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Floating-point arithmetic
Virtually all MIP solvers are built on double-precision floating-point arithmetic (IEEE754):

• Real numbers stored as (−1)sign · 1.fraction · 2exponent−1023

• enough to represent about 15 digits⇝ round-off errors afterwards, e.g.
1

3
=fp 0.3333333333333333148296 . . .

3, 000, 000 · 1
3
− 1, 000, 000 =fp 0.00000000148296 . . .

3, 000, 000, 000, 000 · 1
3
− 1, 000, 000, 000, 000 =fp 0.00148296 . . .
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Feasibility and optimality in floating-point solvers
MIP solvers use numerical tolerances, typically in the range 10−6 to 10−9:
• Integrality tolerance ϵint : α ∈ Z ⇔tol α ∈ Z+ [−ϵint, ϵint], e.g., 0.9999999 =tol 1.

• Feasibility tolerance ϵfeas : aTx ≤ b⇔tol . . .

Absolute: aTx− b ≤ ϵfeas

Relative: aTx− b
|b| ≤ ϵfeas (problematic for |b| ≈ 0)

Mixed (SCIP): aTx− b
max{|b|, 1} ≤ ϵfeas

• LP tolerances for dual feasibility, barrier convergence, …
Note: not invariant under scaling!

6 / 26



Feasibility and optimality in floating-point solvers
MIP solvers use numerical tolerances, typically in the range 10−6 to 10−9:
• Integrality tolerance ϵint : α ∈ Z ⇔tol α ∈ Z+ [−ϵint, ϵint], e.g., 0.9999999 =tol 1.
• Feasibility tolerance ϵfeas : aTx ≤ b⇔tol . . .

Absolute: aTx− b ≤ ϵfeas

Relative: aTx− b
|b| ≤ ϵfeas (problematic for |b| ≈ 0)

Mixed (SCIP): aTx− b
max{|b|, 1} ≤ ϵfeas

• LP tolerances for dual feasibility, barrier convergence, …
Note: not invariant under scaling!

6 / 26



Feasibility and optimality in floating-point solvers
MIP solvers use numerical tolerances, typically in the range 10−6 to 10−9:
• Integrality tolerance ϵint : α ∈ Z ⇔tol α ∈ Z+ [−ϵint, ϵint], e.g., 0.9999999 =tol 1.
• Feasibility tolerance ϵfeas : aTx ≤ b⇔tol . . .

Absolute: aTx− b ≤ ϵfeas

Relative: aTx− b
|b| ≤ ϵfeas

(problematic for |b| ≈ 0)

Mixed (SCIP): aTx− b
max{|b|, 1} ≤ ϵfeas

• LP tolerances for dual feasibility, barrier convergence, …
Note: not invariant under scaling!

6 / 26



Feasibility and optimality in floating-point solvers
MIP solvers use numerical tolerances, typically in the range 10−6 to 10−9:
• Integrality tolerance ϵint : α ∈ Z ⇔tol α ∈ Z+ [−ϵint, ϵint], e.g., 0.9999999 =tol 1.
• Feasibility tolerance ϵfeas : aTx ≤ b⇔tol . . .

Absolute: aTx− b ≤ ϵfeas

Relative: aTx− b
|b| ≤ ϵfeas (problematic for |b| ≈ 0)

Mixed (SCIP): aTx− b
max{|b|, 1} ≤ ϵfeas

• LP tolerances for dual feasibility, barrier convergence, …
Note: not invariant under scaling!

6 / 26



Feasibility and optimality in floating-point solvers
MIP solvers use numerical tolerances, typically in the range 10−6 to 10−9:
• Integrality tolerance ϵint : α ∈ Z ⇔tol α ∈ Z+ [−ϵint, ϵint], e.g., 0.9999999 =tol 1.
• Feasibility tolerance ϵfeas : aTx ≤ b⇔tol . . .

Absolute: aTx− b ≤ ϵfeas

Relative: aTx− b
|b| ≤ ϵfeas (problematic for |b| ≈ 0)

Mixed (SCIP): aTx− b
max{|b|, 1} ≤ ϵfeas

• LP tolerances for dual feasibility, barrier convergence, …
Note: not invariant under scaling!

6 / 26



Feasibility and optimality in floating-point solvers

Hope:
Optimal solution with small residual errors is
close to an exact optimal solution without violations.

But really: exact solution to a perturbed problem

exact solution good case bad case
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Sources of numerical issues: large big-M’s

Example:

min x
s.t. x ≥ 1

x ≤ 106y
y ∈ {0, 1}

min x
s.t. x ≥ 1

10−6x ≤ y
y ∈ {0, 1}

Assuming an absolute tolerance of 10−6, we have that:
• x = 1, y = 0 feasible in the scaled problem w.r.t. tolerances, but infeasible in the original
• x = 1, y = 10−6 feasible in both, the scaled and original problem w.r.t. tolerances
• but when you fix y = 0 and reoptimize, the result will be infeasible
• x = y = 1 is exactly feasible
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Sources of numerical issues: in MINLP solving

• Approximating convex functions by
cutting planes can yield near-parallel
rows in the LP and ill-conditioned
basis matrices.

• Relaxations of nonconvex constraints
over large domains can yield bad
coefficients.

• …
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Some guidelines
• Good input, good output

• Scale data to avoid extreme values: absolute and relative
look at which units to use, e.g.
ratio of largest to smallest coefficient ≤ 106 in any row and column

• Ensure that tolerances make sense relative to the input data.
• Round insignificant, tiny data values to zero
• Avoid using truncated or single-precision data

• Modelling and solving
• Try different scaling parameters
• Try to avoid large big-M’s
• If you don’t have a reasonable M, use indicator or SOS constraints
• If the objective is a hierarchical combination of multiple objective:
try a sequential approach (akin to the ϵ-constraint method)

• Note: Poor scaling and imprecise input are neither necessary nor sufficient
for numerical problems.
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Tools: a posteriori
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Tools: a priori
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Tools: check solver log during optimization
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Tools: condition numbers
• Condition number κ of a matrix:
bounds how error in the right-hand side can propagate to the solution vector

• For the simplex method: large κ of basis matrices indicates larger errors in the LP solutions
• For LP-based branch and bound: can compute or sample a “MIP-κ” / “attention level” / …as
a weighted average of encountered LP-κ’s
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Gurobi’s model analyzer
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Xpress’s solution refiner
Goal: reduce or remove primal, dual and integrality violations
in incumbents and final solution by some of
• performing extra simplex iterations
• recomputing in quad precision
• pushing fractional integer variables out of the basis when possible
• performing additional branches to force integer variables to integer values
• fixing integer variables and solve remaining LP
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MIP-DD: A Delta-Debugger for MIP

Goal: try to reproduce unwanted behavior in a MIP solver, e.g., a numerical issue, on a
significantly smaller and easier to analyze MIP
• inspired by delta debugging heavily used in the SAT and SMT community (Zeller 1999,
Brummayer and Biere 2009, Niemetz and Biere 2013, Kaufmann and Biere 2022, Paxian and
Biere 2023)

• very successful in increasing the number of bug fixes in the last SCIP releases
• open-source package MIP-DD available at github.com/scipopt/mip-dd

• for details see Hoen, Kampp, G. 2024: “MIP-DD: A Delta Debugger for Mixed Integer
Programming Solvers”, arxiv.org/abs/2405.19770v1
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Recall

• In practice: do not compute inverse, but solve
linear systems BxB = b and BTy = cB by factorization B = LU

• Floating-point arithmetic results in
residual errors b̂ = b− BxB ̸= 0 and ĉ = cB − BTy ̸= 0.
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Iterative refinement for linear systems
(Wilkinson 1963, Ursic and Patarra 1983, Wan 2006, Pan 2011, Saunders et al. 2011)

• Drop subscript xB ⇝ x and suppose we want to solve Bx = b
• Idea: compute corrector solution x̂ by using residual error as the right-hand side

Bx = b

xk Ax = b̂

x̂

b̂ = b− Axk

xk+1 = xk + x̂

Hybrid precision method: fast floating-point arithmetic (for linear system solve)
+ slower extended-precision or rational arithmetic (for residual computation and correction)
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Iterative refinement for linear programs
(G., Steffy, Wolter 2012, 2016, 2020)

P : min cTx
s. t. Ax = b

x ≥ ℓ

xk, yk P̂ : min ∆kĉTx
s. t. Ax = ∆kb̂

x ≥ ∆kℓ̂

x̂, ŷ

b̂ = b− Axk, ℓ̂ = ℓ− xk, ĉ = c− ATyk

xk+1 = xk + 1
∆k
x̂, yk+1 = yk + 1

∆k
ŷ

∆k → ∞
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Iterative refinement for linear programs
(G., Steffy, Wolter 2012, 2016, 2020)
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b̂ = b− Axk, ℓ̂ = ℓ− xk, ĉ = c− ATyk
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Hybrid precision method: double precision (for simplex)
+ rational arithmetic (for error computation, correction, rounding, LU)
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Boosted Iterative refinement for linear programs
(Applegate et al. 2007 + G., Steffy, Wolter 2012, 2016, 2020+→ G., Nicolas-Thouvenin, Eifler 2024)

P : min cTx
s. t. Ax = b

x ≥ ℓ

xk, yk P̂ : min ∆kĉTx
s. t. Ax = ∆kb̂

x ≥ ∆kℓ̂

x̂, ŷ
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xk+1 = xk + 1
∆k
x̂, yk+1 = yk + 1

∆k
ŷ

∆k → ∞

max

max

Hybrid precision method: double + extended precision (for simplex)
+ rational arithmetic (for error computation, correction, rounding, LU)
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From accurate to exact
Method 1: Basis Verification
• compute exact basic solution via rat. LU factorization
• check primal and dual feasibility
• keep refining until optimal

Method 2: Output-Sensitive Rational Reconstruction
• round approximate solution by continued fractions approximation
• check primal and dual feasibility and complementary slackness
• increase denominator bound as residual errors decrease

B

Can prove oracle-polynomial running time under some assumptions on the fp solver:
Exact solution reached after a polynomial number of refinements
• Method 1: O((m2⟨A⟩+ ⟨b, c, ℓ⟩+ n2))
• Method 2: O(max{logD,m2⟨A⟩})

Implemented in the open-source solver SoPlex: github.com/scipopt/soplex
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LP iterative refinement in industry

• Iterative refinement for solving linear
systems in LP solvers is a standard
technique to deal with ill-conditioned
basis matrices,

• but also LP iterative refinement has
been implemented with quad precision
instead of rational arithmetic:

• see
community.fico.com/s/blog-post/
a5Q2E000000cDPaUAM/fico2199
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From exact LP to exact MIP

Hybrid-precision branch and bound (Cook, Koch, Steffy, Wolter 2013).

Uses floating-point + directed rounding + rational arithmetic.
25 / 26



Exact SCIP: Hybrid-precision branch-and-bound plus …

• primal repair heuristics
(Eifler, G. 2022)

• rational presolving through PaPILO
(G. Gottwald, Hoen 2023)

• propagation and dual proof
analysis (Borst, Eifler, G. 2024)

• MIR cuts (Eifler, G. 2024)
• certificates (Cheung, G., Steffy 2017)

Available at github.com/scipopt/scip/tree/exact-rational.
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