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Setting the stage

“Combinatorial Optimization searches for an optimum object in a finite collection of objects. Typically, 
the collection has a concise representation, while the number of objects is huge --- more precisely, grows 
exponentially in the size of the representation. So scanning all objects one by one and selecting the best 
one is not an option.” 

― Alexander Schrijver, Combinatorial Optimization, 2003, Page 1.

min
𝒙∈𝑿

𝒇(𝒙) with 𝑿 = 𝒙, 𝒃, 𝒍, 𝒖 ∈ ℤ𝒏 ∶ 𝒈 𝒙 ≤ 𝒃, 𝒍 ≤ 𝒙 ≤ ഥ𝒖

For the rest of the talk, we assume: 𝑓: 𝑋 → ℤ is a linear or quadratic function, i.e., 
𝑓 𝑥 = 𝑐𝑇𝑥 + 𝑥𝑇𝑄𝑥, 𝑐 ∈ ℤ𝑛 , 𝑄 ∈ ℤ𝑛×𝑛,  and 𝑔: 𝑋 → ℤ𝑛 is a linear function, i.e., g 𝑥 = 𝐴𝑥, 𝐴 ∈ ℤ𝑛×𝑛 .

Note: argmin 𝑓(𝑥) = argmax −𝑓(𝑥) and 𝑔 𝑥 + 𝑠 = 𝑏, 𝑠 ≥ 0 ⟺ 𝑔 𝑥 ≤ 0, and similar for ≥.

We defined everything using integer numbers. If we would use rational numbers, we could then scale 
them by the least common multiple of all denominators to make everything integer.     
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Examples for finding some 𝑥 ∈ 𝑋 is difficult. Might be, but doesn’t have to.  

We can write our problem as a decision problem (and minimize by binary search):

𝑿𝒌 ≠ ∅ ? with 𝑿𝒌 = 𝒙 ∈ ℤ𝒏: 𝑨𝒙 ≤ 𝒃, 𝒍 ≤ 𝒙 ≤ ഥ𝒖 ∧ 𝒄𝑻𝒙 = 𝒌

In this case finding some 𝑥 is equivalent to solving the problem.

Or, using some suitable big constant 𝑀, we can move the constraints into the objective:

min
𝒙∈𝑿

𝒇(𝒙) with 𝑿 = 𝒙 ∈ ℤ𝒏: 𝒍 ≤ 𝒙 ≤ ഥ𝒖 , 𝒇 𝒙 = 𝒄𝑻𝒙 + 𝑴 𝒃 − 𝑨𝒙 𝟐

now it is obviously trivial to find some 𝑥 ∈ 𝑋.

Note: To solve an ILP, i.e., to optimality two things must be done:

(1) ∃ :Find the minimum 𝑥∗ ∈ 𝑋. 

(2) ∀ :Prove there exists no 𝑥∗ ∈ 𝑋 with 𝑓 𝑥 < 𝑓(𝑥∗) . 

This is equivalent to showing: 𝒙 ∈ ℤ𝒏: 𝑨𝒙 ≤ 𝒃, 𝒍 ≤ 𝒙 ≤ ഥ𝒖 ∧ 𝒇(𝒙) < 𝒇(𝒙∗) = ∅
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This difference in difficulty 
is one reason why people 

believe 𝑃 ≠ 𝑁𝑃



What does “solving” an NP-hard problem typically mean?

Being able to …

Theoretical 
Computer Scientist

… compute proven optimal solutions to every instance of this problem 
class with at most this effort

Applied Discrete 
Mathematician

… practically compute within numerical tolerances proven optimal 
solutions to these particular (relevant) instances of the problem class in 
reasonable time

Physicist, Quantum 
Computing Researcher

… compute reasonably good solutions to these (selected) particular 
instances of the problem class in very short time
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However, the above is at least unprecise, because NP-hardness refers to decision problems. 
Therefore, we should replace proven optimal solutions by proven correct answers and
good solutions by … likely correct answers most of the time?



What are Stochastic Local Search Heuristics

Stochastic = we do something random 

Local = we do it near to where we are

Search = we look around

Heuristics = we do not expect a perfect outcome
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What does “local” mean?

Example: Evolutionary Algorithm

Wanted: A fierce mamal

Wait 10 million years and you might get ...

The WOMBAT

Size: up to 120 cm  Weight: up to 40kg

Sharp crescent-shaped claws, sharp teeth. 

When attacked, can summon immense 
reserves of strength; one defense of a 
wombat against a predator underground is 
to crush it against the roof of the tunnel, 
thus suffocating the animal. Its primary 
defense is its toughened rear side.
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Globale Optimum
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Galactic Optimum
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Bio Inspired

With this great power and mystery, tribal cultures worshipped tigers, bestowing them with powers that 
extend far beyond those of any worldly creature. For millennia, medicine men have ascribed magical 
powers and medicinal properties to them, and somehow, this cat became a universal apothecary. It was 
believed that by ingesting it, you absorb an animal’s life force, its vigor, strength, and attributes.
https://blog.nationalgeographic.org/2014/04/29/tigers-in-traditional-chinese-medicine-a-universal-apothecary/

▷ Evolutionary algorithms

▷ Genetic algorithms

▷ Simulated annealing

▷ Ant-colony optimization 

▷ Intelligent water drops algorithm (IWD) 

which mimics the behavior of natural water drops to solve optimization problems

▷ Slime molds: “Slime mold algorithm: A new method for stochastic optimization”

▷ Naked mole-rats: “The naked mole-rat algorithm”

▷ …

“Inspired” means, it helped to find a catchy name, that leads to positive (but wrong) associations.

These types of algorithms mostly converge to local optima.
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Stochastic local 
search heuristics

https://blog.nationalgeographic.org/2014/04/29/tigers-in-traditional-chinese-medicine-a-universal-apothecary/


Two basic optimization (search) algorithms

Space-Explorer (Discrete)

▷ Enumerate the feasible points in the 
solution space either explicitly or implicitly

▷ Typically, by some kind of search tree

Important: How to implicitly exclude as much of 
the space as possible.

Nice: Convex hull of the feasible points is known.

Path-Finder (Continuous)

1. Select a starting point 𝑎0

2. While stopping criteria not fulfilled do

3. Find a direction 𝑑

4. Find a step length α

5. Move to new point 𝑎𝑖+1 = 𝑎𝑖 + 𝛼 ⋅ 𝑑

Important: How to find a good starting point, how 
to compute good direction and step length?

Nice: Convex region and gradient available.

Thorsten Koch        ZIB / TU Berlin               Stochastic Local Search Heuristics 10

What do we know about our feasible region?
How can we evaluate the objective? 
Will we get a local or a global optimum?

Heuristic Idea: Just hop around 
randomly in the feasible region



Shapes of feasible sets

Convex ☺
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Non-convex

Non-
contiguous

Discret



How does the convex hull look like in case of a Binary Integer Program?

Given a Binary Integer Program (BIP): min
𝑥𝑖∈ 0,1 ,
𝑖∈{1,…,𝑁}

𝑐𝑇𝑥 , 𝐴𝑥 ≤ 𝑏, 

▷ The solution space is an 𝑁-dimension unit-cube 
with 2𝑁vertices.

▷ There are no inside integer points, therefore there 
can be no holes within the feasible set.

▷ Every feasible point is a corner of the unit-cube.

▷ The constraints define hyperplanes that cut of (rectangular) 
corners from the cube and introduce new facets.

▷ If we neglect dominated constraints, each constraint increases 
the number of vertices of the polytope.

▷ Fixing a variable, reduces the cube in that dimension to a point, 
i.e., branching completely decides a variable.
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Wolpert, Macready: No free lunch theorems for optimization, IEEE T.o. Evolutionary Computation (1997), doi: 10.1109/4235.585893.
States that for a completely unstructured search space all algorithms perform equally. 
Whatever one algorithm improves on one class of problems is offset by a degradation in another class. 
Grover: A fast quantum mechanical algorithm for database search
28th Annual ACM Symposium on the Theory of Computing (1996) arXiv:quant-ph/9605043v3
Grover shows a quadratic speed-up in the sense of the NFL theorem, i.e., search over an unstructured set.
If our set has any structure we can exploit, and this is usually the case for real-world optimization problems (outside crypto where 
the game is to hide this structure), we can achieve a practical speed-up by clever algorithms. 

Practically relevant problem area

Performance

Type of problem

Specialized Algorithm A

General Algorithm

Specialized Algorithm B
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We can trade generality 
for performance. This 
makes ensemble 
approaches attractive. 

https://towardsdatascience.com/a-blog-about-lunch-and-data-science-how-there-is-no-such-a-thing-as-free-lunch-e46fd57c7f27
https://towardsdatascience.com/a-blog-about-lunch-and-data-science-how-there-is-no-such-a-thing-as-free-lunch-e46fd57c7f27


Stochastic local search

1. Start with some arbitrary solution

2. Repeat until time runs out:

3. Randomly change something

4. If the result is better than before, remember as current solution

5. If  no improvement for some time, 
allow a change that is leading to a worse but different solution.

Notes: 

▷ Steps 3 and 5 are obviously the key to success.

From theoretical side important whether you can reach your entire space

by the changes.

▷ Works best with problems where feasibility is easy to achieve.

▷ Usually important that iterations are fast.

▷ Easy to implement.

▷ Pretty good idea, if you have not much (mathematical) understanding/knowledge of your problem.
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1-Opt, 2-Opt, n-Opt

Assume a constraint optimization problem:
min

𝑥∈ 0,1 𝑛
𝑓(𝑥)  with 𝑥 ∈ 𝑋

▷ 1-opt: Starting from some random vector ሶ𝑥 we flip every ሶ𝑥𝑖 , 𝑖 ∈ {1, … , 𝑛} and whenever the objective 
improves, we keep it, otherwise we flip back. We continue until nothing changes anymore.

▷ 2-opt: Now we do the same for any pair of variables ሶ𝑥𝑖 , ሶ𝑥𝑗  with 𝑖, 𝑗 ∈ 1, … , 𝑛  and 𝑖 ≠ 𝑗. 

▷ Chaining: We start with one flip, then do a 2nd flip and as long as the solution is not getting worse than 
the one, we started with, we add more flips.

You can assume it is very difficult for a human to spot improvements beyond 2-opts.
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Simulated Annealing

1. Let 𝑠 = 𝑠0

2. For k=0 to k_max:

3. Set temperature: 𝑇 ← temperature(1 −
𝑘+1

𝑘𝑚𝑎𝑥
)

4. Pick a random neighbor: 𝑠𝑛𝑒𝑤 ← neighbour(𝑠)

5. 𝑜𝑏𝑗_𝑑𝑖𝑓𝑓 = objective(𝑠) − objective(𝑠𝑛𝑒𝑤)

6. If 𝑜𝑏𝑗_𝑑𝑖𝑓𝑓 > 0 or 𝑒𝑜𝑏𝑗_𝑑𝑖𝑓𝑓 / 𝑇 > random(0, 1)

7. 𝑠 ← 𝑠𝑛𝑒𝑤

8. Output 𝑠
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Tabu Search

1. Let 𝑠 = 𝑠0

2. Let 𝑇 = ∅

3. Let 𝑘 = 1

4. Repeat until finished:

5. 𝑁 = {𝑛 ∈ neighbor s } ∖ 𝑇

6. Find best neighbor: 𝑠𝑛𝑒𝑤 ← argmin
𝑛∈𝑁

objective(𝑛)

7. Add to tabu-list: 𝑇 = 𝑇 + 𝑠𝑛𝑒𝑤, 𝑘

8. 𝑘 = 𝑘 + 1

9. Update: Remove all (𝑛, 𝑚) from 𝑇 where 𝑚 < 𝑘 + 𝑇𝑚𝑎𝑥

10. Output 𝑠
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Evolutionary Algorithm

1. Generate the initial population of individuals randomly. (First generation) 

2. Repeat the following regenerational steps until termination: 

3. Evaluate the fitness of each individual in the population 

4. Select the fittest individuals for reproduction. (Parents)

5. Breed new individuals through crossover and mutation operations to give birth to offspring.

6. Replace the least-fit individuals of the population with new individuals.

Crossover: Take (larger) parts of each ”parent” and put together.

Mutation: Randomly flip variables
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Nodes to primal solution
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Typical bound development

Thorsten Koch        ZIB / TU Berlin               Stochastic Local Search Heuristics 26

Time

O
b

je
ct

iv
e 

va
lu

e

upper bound

lower bound



QUBO

QUBO : Quadratic Unconstraint Binary Optimization 

UBQP : Unconstrained Binary Quadratic Program 

(BIQ : Binary Integer Quadratic problem)

min
𝑥∈ 0,1 𝑛

𝑥𝑇𝑄𝑥

▷ 𝑥 is a vector of binary variables, 𝑄 is a square 𝑛 × 𝑛 matrix of 
constants 

▷ Since QUBOs are unconstraint, any 0/1 vector is a feasible solution

▷ All QUBOs can be brought to the form where 𝑄 is symmetric or upper 
triangular 

▷ Solving QUBO (in general) is NP-hard 

▷ Since 𝑥 is binary, 𝑥𝑖 = 𝑥𝑖
2 holds ⟹ The coefficients of the linear terms 

of the objective function correspond to the diagonal entries of 𝑄
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BIP

min
x∈ 0,1 𝑛

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

QUBO

 min
x∈ 0,1 𝑛

𝑐𝑇𝑥2+ 𝑃 𝐴𝑥 + 𝐼𝑠 − 𝑏 2

BIPs can be reformulated as QUBOs by 
putting the constraints into the objective 
with a penalty term 𝑃.  The penalty 
should be zero if and only if the 
constraint is fulfilled. 

Glover, Kochenberger, Du (2019): 
A Tutorial on Formulating and Using QUBO 

Models 
arXiv:1811.11538 



Max-Cut 

Binary Linear Programing formulation:

max ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑤𝑖𝑗𝑧𝑖𝑗

𝑧𝑖𝑗 ≤ 𝑥𝑖 + 𝑥𝑗

𝑧𝑖𝑗 ≤ 2 − (𝑥𝑖 + 𝑥𝑗)

𝑥𝑘 ∈ 0,1
𝑧𝑖𝑗 ∈ {0,1}
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Binary Quadratic Programing formulation:

max ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑤𝑖𝑗(𝑥𝑖 + 𝑥𝑗 − 2𝑥𝑖𝑥𝑗)

𝑥𝑖 ∈ 0,1

Can be written as:

min
𝑥∈ 0,1 𝑛

𝑥𝑇𝑄𝑥

Graph formulation 𝐺 = 𝑉, 𝐸, 𝑤

max
𝑆,𝑇

෍

𝑖∈𝑆,𝑗∈𝑇

𝑤𝑖𝑗 with 𝑆 ⊂ 𝑉, 𝑇 ⊂ 𝑉, 𝑆 ∩ 𝑇 = ∅, 𝑆 ∪ 𝑇 = 𝑉

Ising formulation

max
1

4
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑤𝑖𝑗 1 − 𝑥𝑖𝑥𝑗 , 𝑥𝑘 ∈ 1, −1 for 𝑘 ∈ {1, … , 𝑛}



Hans Mittelmann: Nonconvex QUBO-QPLIB Benchmark, 10.07.2023

QPLIB A Library of Quadratic Programming Instances

https://qplib.zib.de

http://plato.asu.edu/ftp/qubo.html

The codes were run on an AMD Ryzen 9 5900X 
(12 cores, 128GB) on the 23 unconstrained binary 
problems from QPLIB. All problems were solved GLOBALLY. 
Times given are elapsed times in seconds, time limit 1hr; 12 
threads. Shifted and scaled geometric mean of runtimes:.

Baron-23.6.22 https://www.minlp.com/baron

SCIP-8.0/cplex http://scipopt.org

OCTERACT-4.7.1/cplex https://octeract.com

Gurobi-10.0.1  http://gurobi.com

QuBowl https://arxiv.org/pdf/2202.02305.pdf

Biqcrunch-2    https://biqcrunch.lipn.univ-paris13.fr

BiqBin http://www.biqbin.eu

McSparse-2.0 http://mcsparse.uni-bonn.de

SHOT-1.1/gurobi https://shotsolver.dev/shot

ABS/Amplify        https://amplify.fixstars.com/en

ABS2 on RTX4090 (red = suboptimal solution, gap 0.17, 0.09)
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prob# Baron SCIP McSparse Octeract Gurobi QuBowl BiqBin SHOT ABS2

3506 87 407 89 165 102 789 0.047

3565 2 52 13 2 5 1 12 3 0.028

3642 f 0.063

3650 0.219

3693 f 0.899

3705 5 94 20 7 6 1 232 6 0.043

3706 881 2418 899 2357 984 0.096

3738 58 2753 137 73 94 29 197 0.096

3745 24 442 55 29 14 12 24 0.043

3822 0.051

3832 218 465 244 260 245 0.252

3838 7.971

3850 f 1.844

3852 1 35 46 2 2 2 411 2 0.020

3877 164 448 156 322 36 0.044

5721 1 1 2026 1 7.509

5725 10 81 4 10 7 1 39 1 0.122

5755 2 3 1 1 1 1 1317 1 1.061

5875 1720 1150 0.002

5881 440 2231 75 120 47 29 10 64 0.001

5882 607 232 0.000

5909 1842 0.019

5922 0.022

mean 1.85 5.65 2.44 1.80 1.46 1.00 5.31 2.06

solved 12 8 12 12 13 15 10 11

https://qplib.zib.de/
http://plato.asu.edu/ftp/qubo.html
https://www.minlp.com/baron
http://scipopt.org/
https://octeract.com/
http://gurobi.com/
https://arxiv.org/pdf/2202.02305.pdf
https://biqcrunch.lipn.univ-paris13.fr/
http://www.biqbin.eu/
http://mcsparse.uni-bonn.de/
https://shotsolver.dev/shot
https://amplify.fixstars.com/en
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Fragen

Questions
Вопросы

質問

ค ำถำม

有問題嗎

?
Câu hỏi
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Thank you very much!
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