Aspects of MIP Modelling

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin University of Applied Sciences

Grötschel's Problem Solving Cycle in Modern Applied Mathematics

• Modelling is the first and recurring step in solving a real-world problem.

Modelling as an art?

 "Art is a lie that makes us realize truth." (Picasso, Cocteau, Camus, ...)

- A mathematical model is also a lie that helps us to see particular aspects of a problem:
 - by selecting, ignoring, simplifying, emphasizing, weighting, ...
- This is also a creative process.
- Like art, mathematical modelling is also a craft:
 - Can learn tools and skills: some of them today!

Agenda

- Building a model
- 0/1 vs general integer, assignment formulations
- TSP example
- Combinatorial Constraints
- Indicator Constraints
- How not to do it
- Concluding remarks

Building a model

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin University of Applied Sciences

What is modelling?

- Describing a particular situation using a collection of logical and mathematical relationships.
- In Optimization:

• ...

- An objective function is used to evaluate alternative solutions.
- Constraints define the alternative solutions that are feasible for the situation under consideration.
- Why do we build models?
 - To capture essential aspects
 - Reality is too detail: simplify
 - To evaluate what-if scenarios
 - Experimentation or simulation might not be possible

- Think about what is important to the situation and the problem considered
- An abstraction of the complete problem
- Simplification of the problem can yield tractable problems and interpretable solutions

- Identify the problem
 - Can be abstract or real world
 - Single out a concrete question

- Identify the important features
 - Define this problem in mathematical and logical notation
 - Never forget that your model is an abstraction of reality

- Transfer the mathematical problem formulation to a model
 - Make use of available modelling tools
 - direct coding via API or modeling language
 - Think about alternative formulations

- Employ tools to solve the mathematical model
 - In our case, typically a MIP solver
 - Check validity of solution in practice

- Deployment:
 - Design a procedure to implement the solution
 - This is where a lot of OR projects fail!

The model building CYCLE

• FEEDBACK is crucial

- Each stage helps refine the previous stages
- The modelling process aids the understanding of the problem.
- The problem understanding develops and the solution approach becomes clearer.

Example: Knapsack

A burglar has a knapsack with 15kg capacity and breaks into a house with the following items: 1kg worth 2000€, 1kg worth 1000€, 2kg worth 2000 €, 4kg worth 10000€, 12kg worth 4000 €

- What are the variables? What are the constraints? What is the objective?
 - Variables: $x_i \in \{0,1\}$: Do I take item i?
 - Constraint: Must not exceed capacity: $x_1 + x_2 + 2x_3 + 4x_4 + 12x_5 \le 15$
 - Objective: Maximize revenue: max $2x_1 + x_2 + 2x_3 + 10x_4 + 4x_5$
- Final model:
 - max $2x_1 + x_2 + 2x_3 + 10x_4 + 4x_5$ s.t. $x_1 + x_2 + 2x_3 + 4x_4 + 12x_5 \le 15$ $x_i \in \{0,1\}$

General integers and other variable types

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin

Binaries or integer variables?

- Rule of thumb
 - Use general integers whenever they represent actual quantities and ordering is important
 - Whenever integers represent just "some different values", use binaries instead
- Example: Sudoku

8			6			9		5
				2		3	1	
		7	3	1	8		6	
2	4						7	3
		2	7	9		1		
5				8			3	6
		3						

Naive approach: Use 81 integer variables $1 \le y_i \le 9$ And then...?

Sudoku as graph coloring

- Each number corresponds to a color, each cell to a vertex.
 - 9 binaries per cell: x_{ijk}
 - Exactly one color: $\sum_k x_{ijk} = 1 \ \forall i, j$
- Edges when two cells must not have the same color/number, e.g., $x_{1,1,1} + x_{1,2,1} \le 1$
 - Can do better and add clique equations: $\sum_{j} x_{ijk} = 1 \ \forall i, k$
- Sudoku corresponds to the question: Is there a feasible 9-coloring of a partially colored graph with 27 9-cliques?

2	4	7	8	6	3	1	9	5
9	3	8	2	1	5	7	6	4
1	5	6	4	7	9	8	2	3
3	6	5	9	4	7	2	1	8
7	2	4	1	3	8	6	5	9
8	1	9	6	5	2	4	3	7
5	8	3	7	2	1	9	4	6
6	7	2	3	9	4	5	8	1
4	9	1	5	8	6	3	7	2

Assignment structure

maximize 0 subject to $\sum_{v=1}^{9} x_{vrc} = 1 \text{ for } r, c \in [1, 9]$ $\sum_{r=1}^{9} x_{vrc} = 1 \text{ for } v, c \in [1, 9]$ $\sum_{r=1}^{9} x_{vrc} = 1 \text{ for } v, r \in [1, 9]$ $\sum_{r=3p-2}^{3p} \sum_{c=3q-2}^{3q} x_{vrc} = 1 \text{ for } v \in [1, 9] \text{ and } p, q \in [1, 3]$

8			6			9		5
				2		3	1	
		7	3	1	8		6	
2	4						7	3
		2	7	9		1		
5				8			3	6
		3						

- Important concept: Assignment structure
 - Assignment problem: Given costs c_{ij} for assigning object i to person j
 - min $\sum_{i,j} c_{ij} x_{ij}$ s.t. $\sum_i x_{ij} = 1$ $\sum_j x_{ij} = 1$
 - Easy, but a common substructure in other problems

Many variants, similar models

- X-Sudoku
- 16x16-Sudoku
- 3D-Sudoku

	8					2	1	
			2	8				7
				5	3	9		
6				9				
	4	9		1	6	7		
8		3					5	
4	6	2						
9					2			6
				4		1		2

1				3		F				9			7		
3		6	9		А			1	7	4	5	8		С	F
	В	F	4		6	8	С	Е	2		D	А	3		9
		8	С		4	5		F					2		E
	8	3		D		9				С	в	1	Е	2	
D			в	F	3	G	2		1	7			8		С
	1	7	6		в			G		8	Е				
А		С		Е	1		8			D	F		4	7	
С	4	D	1		G	Е				В	7				
	G	В	А				3		С		2			Е	7
		5	3	9	2		7	D			G			В	4
		1	2	Ŭ,	~										
		E	2		-		В		8	F	A		1	6	3
9		E	2		2		В	6	8	F 2	A 8		1 C	6 G	3
9		E	2		5	2	В	6	8	F 2	A 8	F	1 C	6 G 4	3
9		E A G	2		5	2	В	6 7	8	F 2 5	A 8	F	1 C	6 G 4	3 1 A

- Ensaimada
- Killer-Sudoku
- Comparison-Sudoku

ľ	10			17	ľ		1	10
	23	1	t	t	+	t	1	t
	1	t	t	t	15	t	23	1
14	1	17	1		1	F	1	
	21	20	-	1	t	9	14	-
-	1	t	19	+	20	t	t	25
	13	10	t	1	t	19	1	1
				Г		L		1
22			17			3		1

Many choices in modelling

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin

TSP - the most famous optimization problem?

- TSP: Given a complete graph G = (V, E) and distances c_{ij} for all $(i, j) \in E$:
 - Find a Hamiltonian cycle (tour) of minimum length.
- Classical MIP formulation:
 - $\min \sum c_e y_e$ s.t. $\sum_{e \in \delta(v)} y_e = 2$ for all $v \in V$ $\sum_{e \in \delta(S)} y_e \ge 2$ for all $S \subseteq V, S \neq \emptyset$ $y_e \in \{0,1\}$
- Highly efficient special pupose codes
 - Concorde

TSP - Miller Tucker Zemlin formulation (1960)

- Consider G as directed graph with arcs (ij) and (ji) between all $i, j \in V$. Use variables
 - y_{ij} whether (*ij*) is part of the tour
 - u_i for the number of nodes visited before i
- Model:

•

$$\begin{split} \min \sum c_{ij} y_{ij} \\ \text{s.t. } \sum_{(i,j) \in \delta^-(j)} y_{ij} &= 1 \text{ for all } j \in V \\ \sum_{(i,j) \in \delta^+(i)} y_{ij} &= 1 \text{ for all } i \in V \\ u_1 &= 0 \\ u_i - u_j + (n-1) y_{ij} \leq n-2 \text{ for all } (i,j) \in A, j \neq 1 \\ 1 \leq u_i \leq n-1 \text{ for all } i \in \tilde{V} \coloneqq V \setminus \{1\} \\ y_{ij} \in \{0,1\} \\ u_i \in \mathbb{Z}_{\geq 0} \end{split}$$

TSP – Vyve Wolsey formulation (2006)

- Now, interpret TSP as fixed charge network design problem
 - delivering one unit of flow from source node to each other node
 - For each city $l \in V$, define neighborhood $l \in V_1 \subseteq V$ (typically k nearest nodes)
 - Introduce variables w_{ij}^l for flow to city l on arc (i, j)

$$\begin{split} \min \sum c_{ij} y_{ij} & \sum_{(i,j) \in \delta^{-}(j)} y_{ij} = 1 \text{ for all } j \in V \\ \sum_{(i,j) \in \delta^{+}(i)} y_{ij} = 1 \text{ for all } i \in V \\ u_{1} = 0 \\ u_{i} - u_{j} + (n-1)y_{ij} \leq n-2 \\ \text{ for all } (i,j) \in A, j \neq 1 \\ 1 \leq u_{i} \leq n-1 \text{ for all } i \in \tilde{V} \\ y_{ij} \in \{0,1\}, u_{i} \in \mathbb{Z}_{\geq 0} \end{split}$$

$$\begin{split} \Sigma_{(i,j) \in \delta^{-}(l)} w_{il}^{l} - \sum_{(i,j) \in \delta^{+}(l)} w_{li}^{l} = 1 \\ \text{ for all } l \in \tilde{V} \\ \Sigma_{(i,j) \in \delta^{-}(j)} w_{ij}^{l} - \sum_{(i,j) \in \delta^{+}(l)} w_{ji}^{l} = 0 \\ \text{ for all } l \in \tilde{V}, j \in V_{l}, j \neq l \\ 0 \leq w_{ij}^{l} \leq y_{ij} \\ \text{ for all } l \in \tilde{V}, (i,j) \in A(V_{l}) \cup \delta^{-}(V_{l}) \\ \end{split}$$

 \tilde{V}

Many different variations (Achterberg et al 2008)

- Vyve-Wolsey strengthens Miller-Tucker-Zemlin: It gives a better LP bound
- In the following, we consider redundant changes, that do not change the LP bound (or the set of integer optimal solutions)
- Yet, they can have a huge effect on solver performance

- Relaxations (that remove redundant constraints):
 - Remove upper bounds on u_i
 - Equality in the flow conservation constraints can be ommited: $\sum_{(i,l)\in\delta^{-}(l)} w_{il}^{l} - \sum_{(i,l)\in\delta^{+}(l)} w_{li}^{l} \ge 1$ $\sum_{(i,j)\in\delta^{-}(j)} w_{ij}^{l} - \sum_{(i,j)\in\delta^{+}(j)} w_{ji}^{l} \ge 0$

Many different variations II

- Additional restrictions, some of which, the solver can figure out itself
 - E.g., fixing w_{ij}^l with $(i, j) \in \delta^+(V_l)$ to zero
- Others lead to huge reductions (e.g., changing flow constraints to inequality)
- 64 cases, which fall into three clusters w.r.t. problem size (minor variations still occur)
 - Some solve in seconds, others not in a day

Conclusions from (Achterberg et al. 2008)

- "very important to precisely state the model formulation when reporting computational results. Otherwise reproducibility will be difficult to achieve."
- "the intractability of a specific formulation of a model using a specific solver does not necessary imply that the model in general is intractable."
- "might be useful to identify solving strategies that are likely to be independent of the specific formulation."
 - "One candidate in this regard clearly is the branching strategy. The strategy used in SCIP, while considerably slower in the best case than CPLEX, has a much smaller dependency on the formulation."
 - "As a first step, we have proposed the notion of implicit integer variables"

Logical constraints

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Logical Constraints

• For binary resultant r and operators x_i

•
$$r = AND(x_1, \dots, x_n)$$
: $r = 1 \Leftrightarrow x_1 = \dots = x_n = 1$

•
$$r = OR(x_1, \dots, x_n)$$
 : $r = 1 \Leftrightarrow \exists i: x_i = 1$

•
$$r = XOR(x_1, ..., x_n)$$
: $r = 1 \Leftrightarrow |i: x_i = 1|$ is odd

- Relatively common constructs in modelling
- Easy to linearize
 - Or are they?

Advantages

- Convenient for modelling
 - Supported by many languages and solver interfaces
 - Together with MIN, MAX, ABS constraints
- Solver might decide dynamically how to linearize them
- Solver might use constraint specific presolving techniques
 - $r = AND(x, y, z), z = AND(a, b) \Rightarrow r = AND(x, y, a, b)$
- Higher-level formulation might give additional structural insights that can be exploited

Linearizing AND constraints

- $\sum_{i=1}^{n} x_i r \le n-1$
- $x_i r \ge 0$ for all $i \in \{1, \dots, n\}$
- Strong relaxation
 - n+1 linear constraints
 - Only integral vertices (green)

- $\sum_{i=1}^{n} x_i r \le n-1$
- $\sum_{i=1}^{n} x_i nr \ge 0$
- Weak relaxation
 - 2 linear constraints
 - Contains fractional vertices (red)

Domain propagation

- There are four propagation rules for AND constraints
 - 1. $r = 1 \rightarrow x_i = 1$ for all i
 - 2. $x_i = 1$ for all $i \rightarrow r = 1$
 - 3. $\exists i: x_i = 0 \rightarrow r = 0$
 - 4. r = 0 and $x_i = 1 \forall i \in \{1, \dots, n\} \setminus \{j\} \rightarrow x_j = 0$
- Do we lose information by using a linearization?
 - Rule 1 is enforced by $\sum_{i=1}^{n} x_i nr \ge 0$ or by all $x_i r \ge 0$
 - Rule 2 is enforced by $\sum_{i=1}^{n} x_i r \le n-1$
 - Rule 3 is enforced by $\sum_{i=1}^{n} x_i nr \ge 0$ or by $x_i r \ge 0$
 - Rule 4 is enforced by $\sum_{i=1}^{n} x_i r \le n-1$
- Not necessarily, but can slow down the LP.

Indicator constraints

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Indicator Constraints

- Model If-then relations
- Most simple form: If (x==1) then y==0 with x binary, y continuous
 - Often written as $x \rightarrow y = 0$
 - x is called the indicator variable
- General form: Indicator for constraints $x_0 \rightarrow a^T x \leq b$
 - Constraint is enforced when $x_0 = 1$, relaxed otherwise
- Used to model that subsets of constraints have to hold
- Or for adding penalty terms when certain constraints do not hold
- The same indicator variable can be used in different indicator constraints to model different scenarios

Indicator Constraints: big-M formulation

- Take indicator constraints $y \rightarrow a^T x \leq b$
- Linearize as $a^T x \leq b + (1 y)M$
 - Requires careful choice of M
 - E.g. $M = max(a^Tx b)$, but with user knowledge, much smaller values might be feasible
 - Too small *M* might lead to solutions being cut off
- Propagation, theoretically the same, but numerically it might be different...
 - Big-M formulations are known to be numerically cumbersome
 - For $y \le 1000000x$, $x \in \{0,1\}$, the solution x = 0.0000001, y = 1 is feasible (and "integer")
- Indicator formulation often solve slower because information is not present in the LP relaxation
- Choose your big-Ms wisely!!! Try both variants, indicators and big-Ms

Some caveats

Ambros Gleixner HTW Berlin & ZIB

Making assumptions what structure a MIP solver can recognize

- MIP solvers are great at making deductions from single constraints or pairs of constraints
 - Less so from a specific combinatorial structure that is implicitly captured in hundreds of constraints
 - The solver will, e.g., detect a single-layer network flow structure, but not necessarily further layers or dependencies.
- You as a modeler are the "structure" expert, try passing information to the solver

Destroying structure that is there

- Often, hard to prove optimality for symmetric models
 - If possible, choose a non-symmetric formulation
- MIP solvers employ sophisticated methods to handle symmetries
- Breaking them by hand ("I fixed a few of the decisions") might do more harm than good
 - Also, it increases the risk of making a non-obvious error

Some conclusions

Ambros Gleixner HTW Berlin & ZIB

What does a good model look like?

- Compact is not always better
 - There are huge models (>1M variables) that solve in seconds and small (<50 variables) that do not solve in days
- Ideally, the LP optimum should be close to the integer optimum (tight formulation)
- Small number of fractionals in the LP solution is a plus
- Fixing variables should have an impact on other variables (not too many degrees of freedom)
- Keep numerics under control: not too large span of coefficients
 - Not more than six orders of magnitudes for single row/column
 - Not more than nine over the whole model
- Try to avoid big-M formulations

Things to keep in mind

- The first modelling attempt often is infeasible or unbounded
 - MIP solvers are typically super fast in detecting those "trivial" errors
- The "second" attempt often produces unsatisfying solutions
 - Might violate some implicit constraints that were forgotten in the model
- MIP solvers prefer extremal solutions
 - Customers often do not
 - Most often, there are alternative optima
 - Or solutions almost as good that might fulfill some robustness considerations

Things to keep in mind

- Try to stress-test your model
 - Do the solutions for corner cases make sense?
 - Always ensure your solutions are at least two-opt.
- A solution is only always optimal (or [in]feasible) w.r.t. your model
 - ...and the data that was fed into your model
 - Slight violations might still be tolerable in practice
 - Often enough solving to exact optimality is not required (e.g., due to inaccurate data)
- Be prepared for a pushback

Thank you! Questions?

Ambros Gleixner HTW Berlin & ZIB

und Wirtschaft Berlin University of Applied Sciences

