High performance computational techniques for the simplex method

Julian Hall

School of Mathematics University of Edinburgh

jajhall@ed.ac.uk

CO@Work 2020

17 September 2024

- Computational view of simplex algorithms
- Serial techniques
 - Hyper-sparsity
 - Cost perturbation
- Parallel techniques for general LP problems

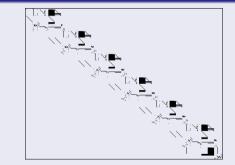
Solving LP problems: Background

minimize
$$\boldsymbol{c}^T \boldsymbol{x}$$
 such that $A\boldsymbol{x} = \boldsymbol{b}$ and $\boldsymbol{x} \ge \boldsymbol{0}$

Background

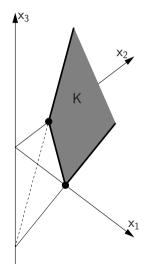
- Fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point methods (1984)
 - First order methods (2021)
- Large problems have
 - $10^3 10^8$ variables • $10^3 - 10^8$ constraints
 - 10³−10⁶ constraints
- Matrix A is usually sparse and may be structured

Example



STAIR: 356 rows, 467 columns and 3856 nonzeros

Solving LP problems: Background



minimize $\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}$ such that $A\boldsymbol{x} = \boldsymbol{b}$ and $\boldsymbol{x} \ge \boldsymbol{0}$

- A vertex of the feasible region $K \subset \mathbb{R}^n$ has
 - *m* **basic** components, $i \in \mathcal{B}$
 - n-m zero **nonbasic** components, $j \in \mathcal{N}$
- A and ${m x}$ are partitioned according to ${\cal B}\cup {\cal N}$

$$B\boldsymbol{x}_{\scriptscriptstyle B} + N\boldsymbol{x}_{\scriptscriptstyle N} = \boldsymbol{b} \quad \Rightarrow \boldsymbol{x}_{\scriptscriptstyle B} = B^{-1}(\boldsymbol{b} - N\boldsymbol{x}_{\scriptscriptstyle N}) = \widehat{\boldsymbol{b}} - \widehat{N}\boldsymbol{x}_{\scriptscriptstyle N}$$

since the **basis matrix** B is nonsingular

• Reduced objective is then $f = \hat{f} + \hat{c}_N^T x_N$, where $\hat{f} = c_B^T \hat{b}$ and $\hat{c}_N^T = c_N^T - c_B^T B^{-1} N$

• For $x_N = 0$, partition yields an optimal solution if there is Primal feasibility $\hat{b} \ge 0$; Dual feasibility $\hat{c}_N \ge 0$ • Reduced LP corresponding to partition $\mathcal{B} \cup \mathcal{N}$ of $\{1, \ldots, n\}$ with B nonsingular is

minimize
$$\widehat{f} + \widehat{c}_N^T x_N$$
 such that $x_B + \widehat{N} x_N = \widehat{b}$ and $x \ge \mathbf{0}$

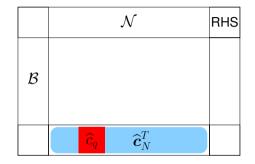
• Convenient to represent this in the simplex tableau

	\mathcal{N}	RHS
\mathcal{B}	\widehat{N}	$\widehat{m{b}}$
	$\widehat{m{c}}_{\scriptscriptstyle N}^T$	

Primal simplex algorithm

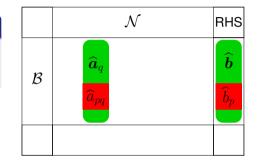
Assume $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$

Scan $\widehat{c}_i < 0$ for q to leave \mathcal{N}

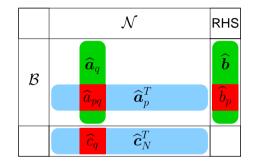


Assume $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$

 $\begin{array}{l} \text{Scan } \widehat{c}_j < 0 \text{ for } q \text{ to leave } \mathcal{N} \\ \text{Scan } \widehat{b}_i / \widehat{a}_{iq} < 0 \text{ for } p \text{ to leave } \mathcal{B} \end{array}$

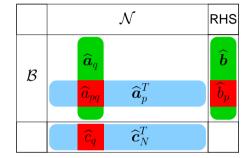


Assume $\hat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\hat{\boldsymbol{c}}_N \geq \boldsymbol{0}$ Scan $\hat{c}_j < 0$ for \boldsymbol{q} to leave \mathcal{N} Scan $\hat{b}_i / \hat{a}_{iq} < 0$ for \boldsymbol{p} to leave \mathcal{B} Update: Exchange \boldsymbol{p} and \boldsymbol{q} between \mathcal{B} and \mathcal{N} Update $\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$ $\alpha_P = \hat{b}_p / \hat{a}_{pq}$ Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{c}_q / \hat{a}_{pq}$



Assume $\widehat{m{b}} \geq m{0}$ Seek $\widehat{m{c}}_{\scriptscriptstyle N} \geq m{0}$ Scan $\widehat{c}_{j} < 0$ for q to leave \mathcal{N} Scan $\widehat{b}_{i}/\widehat{a}_{iq} < 0$ for p to leave \mathcal{B}

Update
$$\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$$
 $\alpha_P = \hat{\boldsymbol{b}}_p / \hat{\boldsymbol{a}}_{pq}$
Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{c}_q / \hat{\boldsymbol{a}}_{pq}$

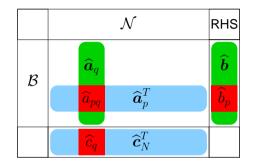


Data required

Pivotal row
$$\widehat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T}B^{-1}N$$

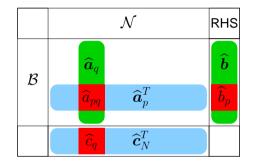
Pivotal column $\widehat{\boldsymbol{a}}_{q} = B^{-1}\boldsymbol{a}_{q}$

Assume $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{c}}_N \geq \boldsymbol{0}$ Scan $\widehat{c}_j < 0$ for q to leave \mathcal{N} Scan $\widehat{b}_i / \widehat{a}_{iq} < 0$ for p to leave \mathcal{B} Update: Exchange p and q between \mathcal{B} and \mathcal{N} Update $\widehat{\boldsymbol{b}} := \widehat{\boldsymbol{b}} - \alpha_P \widehat{\boldsymbol{a}}_q$ $\alpha_P = \widehat{b}_p / \widehat{a}_{pq}$ Update $\widehat{\boldsymbol{c}}_N^T := \widehat{\boldsymbol{c}}_N^T + \alpha_D \widehat{\boldsymbol{a}}_p^T$ $\alpha_D = -\widehat{c}_q / \widehat{a}_{pq}$



Data required

Pivotal row $\hat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T}B^{-1}N$ via $B^{T}\boldsymbol{\pi}_{p} = \boldsymbol{e}_{p};$ $\hat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{\pi}_{p}^{T}N$ Pivotal column $\hat{\boldsymbol{a}}_{q} = B^{-1}\boldsymbol{a}_{q}$ via $B\,\hat{\boldsymbol{a}}_{q} = \boldsymbol{a}_{q}$ Assume $\hat{c}_N \ge 0$ Seek $\hat{b} \ge 0$ Scan $\hat{b}_i < 0$ for p to leave \mathcal{B} Scan $\hat{c}_j / \hat{a}_{pj} < 0$ for q to leave \mathcal{N} Update: Exchange p and q between \mathcal{B} and \mathcal{N} Update $\hat{b} := \hat{b} - \alpha_P \hat{a}_q$ $\alpha_P = \hat{b}_p / \hat{a}_{pq}$ Update $\hat{c}_N^T := \hat{c}_N^T + \alpha_D \hat{a}_p^T$ $\alpha_D = -\hat{c}_q / \hat{a}_{pq}$



Data required

Pivotal row $\widehat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T}B^{-1}N$ via $B^{T}\boldsymbol{\pi}_{p} = \boldsymbol{e}_{p};$ $\widehat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{\pi}_{p}^{T}N$ Pivotal column $\widehat{\boldsymbol{a}}_{q} = B^{-1}\boldsymbol{a}_{q}$ via $B\,\widehat{\boldsymbol{a}}_{q} = \boldsymbol{a}_{q}$

Primal simplex algorithm

- Traditional variant
- Solution generally not primal feasible when (primal) LP is tightened

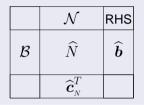
Dual simplex algorithm

- Preferred variant
- Easier to get dual feasibility
- More progress in many iterations
- Solution dual feasible when primal LP is tightened

In practice, both are required for efficiency and robustness

Simplex method: Computation

Standard simplex method (SSM): Major computational component



Update of tableau:
$$\widehat{N} := \widehat{N} - \frac{1}{\widehat{a}_{pq}} \widehat{a}_q \widehat{a}_p^T$$

where $\widehat{N} = B^{-1}N$

- Hopelessly inefficient for sparse LP problems
- Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via $B^T \pi_p = e_p$ BTRANand $\widehat{a}_p^T = \pi_p^T N$ PRICEPivotal column via $B \, \widehat{a}_q = a_q$ FTRANRepresent B^{-1} INVERTUpdate B^{-1} exploiting $\overline{B} = B + (a_q - Be_p)e_p^T$ UPDATE

Industry standard set of 40 LP problems

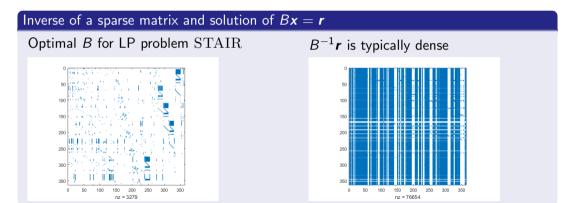
	Rows	Cols	Nonzeros	<u>Rows</u> Cols	$\frac{Nonzeros}{Rows\timesCols}$	Nonzeros max(Rows,Cols)
Min	960	1560	38304	1/255	0.0005%	2.2
Geomean	54256	72442	910993	0.75	0.02%	6.5
Max	986069	1259121	11279748	85	16%	218.0

Mittelmann measure for solvers

- Unsolved problems given "timeout" solution time
- Shift all solution times up by 10s
- Compute geometric mean of logs of shifted times
- Solution time measure is exponent of geometric mean shifted down by 10s
- Mittelmann measure for a solver is its solution time measure relative to the best

Hyper-sparsity: Solve Bx = r for sparse r

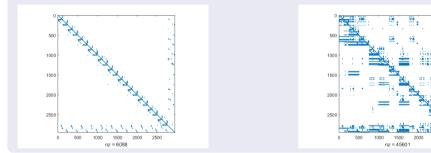
- In simplex, RHS of linear systems is sparse: column from A or unit vector
- When r is sparse, solution $x = B^{-1}r$ combines a few columns of B^{-1}
- Although B^{-1} is never formed explicitly, studying it is instructive



Hyper-sparsity: Solve Bx = r for sparse r

Inverse of a sparse matrix and solution of $B\mathbf{x} = \mathbf{r}$

Optimal B for LP problem PDS-02



- If B^{-1} is sparse, then the LP is said to be hyper-sparse
- Huge performance gains from exploiting this in the simplex method

H and McKinnon (2005)

 $B^{-1}r$ is typically sparse

Hyper-sparsity: Effectiveness

Testing environment

- Mittelmann test set of 40 LPs
- HiGHS dual simplex solver with/without exploiting hyper-sparsity
- Time limit of 10,000 seconds

Results

- When exploiting hyper-sparsity: solves 37 problems
- When not exploiting hyper-sparsity: solves 34 problems

	Min	Geomean	Max
Iteration count increase	0.75	1.08	3.17
Solution time increase	0.83	2.31	67.13
Iteration speed decrease	0.92	2.14	66.43
Mittelmann measure		2.57	

Dual simplex: Cost perturbation

Dual degeneracy

- If some nonbasic dual values $\boldsymbol{c}_{N}^{T} \boldsymbol{c}_{B}^{T}B^{-1}N$ are zero, the vertex is **dual degenerate**
- At a dual degenerate vertex, an iteration of the dual simplex algorithm may not lead to a strict increase in the dual objective
- Stalling or cycling may occur

Cost perturbation

- Add a small random value to some/all of the cost coefficients $m{c}$
- Nonbasic dual values then (at worst) take small positive values
- An iteration of the dual simplex algorithm yields (at least) a small positive increase in the dual objective
- When optimal, remove perturbations
- May require primal simplex iterations to regain optimality

Results using Mittelmann test set

- With cost perturbation: HiGHS solves 37/40 problems
- Without cost perturbation: solves 27 problems

	Min	Geomean	Max
Iteration count increase	0.80	1.36	7.21
Solution time increase	0.57	1.46	13.31
Iteration speed decrease	0.49	1.07	4.02
Mittelmann measure		3.80	

Past work

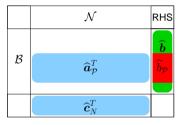
- High value problem: many attempts, but almost nothing of practical value
 - Parallel tableau simplex: "easy" but useless
 - Parallel PRICE $\pi_p^T N$: "easy" but Amdahl reigns unless $m \ll n$
- Crazy asynchronous schemes: H and McKinnon (mid-90s)

State-of-the-art

- High performance serial dual simplex solver with standard algorithmic enhancements (hsol)
- Exploit limited task and data parallelism in standard dual RSM iterations (sip)
- Exploit greater task and data parallelism via minor iterations of dual SSM (pami) Huangfu and H

Multiple iteration parallelism

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial



- Task-parallel multiple BTRAN to form $\pi_{\mathcal{P}} = B^{-T} \boldsymbol{e}_{\mathcal{P}}$
- Data-parallel PRICE to form \widehat{a}_{p}^{T} (as required), and then data-parallel CHUZC
- Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011-2014)

Serial overhead of pami

• HiGHS pami solver in serial: solves 34/40 problems

	Min	Geomean	Max
Iteration count increase	0.43	1.02	2.98
Solution time increase	0.31	1.62	5.36
Iteration speed decrease	0.69	1.59	5.11
Mittelmann measure		2.08	

Parallel speed-up of pami with 8 threads

	Min	Geomean	Max
Iteration count decrease	1.00	1.00	1.00
Solution time decrease	1.15	1.88	2.39
Iteration speed increase	1.15	1.88	2.39

Performance enhancement using parallel pami with 8 threads

	Min	Geomean	Max
Iteration count decrease	0.34	0.98	2.34
Solution time decrease	0.34	1.16	6.44
Iteration speed increase	0.38	1.18	2.75
Mittelmann measure		1.21	

Observations

- There is significant scope to improve pami performance further
- Use pami tactically: switch it off if it is ineffective

Commercial impact

- Huangfu applied the parallel dual simplex techniques within the Xpress solver
- For much of 2013-2018 the Xpress simplex solver was the best in the world

PDLP: A first order method for solving LPs

• PDLP is a new method for solving

minimize $f = \boldsymbol{c}^T \boldsymbol{x}$ such that $A \boldsymbol{x} = \boldsymbol{b}$; $\boldsymbol{x} \ge \boldsymbol{0}$

- Finds a saddle-point of $\min_{x \ge 0} \max_{y \ge 0} L(x, y) := c^T x y^T A x + b^T y$
- Uses primal-dual hybrid gradient Chambolle-Pock (2011) update

$$\mathbf{x}^{t+1} = [\mathbf{x}^t - \tau (\mathbf{c} - A^T \mathbf{y}_t)]^+; \qquad \mathbf{y}^{t+1} = [\mathbf{y}^t + \mu A (2\mathbf{x}^{t+1} - \mathbf{x}^t)]^+$$

• Google's implementation in C++ on CPU is in the Mittelmann benchmarks (Applegate, Hinder, Lu, and Lubin – 2021)

Better results for cuPDLP-C implementation in C+CUDA on GPU

(Lu, Yang, Hu, Huangfu, Liu, Liu, Ye, Zhang - Dec 2023)

- Available under MIT license on GitHub using HiGHS for file reading and presolve
 - CPU/GPU version COPT v7.0
 - CPU version in HiGHS v1.7.0

(March 2024)

HiGHS: Open-source software for large-scale sparse linear optimization

HiGHS: Hall, ivet Galabova, Huangfu, Schork

minimize $f = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}$ such that $A \mathbf{x} = \mathbf{b}$; $\mathbf{x} \ge \mathbf{0}$, $x_i \in \mathbb{Z}$, $\forall i \in \mathcal{I}$

Features

- Simplex, interior point and first order solvers for LP
- Branch-and-cut solver for MIP
- Active set solver for QP
- Written in C++
- Interfaces to other languages and systems

Availability

- Open-source (MIT license)
- No third-party code
- https://HiGHS.dev/

The world's best open-source linear optimization software

Mittelmann (2022–date)

Summary

Practical LP solution

Must exploit sparsity (and maybe structure)

- Simplex method
- Interior point methods
- First order methods

High performance simplex

- Best when solving families of related problems (MIP; SLP)
- Many (more) algorithmic and computational tricks in serial
- Parallel simplex has some impact on performance

D. Applegate, M. Díaz, O. Hinder, H. Lu, M. Lubin, B. O'Donoghue, and W. Schudy. Practical large-scale linear programming using primal-dual hybrid gradient. Advances in Neural Information Processing Systems, 34:20243–20257, 2021. J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and how to exploit it. Computational Optimization and Applications, 32(3):259–283, December 2005. Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. <u>Mathematical Programming Computation</u>, 10(1):119–142, 2018.