
High performance computational techniques
for the simplex method

Julian Hall

School of Mathematics
University of Edinburgh

jajhall@ed.ac.uk

CO@Work 2020

17 September 2024

Overview

Computational view of simplex algorithms

Serial techniques

Hyper-sparsity
Cost perturbation

Parallel techniques for general LP problems

Julian Hall High performance computational techniques for the simplex method 2 / 27

Solving LP problems: Background

minimize cTx such that Ax = b and x ≥ 0

Background

Fundamental model in optimal
decision-making

Solution techniques

◦ Simplex method (1947)
◦ Interior point methods (1984)
◦ First order methods (2021)

Large problems have

◦ 103–108 variables
◦ 103–108 constraints

Matrix A is usually sparse and
may be structured

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Julian Hall High performance computational techniques for the simplex method 3 / 27

Solving LP problems: Background

x2

x3

x1

K

minimize cTx such that Ax = b and x ≥ 0

A vertex of the feasible region K ⊂ Rn has

m basic components, i ∈ B
n −m zero nonbasic components, j ∈ N

A and x are partitioned according to B ∪N
BxB + NxN = b ⇒ xB = B−1(b − NxN) = b̂ − N̂xN

since the basis matrix B is nonsingular

Reduced objective is then f = f̂ + ĉT
N xN , where f̂ = cT

B b̂
and ĉT

N = cT
N − cT

B B
−1N

For xN = 0, partition yields an optimal solution if there is
Primal feasibility b̂ ≥ 0; Dual feasibility ĉN ≥ 0

Julian Hall High performance computational techniques for the simplex method 4 / 27

Simplex tableau

Reduced LP corresponding to partition B ∪N of {1, . . . , n} with B nonsingular is

minimize f̂ + ĉT
N xN such that xB + N̂xN = b̂ and x ≥ 0

Convenient to represent this in the simplex tableau

RHS

N̂

ĉT
N

b̂B

N

Julian Hall High performance computational techniques for the simplex method 5 / 27

Primal simplex algorithm

Julian Hall High performance computational techniques for the simplex method 6 / 27

Primal simplex algorithm: Choose a column

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N

RHS

ĉq ĉTN

N

B

Julian Hall High performance computational techniques for the simplex method 7 / 27

Primal simplex algorithm: Choose a row

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq < 0 for p to leave B

RHS

âq

âpq

b̂

b̂p

N

B

Julian Hall High performance computational techniques for the simplex method 8 / 27

Primal simplex algorithm: Update cost and RHS

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq < 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Julian Hall High performance computational techniques for the simplex method 9 / 27

Primal simplex algorithm: Data required

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq < 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N

Pivotal column âq = B−1aq

Julian Hall High performance computational techniques for the simplex method 10 / 27

Primal simplex algorithm: Revised simplex method computation

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq < 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N via BTπp = ep; âT

p = πT
p N

Pivotal column âq = B−1aq via B âq = aq

Julian Hall High performance computational techniques for the simplex method 11 / 27

Dual simplex algorithm: Revised simplex method computation

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N via BTπp = ep; âT

p = πT
p N

Pivotal column âq = B−1aq via B âq = aq

Julian Hall High performance computational techniques for the simplex method 12 / 27

Solving LP problems: Primal or dual simplex?

Primal simplex algorithm

Traditional variant

Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

Preferred variant

Easier to get dual feasibility

More progress in many iterations

Solution dual feasible when primal LP is tightened

In practice, both are required for efficiency and robustness

Julian Hall High performance computational techniques for the simplex method 13 / 27

Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âqâT

p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âT
p = πT

p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Update B−1 exploiting B̄ = B + (aq − Bep)eT
p UPDATE

Julian Hall High performance computational techniques for the simplex method 14 / 27

Mittelmann LP test set (2020)

Industry standard set of 40 LP problems

Rows Cols Nonzeros Rows
Cols

Nonzeros
Rows× Cols

Nonzeros
max(Rows,Cols)

Min 960 1560 38304 1/255 0.0005% 2.2
Geomean 54256 72442 910993 0.75 0.02% 6.5
Max 986069 1259121 11279748 85 16% 218.0

Mittelmann measure for solvers

Unsolved problems given “timeout” solution time

Shift all solution times up by 10s

Compute geometric mean of logs of shifted times

Solution time measure is exponent of geometric mean shifted down by 10s

Mittelmann measure for a solver is its solution time measure relative to the best

Julian Hall High performance computational techniques for the simplex method 15 / 27

Hyper-sparsity: Solve Bx = r for sparse r

In simplex, RHS of linear systems is sparse: column from A or unit vector

When r is sparse, solution x = B−1r combines a few columns of B−1

Although B−1 is never formed explicitly, studying it is instructive

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem STAIR B−1r is typically dense

Julian Hall High performance computational techniques for the simplex method 16 / 27

Hyper-sparsity: Solve Bx = r for sparse r

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem pds-02 B−1r is typically sparse

If B−1 is sparse, then the LP is said to be hyper-sparse

Huge performance gains from exploiting this in the simplex method
H and McKinnon (2005)

Julian Hall High performance computational techniques for the simplex method 17 / 27

Hyper-sparsity: Effectiveness

Testing environment

Mittelmann test set of 40 LPs

HiGHS dual simplex solver with/without exploiting hyper-sparsity

Time limit of 10,000 seconds

Results

When exploiting hyper-sparsity: solves 37 problems

When not exploiting hyper-sparsity: solves 34 problems

Min Geomean Max

Iteration count increase 0.75 1.08 3.17
Solution time increase 0.83 2.31 67.13
Iteration speed decrease 0.92 2.14 66.43

Mittelmann measure 2.57

Julian Hall High performance computational techniques for the simplex method 18 / 27

Dual simplex: Cost perturbation

Dual degeneracy

If some nonbasic dual values cT
N − cT

B B
−1N are zero, the vertex is dual

degenerate

At a dual degenerate vertex, an iteration of the dual simplex algorithm may not
lead to a strict increase in the dual objective

Stalling or cycling may occur

Cost perturbation

Add a small random value to some/all of the cost coefficients c
Nonbasic dual values then (at worst) take small positive values

An iteration of the dual simplex algorithm yields (at least) a small positive
increase in the dual objective

When optimal, remove perturbations

May require primal simplex iterations to regain optimality

Julian Hall High performance computational techniques for the simplex method 19 / 27

Dual simplex: Cost perturbation - effectiveness

Results using Mittelmann test set

With cost perturbation: HiGHS solves 37/40 problems

Without cost perturbation: solves 27 problems

Min Geomean Max

Iteration count increase 0.80 1.36 7.21
Solution time increase 0.57 1.46 13.31
Iteration speed decrease 0.49 1.07 4.02

Mittelmann measure 3.80

Julian Hall High performance computational techniques for the simplex method 20 / 27

Parallel simplex for general LP problems

Past work

High value problem: many attempts, but almost nothing of practical value

Parallel tableau simplex: “easy” but useless
Parallel PRICE πT

p N: “easy” but Amdahl reigns unless m ≪ n

Crazy asynchronous schemes: H and McKinnon (mid-90s)

State-of-the-art

High performance serial dual simplex solver with standard algorithmic
enhancements (hsol)

Exploit limited task and data parallelism in standard dual RSM iterations (sip)

Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H

Julian Hall High performance computational techniques for the simplex method 21 / 27

Multiple iteration parallelism

Perform standard dual simplex minor iterations for rows in set P (|P| ≪ m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−TeP

Data-parallel PRICE to form âT
p (as required), and then data-parallel CHUZC

Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014)

Julian Hall High performance computational techniques for the simplex method 22 / 27

pami: Effectiveness

Serial overhead of pami

HiGHS pami solver in serial: solves 34/40 problems

Min Geomean Max

Iteration count increase 0.43 1.02 2.98
Solution time increase 0.31 1.62 5.36
Iteration speed decrease 0.69 1.59 5.11

Mittelmann measure 2.08

Parallel speed-up of pami with 8 threads

Min Geomean Max

Iteration count decrease 1.00 1.00 1.00
Solution time decrease 1.15 1.88 2.39
Iteration speed increase 1.15 1.88 2.39

Julian Hall High performance computational techniques for the simplex method 23 / 27

pami: Effectiveness

Performance enhancement using parallel pami with 8 threads

Min Geomean Max

Iteration count decrease 0.34 0.98 2.34
Solution time decrease 0.34 1.16 6.44
Iteration speed increase 0.38 1.18 2.75

Mittelmann measure 1.21

Observations

There is significant scope to improve pami performance further

Use pami tactically: switch it off if it is ineffective

Commercial impact

Huangfu applied the parallel dual simplex techniques within the Xpress solver

For much of 2013–2018 the Xpress simplex solver was the best in the world

Julian Hall High performance computational techniques for the simplex method 24 / 27

PDLP: A first order method for solving LPs

PDLP is a new method for solving

minimize f = cTx such that Ax = b; x ≥ 0

Finds a saddle-point of min
x≥0

max
y≥0 L(x , y) := cTx − yTAx + bTy

Uses primal-dual hybrid gradient Chambolle-Pock (2011) update

x t+1 = [x t − τ(c − ATy t)]
+; y t+1 = [y t + µA(2x t+1 − x t)]+

Google’s implementation in C++ on CPU is in the Mittelmann benchmarks
(Applegate, Hinder, Lu, and Lubin – 2021)

Better results for cuPDLP-C implementation in C+CUDA on GPU
(Lu, Yang, Hu, Huangfu, Liu, Liu, Ye, Zhang – Dec 2023)

Available under MIT license on GitHub using HiGHS for file reading and presolve

CPU/GPU version COPT v7.0
CPU version in HiGHS v1.7.0

(March 2024)

Julian Hall High performance computational techniques for the simplex method 25 / 27

HiGHS: Open-source software for large-scale sparse linear optimization

HiGHS: Hall, ivet Galabova, Huangfu, Schork

minimize f =
1

2
xTQx + cTx such that Ax = b; x ≥ 0, xi ∈ Z, ∀i ∈ I

Features

Simplex, interior point and first order
solvers for LP

Branch-and-cut solver for MIP

Active set solver for QP

Written in C++

Interfaces to other languages and systems

Availability

Open-source (MIT license)

No third-party code

https://HiGHS.dev/

The world’s best open-source linear optimization software
Mittelmann (2022–date)

Julian Hall High performance computational techniques for the simplex method 26 / 27

http://highs.dev/

Summary

Practical LP solution

Must exploit sparsity (and maybe structure)

Simplex method

Interior point methods

First order methods

High performance simplex

Best when solving families of related
problems (MIP; SLP)

Many (more) algorithmic and
computational tricks in serial

Parallel simplex has some impact on
performance

D. Applegate, M. D́ıaz, O. Hinder, H. Lu, M. Lubin,

B. O’Donoghue, and W. Schudy.
Practical large-scale linear programming using
primal-dual hybrid gradient.
Advances in Neural Information Processing Systems,
34:20243–20257, 2021.

J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to
exploit it.
Computational Optimization and Applications,
32(3):259–283, December 2005.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method.
Mathematical Programming Computation,
10(1):119–142, 2018.

Julian Hall High performance computational techniques for the simplex method 27 / 27

