Numerics in LP and MIP solvers

Ambros Gleixner™?

"Zuse Institute Berlin and 2HTW Berlin

gleixner@htw-berlin.de

CO@Work 2024 - September 19, 2024

SPONSOnED Y THE

ntur ZIB e
e £Ib B
und Wi and Research

MeRAL

gleixner@htw-berlin.de

Numerical trouble and inaccuracies

IP> display solution

objective value: 147726 .165057267
1

X%
NS
o 00

BB

N e
[

28

=
)
o
s ® U

SN = g S,)

1/26

inaccuracies

Numerical trouble and

8le+04

6!

<
o

2/26

Numerical trouble and inaccuracies

98.40%

)+ 477>[B] (+@) +1

3/26

1. Introduction
2. Floating-point arithmetic and MIP tolerances
3. Some guidelines and tools
4. Iterative refinement for LP

5. Solving MIPs exactly

Floating-point arithmetic
Virtually all MIP solvers are built on double-precision floating-point arithmetic (IEEE754):

exponent fraction
sign (11 bit) (52 bit)
|
o] o (o]
63 52 0

* Real numbers stored as (—1)%8" - 1.fraction . 2exPonent—1023
* enough to represent about 15 digits ~ round-off errors afterwards, e.g.

1
5 =f 0.3333333333333333148296 ..
1
3,000,000 - 5 — 1,000,000 =, 0.00000000145296 ...

1
3,000,000, 000,000 - 5 — 1,000, 000,000,000 =g, 0.00148296 ...

5/26

Feasibility and optimality in floating-point solvers

MIP solvers use numerical tolerances, typically in the range 1076 to 10~°:
* Integrality tolerance €y : a € Z <o @ € Z + [—€jnts €int) s €-8-, 0.9999999 =, 1.

6/26

Feasibility and optimality in floating-point solvers

MIP solvers use numerical tolerances, typically in the range 1076 to 10~°:
* Integrality tolerance €y : a € Z <o @ € Z + [—€jnts €int) s €-8-, 0.9999999 =, 1.

* Feasibility tolerance efqs : a'X < b Sy . ..

Absolute: a'x—b < €feas

6/26

Feasibility and optimality in floating-point solvers

MIP solvers use numerical tolerances, typically in the range 1076 to 10~°:
* Integrality tolerance €y : a € Z <o @ € Z + [—€jnts €int) s €-8-, 0.9999999 =, 1.

* Feasibility tolerance efqs : a'X < b Sy . ..

Absolute: a'x—b < €feas
. a'x—b
Relative: b] < €feas

6/26

Feasibility and optimality in floating-point solvers

MIP solvers use numerical tolerances, typically in the range 1076 to 10~°:
* Integrality tolerance €y : a € Z <o @ € Z + [—€jnts €int) s €-8-, 0.9999999 =, 1.

* Feasibility tolerance epqs: X < b g - ..

Absolute: a'x — b < €feqs
. a'x—b .
Relative: b < €feas (problematic for |b| ~ 0)
Ty _
Mixed (SCIP): ax—b

—r - <
max{|b,1} — e

6/26

Feasibility and optimality in floating-point solvers

MIP solvers use numerical tolerances, typically in the range 1076 to 10~°:

* Integrality tolerance €y : a € Z <o @ € Z + [—€jnts €int) s €-8-, 0.9999999 =, 1.

* Feasibility tolerance epqs: X < b g - ..

Absolute: a'x — b < €feqs
. ax—>b
Relative: T < €feas
Ty _
Mixed (SCIP): ax—b

—r - <
max{|b,1} — e

* LP tolerances for dual feasibility, barrier convergence, ...

Note: not invariant under scaling!

(problematic for |b| ~ 0)

6/26

Feasibility and optimality in floating-point solvers
Hope:
Optimal solution with small residual errors is

close to an exact optimal solution without violations.

But really: exact solution to a perturbed problem

exact solution good case

bad case

7126

Sources of numerical issues: large big-M’s

Example:

min x
st.x>1
x < 10%
y {01}

min x

st.x>1
107 <y
y € {0,1}

Assuming an absolute tolerance of 106, we have that:

° x =1,y =0 feasible in the scaled problem w.rt. tolerances, but infeasible in the original

* x =1,y =109 feasible in both, the scaled and original problem w.r.t. tolerances

* but when you fix y = 0 and reoptimize, the result will be infeasible

* x =y =1Iis exactly feasible

8/26

Sources of numerical issues: in MINLP solving

* Approximating convex functions by
cutting planes can yield near-parallel
rows in the LP and ill-conditioned
basis matrices.

* Relaxations of nonconvex constraints
over large domains can yield bad
coefficients.

9/26

1. Introduction
2. Floating-point arithmetic and MIP tolerances
3. Some guidelines and tools
4. Iterative refinement for LP

5. Solving MIPs exactly

Some guidelines

* Good input, good output
® Scale data to avoid extreme values: absolute and relative
look at which units to use, e.g.
ratio of largest to smallest coefficient < 10° in any row and column
® Ensure that tolerances make sense relative to the input data.
® Round insignificant, tiny data values to zero
® Avoid using truncated or single-precision data

1/26

Some guidelines

* Good input, good output
® Scale data to avoid extreme values: absolute and relative
look at which units to use, e.g.
ratio of largest to smallest coefficient < 10° in any row and column
® Ensure that tolerances make sense relative to the input data.
® Round insignificant, tiny data values to zero
® Avoid using truncated or single-precision data
* Modelling and solving
® Try different scaling parameters
® Try to avoid large big-M’s
* If you don't have a reasonable M, use indicator or SOS constraints
* If the objective is a hierarchical combination of multiple objective:
try a sequential approach (akin to the e-constraint method)

1/26

Some guidelines

* Good input, good output
® Scale data to avoid extreme values: absolute and relative
look at which units to use, e.g.
ratio of largest to smallest coefficient < 10° in any row and column
® Ensure that tolerances make sense relative to the input data.
® Round insignificant, tiny data values to zero
® Avoid using truncated or single-precision data
* Modelling and solving
® Try different scaling parameters
® Try to avoid large big-M’s
* If you don't have a reasonable M, use indicator or SOS constraints
* If the objective is a hierarchical combination of multiple objective:
try a sequential approach (akin to the e-constraint method)
* Note: Poor scaling and imprecise input are neither necessary nor sufficient
for numerical problems.

1/26

Tools: a posteriori

SCIP> checksol

check best solution
solution is feasible in original problem
iolation

bounds

constraints

12 /26

Tools: a priori

Running HiGHS 1.7.2 (git hash: 8fce6250c): Copyright (c) 2024 HiGHS under MIT licence terms
Number of PL entries in BOUNDS section is 45
LP mwe has 4203 rows; 194 cols; 23776 nonzeros
Coefficient ranges:
Matrix [1e-09, 1e+07]

Cost [B8e-02, 2e+00]

Bound [1e+03, 1le+06]

RHS [1le-13, 4de+11]
WARNING: Problem has excessively large bounds or RHS: consider scaling the bounds and RHS down
by at least le+2, or setting option user_bound_scale to -6 or less

13/26

Tools: check solver log during optimization

lWarning: Model contains large matrix coefficient range
Consider reformulating model or setting

NumericFocus parame to avoid numerical i

Warning: Markowitz tolerance tightened to

Warning: switch to quad precision

Numeric error

Numerical trouble encountered

Restart crossow .-

Sub-optimal termination

Warning: ... variab dropped from basis

Warning: unscaled primal violation = ... and r
Warning: unscaled dual violation = ... and residual =

14 /26

Tools: condition numbers
* Condition number « of a matrix:
bounds how error in the right-hand side can propagate to the solution vector

15 [26

Tools: condition numbers
* Condition number x of a matrix:
bounds how error in the right-hand side can propagate to the solution vector
* For the simplex method: large « of basis matrices indicates larger errors in the LP solutions

15/ 26

Tools: condition numbers
e Condition number « of a matrix:

bounds how error in the right-hand side can propagate to the solution vector

* For the simplex method: large « of basis matrices indicates larger errors in the LP solutions
* For LP-based branch and bound: can compute or sample a “MIP-x" [/ “attention level” / ...as

a weighted average of encountered LP-+'s

Numerical information — Xpress final report

glass4 with default scaling:

umerical issues encountered:

Dual failures 8 3410 out of 508042 (ratio: 0.0067)
Singular bases 8 18 out of 372616 (ratio: 0.0000)
Nodes kappa stable : 0 (ratio: 0.0000)

Nodes kappa suspicious : 0 (ratio: 0.0000)

Nodes kappa unstable g 260 (ratio: 0.0008)

Nodes kappa ill-posed : 307910 (ratio: 0.$992)
Largest kappa seen : 5.166264e422

Kappa attention level : 0.9994

glass4 with SCALING=227 [scale big-M rows]

umerical issues encountered:

Dual failures 8 683 out of 531681 (ratioc: 0.0013)
Singular bases 8 4 out of 401058 (ratio: 0.0000)
Nodes kappa stable H 240371 (ratio: 0.8744)

Nodes kappa suspicious : 34412 (ratio: 0.1252)

Nodes kappa unstable H 102 (ratio: 0.0004)

Nodes kappa ill-posed 0 (ratio: 0.0000)
largest kappa seen : 1.654603e+12

Kappa attention level : 0.0014

15/ 26

Gurobi’'s model analyzer

& GUROBI
e\

OPTIMIZATION

Gurobi Model
Analyzer

Q Search

CONTENTS:
Installation
Ill Conditioning Explainer ~

Quick Start Guide

lll Conditioning Explainer

e Quick Start Guide
o Introduction
o Running the Explainer
o Interpreting the Output
o Suggested Usage Quick Start
s Advanced Usage Guide
o Introduction
o Interpreting the Explainer Output
o Additional Function Arguments
o API Reference

© gurobi_modelanalyzer.kappa_explain()

16 / 26

Xpress's solution refiner
Goal: reduce or remove primal, dual and integrality violations
in incumbents and final solution by some of
* performing extra simplex iterations
* recomputing in quad precision
* pushing fractional integer variables out of the basis when possible

* performing additional branches to force integer variables to integer values

* fixing integer variables and solve remaining LP

Node BestSoln BestBound Sols Active Depth Gap GInf
* 197 15183.85668 15227.15725 8 1 19 0.28% 0
200 15183.85668 15220.67819 8 1 8 0.24% 5

#%% Search completed #*#% Time: 4 Nodes: 253

Number of integer feasible solutions found is 8
Best integer solution found is 15183.85668
Best bound is 15183.85668

Time
3
3

17/ 26

MIP-DD: A Delta-Debugger for MIP

Goal: try to reproduce unwanted behavior in a MIP solver, e.g., a numerical issue, on a
significantly smaller and easier to analyze MIP

* inspired by delta debugging heavily used in the SAT and SMT community (Zeller 1999,
Brummayer and Biere 2009, Niemetz and Biere 2013, Kaufmann and Biere 2022, Paxian and
Biere 2023)

* very successful in increasing the number of bug fixes in the last SCIP releases
* open-source package MIP-DD available at github.com/scipopt/mip-dd

* for details see Hoen, Kampp, G. 2024: “MIP-DD: A Delta Debugger for Mixed Integer
Programming Solvers”, arxiv.org/abs/2405.19770v1

18 /26

github.com/scipopt/mip-dd
arxiv.org/abs/2405.19770v1

1. Introduction
2. Floating-point arithmetic and MIP tolerances
3. Some guidelines and tools
4. Iterative refinement for LP

5. Solving MIPs exactly

Recall i - ;
Basic solution: primal-dual

* W.lo.g. let rank(A) = m < n and consider the computational form
min{c"x | Ax = b,x > 0} = max{y"h | yTA < ¢,y free }

« For every vertex there is a non-singular m x m sub-matrix B of A

A= B N

« and the corresponding basic solution is given by

xg=B7'h, xy=0, y'=ciB?

* In practice: do not compute inverse, but solve
linear systems Bxg = b and B"y = cg by factorization B = LU

* Floating-point arithmetic results in
residual errorsb =b — Bxg # 0 and ¢ = cg — BTy # 0.

20/26

Iterative refinement for linear systems
(Wilkinson 1963, Ursic and Patarra 1983, Wan 2006, Pan 2011, Saunders et al. 2011)

* Drop subscript xg ~ x and suppose we want to solve Bx = b

* Idea: compute corrector solution x by using residual error as the right-hand side

(b:b—AXk l
Xk Ax=b
T l

Bx=>b X
I Xk+l:Xk+)A(J

Hybrid precision method: fast floating-point arithmetic (for linear system solve)
+ slower extended-precision or rational arithmetic (for residual computation and correction)

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

P: min c'x
s.t. Ax=0b>
X>/

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

Xrs Yk
i
P: min c'x
s.t. Ax=b
X>/

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

ﬁB:bfok,fzéka,é:c—ATyk
Xrs Yk
f
P: min c'x
s.t. Ax=b
X>/

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

(—E):b—AXk,ézg—Xk,é:C—ATykﬁy

Xk, Yk P:min Apc’x
i s.t. Ax=Awb
P:min c'x X > Agl
s.t. Ax=b

x>/

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

(—B:b—Axk,Zzﬁ—xk,ézc—ATykﬁ

Xk, Yk P:min ApcTx
f s.t. Ax=Awb
P:min c'x X > Al
s.t. Ax=b !
x>/ X,V

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

(—B:b—Axk,sz—xk,ézc—ATykﬁ

Xk, Yk P:min ApcTx
f s.t. Ax=Awb
P:min c'x X > Al
s.t. Ax=b !
x>/l X,y

N . A%KWH =VYr+ A%f/ S

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

BZb—AXk,éZK—Xk,é:C—ATykﬁ
/max

=

Ak—)OO

e Xpp1 =Xt AKX Ve = Ve + 2V —

21/26

Iterative refinement for linear programs

(G., Steffy, Wolter 2012, 2016, 2020)

BZb—AXk,gZK—Xk,é:C—ATykﬁ
/n(1ax

Ak—>OO

e &

Hybrid precision method: double precision (for simplex)
+ rational arithmetic (for error computation, correction, rounding, LU)

21/26

Boosted Iterative refinement for linear programs

(Applegate et al. 2007 + G., Steffy, Wolter 2012, 2016, 2020+ — G., Nicolas-Thouvenin, Eifler 2024)

BZb—AXk,gZK—Xk,é:C—ATykﬁ
/n(1ax

Ak—)OO

e Xpp1 =Xt AKX Ve = Ve + 2V —

Hybrid precision method: double + extended precision (for simplex)
+ rational arithmetic (for error computation, correction, rounding, LU)

21/26

From accurate to exact

Method 1: Basis Verification
® compute exact basic solution via rat. LU factorization
® check primal and dual feasibility

® keep refining until optimal

22 /26

github.com/scipopt/soplex

From accurate to exact

Method 1: Basis Verification
® compute exact basic solution via rat. LU factorization
® check primal and dual feasibility

® keep refining until optimal

Method 2: Output-Sensitive Rational Reconstruction

* round approximate solution by continued fractions approximation
® check primal and dual feasibility and complementary slackness

® increase denominator bound as residual errors decrease

22/26

github.com/scipopt/soplex

From accurate to exact

S
;B
'

Method 1: Basis Verification
® compute exact basic solution via rat. LU factorization
® check primal and dual feasibility

® keep refining until optimal

Method 2: Output-Sensitive Rational Reconstruction

* round approximate solution by continued fractions approximation
® check primal and dual feasibility and complementary slackness

® increase denominator bound as residual errors decrease

Can prove oracle-polynomial running time under some assumptions on the fp solver:
Exact solution reached after a polynomial number of refinements

* Method 1: O((m?(A) + (b,c,t) + n?))

* Method 2: O(max{logD, m?(A)})
Implemented in the open-source solver SoPlex: github.com/scipopt/soplex

22/26

github.com/scipopt/soplex

LP iterative refinement in industry

* |terative refinement for solving linear
systems in LP solvers is a standard
technique to deal with ill-conditioned
basis matrices,

e but also LP iterative refinement has
been implemented with quad precision
instead of rational arithmetic:

¢ see
community.fico.com/s/blog-post/
abQ2E000000cDPaUAM/fic02199

FICO® Community Bleg

Insights, ideas, and updates from FICO experts

Want to stay informed? Click here to follow your favorite blogs!
OPTIMIZATION APRIL 17, 2020

Numerics II: Zoom Into the Unknown

a‘rwo BERTHOLD

In a recent blog post, we explained where numerical issues in solvers come from, and how you
can analyze your optimization models and their solution precesses for potential numeric trouble.
This is valuable for all optimization problems, but high accuracy is most important when we
consider feasibility problems, or applications where giving even slightly sub-optimal answers can
have legal consequences.

23/26

community.fico.com/s/blog-post/a5Q2E000000cDPaUAM/fico2199
community.fico.com/s/blog-post/a5Q2E000000cDPaUAM/fico2199

1. Introduction
2. Floating-point arithmetic and MIP tolerances
3. Some guidelines and tools
4. Iterative refinement for LP

5. Solving MIPs exactly

From exact LP to exact MIP

LetA€ Q™ beQ",ce Q"

A, ¢, b closest floating-point approximations

Exact LP

min ¢!'x
Ax<b
xeQ"

FP-LP

min ¢’ x
Ax<b
xeq”

Solve
approximately

Compute safe dual bound

solve
exact LP

use
Boundshift

Use
Project+Shift

Hybrid-precision branch and bound (Cook, Koch, Steffy, Wolter 2013).

Uses floating-point + directed rounding + rational arithmetic.

25/26

Exact SCIP: Hybrid-precision branch-and-bound plus ...

e primal repair heuristics

Compute safe dual bound

(Eifler, G. 2022)
* rational presolving through PaPILO B

No

(G. Gottwald, Hoen 2023) SO
LetA€EQ™ be Q" ce Q" p%usr;iblel? ves’

A,z b closest floating-point approximations

* propagation and dual proof b4

. . Exact LP FP-LP
ana lyS IS (BO rSt’ E Iﬂe r' G * 2024) min ¢’ x min & x Solve Proj :cffsmﬂ
:xesof -approx-1 I;xesﬂ l: approximately [!
e MIR cuts (Eifler, G. 2024)

* certificates (Cheung, G., Steffy 2017)

Available at github.com/scipopt/scip/tree/exact-rational.

26 /26

github.com/scipopt/scip/tree/exact-rational

	Introduction
	Feasibility tolerances in MIP solvers
	Guidelines and tools
	Solving LPs exactly
	From exact LP to exact MIP

