because of themagic of MIP solvers.
CO@Work MIP and OR for AI Jan Kronqvist 41

IMPROVED FORMULATIONS

» Convex hull formulations (or cuts) for individual nodes, presented in Anderson, R.,

Huchette, J., Ma, W., Tjandraatmadja, C., & Vielma, J. P. (2020). Strong mixed-integer programming formulations for trained neural networks.

Mathematical Programming.

» Partitioned-based formulations presented in Tsay, C., Kronqvist, J., Thebelt, A., & Misener, R. (2021).

Partition-based formulations for mixed-integer optimization of trained ReLU neural networks. NeurIPS 34.

CO@Work MIP and OR for AI Jan Kronqvist 42

MIP FOR DNN SUMMARY

» We can embed ReLU DNNs into a MIP.
» We can use MIP to find adversarial perturbations (or so-called adversarial

examples).
» Computationally demanding (we are solving difficult MIPs)
» We need to solve one MIP to find one adversarial example.
» Finding lots of adversarial examples by MIP is not feasible.

CO@Work MIP and OR for AI Jan Kronqvist 43

IMPROVING ROBUSTNESS OF DEEP NEURAL
NETS

FINE-TUNING TO IMPROVING ROBUSTNESS

Assume we have trained a DNN with weights ŵ, using the training data
Xtrain = {xi, yi}ki=1.

Suppose we are given a small set of adversarial examples Xadv = {xi, yi}li=1, (data
points that will be misclassified due to a small perturbation).

How can we use Xadv to improve robustness?

» Directly adding Xadv to the training data will have very little impact if Xadv is
small in comparison to Xtrain. For example, for MNIST |Xtrain| = 60, 000 and we
use |Xtrain| = 10− 50.

» Instead, we propose a nonlinear programming approach.

CO@Work MIP and OR for AI Jan Kronqvist 45

FINE-TUNING TO IMPROVING ROBUSTNESS

Some notation:

» W all parameters for the given DNN architecture (weights and biases). Ŵ initial
parameters.

» C(x;W): Predicted label of xwith DNN parametersW.

» Xcorr = {xi, yi}ti=1 ⊂ Xtrain, for which xi is correctly classified as yi by the DNN
using weights Ŵ.

» Perturbation neighborhood Bϵ(x̄) := {x̃ | ∥x− x̃∥∞ ≤ ϵ} around x̄.
» ℓ(W,Xtrain) loss function evaluated over training data Xtrain with DNN

parametersW.

CO@Work MIP and OR for AI Jan Kronqvist 46

FINE-TUNING

Ideally, we would like to solve

min ∥W− Ŵ∥22
s. t. C(x̃;W) = yi, ∀x̃ ∈ Bϵ(xi), ∀(xi, yi) ∈ Xcorr

ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain).

An optimal solution to the problem above would be robust! But, in practice, we can’t
solve it (highly nonlinear, nonconvex, and infinite number of constraints).

CO@Work MIP and OR for AI Jan Kronqvist 47

FINE-TUNING

We consider a relaxed version with a finite number of constraints given by the
adversarial examples Xadv

min ∥W− Ŵ∥22
s. t. C(xi;W) = yi, ∀(xi, yi) ∈ Xadv

ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain).

(NLP-fineT)

» Still a huge nonconvex problem (∼ 200, 000 variables in our larger examples,
with a relatively dense Hessian). There is no hope of finding/verifying a global
optimal solution.

» We don’t need an optimal solution. We are even happy with an almost feasible
solution.

» We developed an iterative linearization approach. There is room for
improvement, but even this simple approach already improves robustness
significantly.

CO@Work MIP and OR for AI Jan Kronqvist 48

FINE-TUNING

We consider a relaxed version with a finite number of constraints given by the
adversarial examples Xadv

min ∥W− Ŵ∥22
s. t. C(xi;W) = yi, ∀(xi, yi) ∈ Xadv

ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain).

(NLP-fineT)

» Still a huge nonconvex problem (∼ 200, 000 variables in our larger examples,
with a relatively dense Hessian). There is no hope of finding/verifying a global
optimal solution.

» We don’t need an optimal solution. We are even happy with an almost feasible
solution.

» We developed an iterative linearization approach. There is room for
improvement, but even this simple approach already improves robustness
significantly.

CO@Work MIP and OR for AI Jan Kronqvist 49

MODELING THE FINE-TUNING PROBLEM

We don’t want constraints directly based on the classification function
C(·;W) := arg maxi∈I fi(·;w), where I contain the set of all labels.

For a pair of labels (i, j), input x is as likely, or more likely, to be labeled i than j if

fi(x;W) ≥ fj(x;W), (18)

where fi(·;W) is the classification confidence of label i, typically the i-th output.

Forcing the correct classification of (x̄i, yi) ∈ Xadv is, thus, be achieved by the
constraints

fyi(x̄i;W) ≥ fj(x̄i;W), ∀j ∈ I \ yi (19)

and we can add these constraints for all adversarial data points (x̄i, yi).

CO@Work MIP and OR for AI Jan Kronqvist 50

MODELING THE FINE-TUNING PROBLEM

We don’t want constraints directly based on the classification function
C(·;W) := arg maxi∈I fi(·;w), where I contain the set of all labels.

For a pair of labels (i, j), input x is as likely, or more likely, to be labeled i than j if

fi(x;W) ≥ fj(x;W), (18)

where fi(·;W) is the classification confidence of label i, typically the i-th output.

Forcing the correct classification of (x̄i, yi) ∈ Xadv is, thus, be achieved by the
constraints

fyi(x̄i;W) ≥ fj(x̄i;W), ∀j ∈ I \ yi (19)

and we can add these constraints for all adversarial data points (x̄i, yi).

CO@Work MIP and OR for AI Jan Kronqvist 51

MODELING THE FINE-TUNING PROBLEM

We don’t want constraints directly based on the classification function
C(·;W) := arg maxi∈I fi(·;w), where I contain the set of all labels.

For a pair of labels (i, j), input x is as likely, or more likely, to be labeled i than j if

fi(x;W) ≥ fj(x;W), (18)

where fi(·;W) is the classification confidence of label i, typically the i-th output.

Forcing the correct classification of (x̄i, yi) ∈ Xadv is, thus, be achieved by the
constraints

fyi(x̄i;W) ≥ fj(x̄i;W), ∀j ∈ I \ yi (19)

and we can add these constraints for all adversarial data points (x̄i, yi).

CO@Work MIP and OR for AI Jan Kronqvist 52

MODELING THE FINE-TUNING PROBLEM

We want easier constraints to work with, so we linearize

fyi(x̄i;W) ≥ fj(x̄i;W), ∀j ∈ I \ yi

with a first-order Taylor series expansion around the initial parametersW

fyi(x̄i; Ŵ)− fj(x̄i; Ŵ) + (W− Ŵ)⊤
(
∇wfyi(x̄i; Ŵ)−∇wfj(x̄i; Ŵ)

)
≥ 0, ∀j ∈ I \ yi. (20)

» We can generate cuts to promote the correct classification of adversarial data.

» Keep in mind, the constraints fyi(x̄i;W) ≥ fj(x̄i;W) are nonconvex.

CO@Work MIP and OR for AI Jan Kronqvist 53

MODELING THE FINE-TUNING PROBLEM

We want easier constraints to work with, so we linearize

fyi(x̄i;W) ≥ fj(x̄i;W), ∀j ∈ I \ yi

with a first-order Taylor series expansion around the initial parametersW

fyi(x̄i; Ŵ)− fj(x̄i; Ŵ) + (W− Ŵ)⊤
(
∇wfyi(x̄i; Ŵ)−∇wfj(x̄i; Ŵ)

)
≥ 0, ∀j ∈ I \ yi. (20)

» We can generate cuts to promote the correct classification of adversarial data.

» Keep in mind, the constraints fyi(x̄i;W) ≥ fj(x̄i;W) are nonconvex.

CO@Work MIP and OR for AI Jan Kronqvist 54

STRONGER LINEARIZATION

We can linearize the constraints fyi(x̄I;W) ≥ fj(x̄i;W)with respect to both the
parametersW and input xi, and state that the inequality must hold for all x satisfying
∥x− x̄i∥1 ≤ εx.

This results in the linearization

fyi(x̄, Ŵ)− fj(x̄, Ŵ) + (W− Ŵ)⊤(∇wfyi(x̄, Ŵ)−∇wfj(x̄, Ŵ))

≥ max
∥x−x̄∥1≤ϵx

{(x− x̄)⊤(∇xfj(x̄, Ŵ)−∇xfyi(x̄, Ŵ))},

=⇒ fyi(x̄, Ŵ)− fj(x̄, Ŵ) + (W− Ŵ)⊤(∇wfyi(x̄, Ŵ)−∇wfj(x̄, Ŵ)) ≥

≥ ϵx · max
m

|(∇xfmj (x̄, Ŵ)−∇xfmyi (x̄, Ŵ))|, (= small constant)

where∇xfmj (x̄, Ŵ) refers to them-th component of the vector∇xfj(x̄, Ŵ).

CO@Work MIP and OR for AI Jan Kronqvist 55

STRONGER LINEARIZATION

We can linearize the constraints fyi(x̄I;W) ≥ fj(x̄i;W)with respect to both the
parametersW and input xi, and state that the inequality must hold for all x satisfying
∥x− x̄i∥1 ≤ εx.

This results in the linearization

fyi(x̄, Ŵ)− fj(x̄, Ŵ) + (W− Ŵ)⊤(∇wfyi(x̄, Ŵ)−∇wfj(x̄, Ŵ))

≥ max
∥x−x̄∥1≤ϵx

{(x− x̄)⊤(∇xfj(x̄, Ŵ)−∇xfyi(x̄, Ŵ))},

=⇒ fyi(x̄, Ŵ)− fj(x̄, Ŵ) + (W− Ŵ)⊤(∇wfyi(x̄, Ŵ)−∇wfj(x̄, Ŵ)) ≥

≥ ϵx · max
m

|(∇xfmj (x̄, Ŵ)−∇xfmyi (x̄, Ŵ))|, (= small constant)

where∇xfmj (x̄, Ŵ) refers to them-th component of the vector∇xfj(x̄, Ŵ).

CO@Work MIP and OR for AI Jan Kronqvist 56

LINEARIZING THE LOSS FUNCTION

Similarly we linearize the constraint the no-worse loss constraint
ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain) as

(W− Ŵ)⊤∇wℓ(W,Xtrain) ≤ 0. (21)

CO@Work MIP and OR for AI Jan Kronqvist 57

LINEARIZED FINE-TUNING PROBLEM

We can then form the linearized fine-tuning problem

min ∥W− Ŵ∥22
s. t. linearizations of fyi(x̄I;W) ≥ fj(x̄i;W) ∀j ∈ I \ yi, ∀(x̄i, yi) ∈ Xadv,

linearizations of ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain).

(QP-fineT)

» The minimizer of (QP-fineT) typically don’t satisfy all nonlinear constraints.

» We can refine the linearized problem by generating linearizations (cuts) at the
minimizer of (QP-fineT).

» We can’t guarantee convergence (original problem nonconvex).

CO@Work MIP and OR for AI Jan Kronqvist 58

LINEARIZED FINE-TUNING PROBLEM

We can then form the linearized fine-tuning problem

min ∥W− Ŵ∥22
s. t. linearizations of fyi(x̄I;W) ≥ fj(x̄i;W) ∀j ∈ I \ yi, ∀(x̄i, yi) ∈ Xadv,

linearizations of ℓ(W,Xtrain) ≤ ℓ(Ŵ,Xtrain).

(QP-fineT)

» The minimizer of (QP-fineT) typically don’t satisfy all nonlinear constraints.

» We can refine the linearized problem by generating linearizations (cuts) at the
minimizer of (QP-fineT).

» We can’t guarantee convergence (original problem nonconvex).

CO@Work MIP and OR for AI Jan Kronqvist 59

MAIN ALGORITHM

The main steps are

1. At iteration k, solve problem (QP-fineT) and store the minimizer asWk.

2. Generate new linearizations atWk and add them to problem (QP-fineT)

3. Increase iteration counter k and repeat.

4. Terminate on a maximal number of iterations.

CO@Work MIP and OR for AI Jan Kronqvist 60

SOLUTION REFINEMENT (LINE SEARCH)

The main algorithm gives candidate solutionsW0,W1, . . .Wm.

We further expand the set of candidate solutions by the rough line search

W(α, k) := αWk + (1− α)Ŵ, ∀α = 0.1, . . . , 1, (22)

where ŵ denote the initial parameter.

We use two criteria for evaluating the quality of the candidate solutions: 1) maximal
violation of the constraints fyi(x̄I;W) ≥ fj(x̄i;W), and 2) loss function on the training
data ℓ(W,Xtrain).

» Only Pareto optimal (efficient) solutions are interesting.

» We choose the final solution by a weighted sum.

CO@Work MIP and OR for AI Jan Kronqvist 61

SOME NUMERICAL RESULTS

IMPLEMENTATION DETAILS

» Test instances:
» MNIST: gray-scaled images of numbers 0 to 9, scaled pixels between 0 and 1.
» CNN: 2 convolutional layers, 16× 32 (stride of 2, max pooling layers to reduce half

resolutions);
2 fully connected layers stepping down to 1568× 100, 100× 10.

» 162,710 parameters.

» Adversarial attackers (to evaluate robustness)
» The fast gradient sign method (FGSM) by Goodfellow et al.: ℓ∞-norm with radius

0.1.
» The projected gradient descent method (PGD) by Madry et al.: run 50 iterations

with a step size of 0.01, ℓ∞-norm with radius 0.1

» Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy (2014). “Explaining and harnessing adversarial examples”. In: arXiv preprint
arXiv:1412.6572.

» Madry, Aleksander et al. (2017). “Towards deep learning models resistant to adversarial attacks”. In: arXiv preprint arXiv:1706.06083.

CO@Work MIP and OR for AI Jan Kronqvist 63

NUMERICAL RESULTS FOR MNIST WITH CNN MODEL

For the initial model, the accuracy after an adversarial attack 4 - 16%.
By only using 10 adversarial data points, we could increase the accuracy to 46 - 62%.

CO@Work MIP and OR for AI Jan Kronqvist 64

TAKE AWAY

» MIP can be used to check if a DNN is robust and to find adversarial examples.

» Classical optimization techniques can be used to greatly improve robustness.

» But, still plenty of room for improvement!

CO@Work MIP and OR for AI Jan Kronqvist 65

THANK YOU

	Background and motivation
	Encoding a Deep Neural Network as s MIP
	Improving robustness of Deep Neural Nets
	Some Numerical Results
	Thank you

