Numerics in LP and MIP solvers

Ambros Gleixner^{1,2}

¹Zuse Institute Berlin and ²HTW Berlin

gleixner@htw-berlin.de

CO@Work 2024 · September 19, 2024

Federal Ministry of Education

Numerical trouble and inaccuracies

SCIP> o	lispl	lay	sol	ution

objective value:	147726.165057267	
x2826	1	(obj:13.8132)
x2840	1	(obj:17.3592)
x2842	1.00000000318	(obj:17.2398)
x2845	1	(obj:12)
x2850	1	(obj:12.1173)
x2851	0.999999999301	(obj:14.4105)
x2852	0.99999999987	(obj:12)
x2854	1	(obj:14.9862)
x2857	1	(obj:18.7107)
x2861	11	(obj:15.7479)

Numerical trouble and inaccuracies

9.7s	1	0	3507	-	154M	0	2712	13k	13k	68	8	18	0	9.625279e+04	3.723994e+05	286.90%	unknown
10.5s			3645		157M		2712	13k	13k	93	9	18	0	9.625416e+04	3.723994e+05	286.89%	unknown
11.0s			3718		158M		2712	13k	13k	110	10	18	0	9.625435e+04	3.723994e+05	286.89%	unknown
11.1s			3782		160M		2712	13k	13k	124	11	18	0	9.625474e+04	3.723994e+05	286.89%	unknown
11.3s			3893		161M		2712	13k	13k	144	12	18	0	9.625534e+04	3.723994e+05	286.89%	unknown
time	node	left	LP iter	∙ LP it/n	mem/heur	mdpt	vars	cons	rows	cuts	sepa	confs	strbr	dualbound	primalbound	gap	compl.
24.3s			35722		163M		2712	13k	13k	144	12	44	19	9.626681e+04	3.723994e+05	286.84%	unknown
(node 5) numer:	ical tro	ubles in	LP 104	unreso	lved											
L 129s	76	73	127950	1663.7	alns	20	2712	13k	13k	264	2	75	519	9.628491e+04	3.530913e+05	266.72%	unknown
144s	100	97	148598	1469.0	187M	23	2712	13k	13k	285	1	94	553	9.628491e+04	3.530913e+05	266.72%	unknown

Numerical trouble and inaccuracies

2800s 93200 3	48	4749k	49.7	253M	55	289 192	5 1764	207k	0 5691	8539	3.02725	3e+03	3.336240e+0	3 10.21%	98.40%
SCIP Status		problem is	solved [optimal	solut	ion found]								
Solving Time (sec)		2802.85													
Solving Nodes		93263 (tota	al of 953	47 nodes	in 2	runs)									
Primal Bound		+3.33623984	1845755e+	03 (43 s	olutio	ons)									
Dual Bound		+3.33623984	1845755e+	03											
Gap		0.00 %													
[linear] <c13452>:</c13452>		-0.002186551	L <x12>[C]</x12>	(+38233	.728)	+ <x47>[C</x47>] (+85.2	158153)	+1600000	<x477>[B]</x477>] (+0) +	1600000<	(-: x622>[I] (-:	1.15885912e-1	1)
+1600000 <x682>[I]</x682>	(+(ð) >= 1.6158	319082;												
violation: left ha best solution is n	nd ot	side is vic feasible in	olated by n origina	1.85415 l proble	070872 m	2441e-05									

1. Introduction

2. Floating-point arithmetic and MIP tolerances

3. Some guidelines and tools

4. Iterative refinement for LP

5. Solving MIPs exactly

Floating-point arithmetic

Virtually all MIP solvers are built on double-precision floating-point arithmetic (IEEE754):

- Real numbers stored as $(-1)^{sign} \cdot 1$.fraction $\cdot 2^{exponent-1023}$
- enough to represent about 15 digits \rightsquigarrow round-off errors afterwards, e.g.

MIP solvers use numerical tolerances, typically in the range 10^{-6} to 10^{-9} :

• Integrality tolerance ϵ_{int} : $\alpha \in \mathbb{Z} \Leftrightarrow_{tol} \alpha \in \mathbb{Z} + [-\epsilon_{int}, \epsilon_{int}]$, e.g., $0.9999999 =_{tol} 1$.

MIP solvers use numerical tolerances, typically in the range 10^{-6} to 10^{-9} :

- Integrality tolerance ϵ_{int} : $\alpha \in \mathbb{Z} \Leftrightarrow_{tol} \alpha \in \mathbb{Z} + [-\epsilon_{int}, \epsilon_{int}]$, e.g., $0.9999999 =_{tol} 1$.
- Feasibility tolerance ϵ_{feas} : $a^T x \leq b \Leftrightarrow_{tol} \dots$

Absolute:
$$a^T x - b \le \epsilon_{feas}$$

MIP solvers use numerical tolerances, typically in the range 10^{-6} to 10^{-9} :

- Integrality tolerance ϵ_{int} : $\alpha \in \mathbb{Z} \Leftrightarrow_{tol} \alpha \in \mathbb{Z} + [-\epsilon_{int}, \epsilon_{int}]$, e.g., $0.9999999 =_{tol} 1$.
- Feasibility tolerance ϵ_{feas} : $a^T x \leq b \Leftrightarrow_{tol} \dots$

Absolute: $a^T x - b \le \epsilon_{feas}$ Relative: $\frac{a^T x - b}{|b|} \le \epsilon_{feas}$

MIP solvers use numerical tolerances, typically in the range 10^{-6} to 10^{-9} :

- Integrality tolerance ϵ_{int} : $\alpha \in \mathbb{Z} \Leftrightarrow_{tol} \alpha \in \mathbb{Z} + [-\epsilon_{int}, \epsilon_{int}]$, e.g., $0.9999999 =_{tol} 1$.
- Feasibility tolerance ϵ_{feas} : $a^T x \leq b \Leftrightarrow_{tol} \dots$

MIP solvers use numerical tolerances, typically in the range 10^{-6} to 10^{-9} :

- Integrality tolerance ϵ_{int} : $\alpha \in \mathbb{Z} \Leftrightarrow_{tol} \alpha \in \mathbb{Z} + [-\epsilon_{int}, \epsilon_{int}]$, e.g., $0.9999999 =_{tol} 1$.
- Feasibility tolerance ϵ_{feas} : $a^T x \leq b \Leftrightarrow_{tol} \dots$

• LP tolerances for dual feasibility, barrier convergence, ...

Note: not invariant under scaling!

Hope:

Optimal solution with small residual errors is close to an exact optimal solution without violations.

But really: exact solution to a perturbed problem

Sources of numerical issues: large big-M's

Example:

min x	min x
s.t. $\mathbf{x} \ge 1$	s.t. $\mathbf{x} \ge 1$
$\mathbf{x} \leq 10^6 \mathbf{y}$	10^{-6} x \leq y
$\mathbf{y} \in \{0,1\}$	$m{y}\in\{0,1\}$

Assuming an absolute tolerance of 10^{-6} , we have that:

- x = 1, y = 0 feasible in the scaled problem w.r.t. tolerances, but infeasible in the original
- $x = 1, y = 10^{-6}$ feasible in both, the scaled and original problem w.r.t. tolerances
- but when you fix y = 0 and reoptimize, the result will be infeasible
- x = y = 1 is exactly feasible

Sources of numerical issues: in MINLP solving

- Approximating convex functions by cutting planes can yield near-parallel rows in the LP and ill-conditioned basis matrices.
- Relaxations of nonconvex constraints over large domains can yield bad coefficients.

...

1. Introduction

2. Floating-point arithmetic and MIP tolerances

3. Some guidelines and tools

4. Iterative refinement for LP

5. Solving MIPs exactly

Some guidelines

- Good input, good output
 - Scale data to avoid extreme values: absolute and relative look at which units to use, e.g. ratio of largest to smallest coefficient $\leq 10^6$ in any row and column
 - Ensure that tolerances make sense relative to the input data.
 - Round insignificant, tiny data values to zero
 - Avoid using truncated or single-precision data

Some guidelines

- Good input, good output
 - Scale data to avoid extreme values: absolute and relative look at which units to use, e.g.
 - ratio of largest to smallest coefficient $\leq 10^6$ in any row and column
 - Ensure that tolerances make sense relative to the input data.
 - Round insignificant, tiny data values to zero
 - Avoid using truncated or single-precision data
- Modelling and solving
 - Try different scaling parameters
 - Try to avoid large big-M's
 - If you don't have a reasonable M, use indicator or SOS constraints
 - If the objective is a hierarchical combination of multiple objective: try a sequential approach (akin to the ϵ -constraint method)

Some guidelines

- Good input, good output
 - Scale data to avoid extreme values: absolute and relative look at which units to use, e.g.
 - ratio of largest to smallest coefficient $\leq 10^6$ in any row and column
 - Ensure that tolerances make sense relative to the input data.
 - Round insignificant, tiny data values to zero
 - Avoid using truncated or single-precision data
- Modelling and solving
 - Try different scaling parameters
 - Try to avoid large big-M's
 - If you don't have a reasonable M, use indicator or SOS constraints
 - If the objective is a hierarchical combination of multiple objective: try a sequential approach (akin to the ϵ -constraint method)
- Note: Poor scaling and imprecise input are **neither necessary nor sufficient** for numerical problems.

Tools: a posteriori

SCIP> checksol				
check best solut	ion			
solution is feas	ible	in original	problem	
Violation		absolute	relative	
bounds		3.18000e-10	3.18000e-10	
integrality		3.18000e-10		
LP rows		1.47428e-09	1.47428e-09	
constraints		1.47428e-09	1.47428e-09	

Tools: a priori

Running HiGHS 1.7.2 (git hash: 8fce6250c): Copyright (c) 2024 HiGHS under MIT licence terms Number of PL entries in BOUNDS section is 45 LP mwe has 4203 rows; 194 cols; 23776 nonzeros Coefficient ranges: Matrix [1e-09, 1e+07] Cost [8e-02, 2e+00] Bound [1e+03, 1e+06] RHS [1e-13, 4e+11] WARNING: Problem has excessively large bounds or RHS: consider scaling the bounds and RHS down by at least 1e+2, or setting option user_bound_scale to -6 or less

Tools: check solver log during optimization

Warning: Model contains large matrix coefficient range Consider reformulating model or setting NumericFocus parameter to avoid numerical issues. Warning: Markowitz tolerance tightened to 0.5 Warning: switch to quad precision Numeric error Numerical trouble encountered Restart crossover... Sub-optimal termination Warning: ... variables dropped from basis Warning: unscaled primal violation = ... and residual = ... Warning: unscaled dual violation = ... and residual = ...

Tools: condition numbers

• Condition number κ of a matrix:

bounds how error in the right-hand side can propagate to the solution vector

Tools: condition numbers

• Condition number κ of a matrix:

bounds how error in the right-hand side can propagate to the solution vector

• For the simplex method: large κ of basis matrices indicates larger errors in the LP solutions

Tools: condition numbers

• Condition number κ of a matrix:

bounds how error in the right-hand side can propagate to the solution vector

- For the simplex method: large κ of basis matrices indicates larger errors in the LP solutions
- For LP-based branch and bound: can compute or sample a "MIP-κ" / "attention level" / ...as a weighted average of encountered LP-κ's

Numerical information – Xpress final report	Fight Shipping Tool
glass4 with default scaling:	
Numerical issues encountered:	
Dual failures : 3410 out of 508042 (ratio: 0.0067)	
Singular bases : 18 out of 372616 (ratio: 0.0000)	
Nodes kappa stable : 0 (ratio: 0.0000)	
Nodes kappa suspicious : 0 (ratio: 0.0000)	
Nodes kappa unstable : 260 (ratio: 0.0008)	
Nodes kappa ill-posed : 307910 (ratio: 0.9992)	
Largest kappa seen : 5.166264e+22	
Kappa attention level : 0.9994	
glass4 with SCALING=227 [scale big-M rows]	
Dual failures : 682 out of 521681 (ratio: 0.0012)	
Singular bases : A out of 401059 (ratio: 0.0000)	
Nodes kappa stable · 240271 (ratio: 0.9744)	
Nodes kappa stable . 2403/1 (Idt10. 0.0/44)	
Nodes kappa suspicious . 54412 (Idt10. 0.1252)	
Nodes kappa unstable . 102 (Idt10. 0.0004)	
Largest kappa seen : 1 654603e+12	
Kappa attention level : 0.0014	

Gurobi's model analyzer

Gurobi Model Analyzer

III Conditioning Explainer

- Ouick Start Guide
 - Introduction
 - Running the Explainer
 - Interpreting the Output
 - Suggested Usage Quick Start
- Advanced Usage Guide
 - Introduction
 - Interpreting the Explainer Output
 - Additional Function Arguments
- API Reference
 - gurobi modelanalyzer.kappa explain()

Xpress's solution refiner

Goal: reduce or remove primal, dual and integrality violations in incumbents and final solution by some of

- performing extra simplex iterations
- recomputing in quad precision
- pushing fractional integer variables out of the basis when possible
- performing additional branches to force integer variables to integer values
- fixing integer variables and solve remaining LP

BestSoln Sols Active Depth Time Node RestRound Gap GInf 197 0.28% 15183 85668 15227 15725 8 19 0 3 З 15220-67819 0.24% 200 15183.85668 Search completed *** Time: 253 *** 4 Nodes: Number of integer feasible solutions found is 8 Best integer solution found is 15183.85668 Best bound is 15183,85668 Refining MIP solution (1.116e-06 fractionality 3.617e-05 abs infeasiblity) 253 15183.86782 15183.85668 10 0.00% 0 Refined MIP solution (0.0 fractionality 9.890e-07 abs infeasiblity)

MIP-DD: A Delta-Debugger for MIP

Goal: try to reproduce unwanted behavior in a MIP solver, e.g., a numerical issue, on a significantly smaller and easier to analyze MIP

- inspired by **delta debugging** heavily used in the SAT and SMT community (Zeller 1999, Brummayer and Biere 2009, Niemetz and Biere 2013, Kaufmann and Biere 2022, Paxian and Biere 2023)
- very successful in increasing the number of bug fixes in the last SCIP releases
- open-source package MIP-DD available at github.com/scipopt/mip-dd
- for details see Hoen, Kampp, G. 2024: "MIP-DD: A Delta Debugger for Mixed Integer Programming Solvers", arxiv.org/abs/2405.19770v1

1. Introduction

2. Floating-point arithmetic and MIP tolerances

3. Some guidelines and tools

4. Iterative refinement for LP

5. Solving MIPs exactly

Recall

Basic solution: primal-dual

• W.l.o.g. let rank(A) = m < n and consider the computational form

 $\min\{c^T x \mid Ax = b, x \ge 0\} = \max\{y^T b \mid y^T A \le c, y \text{ free }\}$

• For every vertex there is a non-singular $m \times m$ sub-matrix B of A

$$A = B \qquad N$$

• and the corresponding basic solution is given by

$$x_B = B^{-1}b, \qquad x_N = 0, \qquad y^T = c_B^T B^{-1}$$

- In practice: do not compute inverse, but solve linear systems $Bx_B = b$ and $B^T y = c_B$ by factorization B = LU
- Floating-point arithmetic results in residual errors $\hat{b} = b Bx_B \neq 0$ and $\hat{c} = c_B B^T y \neq 0$.

Iterative refinement for linear systems

(Wilkinson 1963, Ursic and Patarra 1983, Wan 2006, Pan 2011, Saunders et al. 2011)

- Drop subscript $x_B \rightsquigarrow x$ and suppose we want to solve Bx = b
- Idea: compute corrector solution \hat{x} by using residual error as the right-hand side

Hybrid precision method: fast floating-point arithmetic (for linear system solve) + slower extended-precision or rational arithmetic (for residual computation and correction)

(G., Steffy, Wolter 2012, 2016, 2020)

 $P: \min c^{T}x$ s.t. Ax = b $x \ge \ell$

(G., Steffy, Wolter 2012, 2016, 2020)

 x_k, y_k \uparrow $P: \min c^T x$ s.t. Ax = b $x \ge \ell$

$$\hat{b} = b - Ax_k, \hat{\ell} = \ell - x_k, \hat{c} = c - A^T y_k$$

$$\uparrow^{R}$$

$$P: \min \ c^T x$$
s.t. $Ax = b$

$$x > \ell$$

$$\hat{b} = b - Ax_k, \hat{\ell} = \ell - x_k, \hat{c} = c - A^T y_k$$

$$\hat{p} : \min \Delta_k \hat{c}^T x$$

$$\hat{p} : \min c^T x$$
s.t.
$$Ax = b$$

$$x \ge \ell$$

(G., Steffy, Wolter 2012, 2016, 2020)

Hybrid precision method: double precision (for simplex)

+ rational arithmetic (for error computation, correction, rounding, LU)

(Applegate et al. 2007 + G., Steffy, Wolter 2012, 2016, 2020+ ightarrow G., Nicolas-Thouvenin, Eifler 2024)

Hybrid precision method: double + extended precision (for simplex) + rational arithmetic (for error computation, correction, rounding, LU)

From accurate to exact

Method 1: Basis Verification

- compute exact basic solution via rat. LU factorization
- check primal and dual feasibility
- keep refining until optimal

From accurate to exact

Method 1: Basis Verification

- compute exact basic solution via rat. LU factorization
- check primal and dual feasibility
- keep refining until optimal

Method 2: Output-Sensitive Rational Reconstruction

- round approximate solution by continued fractions approximation
- check primal and dual feasibility and complementary slackness
- increase denominator bound as residual errors decrease

From accurate to exact

Method 1: Basis Verification

- compute exact basic solution via rat. LU factorization
- check primal and dual feasibility
- keep refining until optimal

Method 2: Output-Sensitive Rational Reconstruction

- round approximate solution by continued fractions approximation
- check primal and dual feasibility and complementary slackness
- increase denominator bound as residual errors decrease

Can prove **oracle-polynomial running time** under some assumptions on the fp solver: Exact solution reached after a polynomial number of refinements

- Method 1: $O((m^2 \langle \mathsf{A} \rangle + \langle b, c, \ell \rangle + n^2))$
- Method 2: $O(\max\{\log D, m^2 \langle A \rangle\})$

Implemented in the open-source solver SoPlex: github.com/scipopt/soplex

LP iterative refinement in industry

- Iterative refinement for solving linear systems in LP solvers is a standard technique to deal with ill-conditioned basis matrices,
- but also LP iterative refinement has been implemented with quad precision instead of rational arithmetic:

see

community.fico.com/s/blog-post/ a5Q2E000000cDPaUAM/fico2199

1. Introduction

2. Floating-point arithmetic and MIP tolerances

3. Some guidelines and tools

4. Iterative refinement for LP

5. Solving MIPs exactly

From exact LP to exact MIP

Hybrid-precision branch and bound (Cook, Koch, Steffy, Wolter 2013). Uses floating-point + directed rounding + rational arithmetic.

Exact SCIP: Hybrid-precision branch-and-bound plus ...

- primal repair heuristics (Eifler, G. 2022)
- rational presolving through PaPILO (G. Gottwald, Hoen 2023)
- propagation and dual proof analysis (Borst, Eifler, G. 2024)
- MIR cuts (Eifler, G. 2024)
- certificates (Cheung, G., Steffy 2017)

Available at github.com/scipopt/scip/tree/exact-rational.