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* Modelling is the first and recurring step in solving a real-world problem.



Modelling as an art?

« “Artis a lie that makes us realize truth.”
(Picasso, Cocteau, Camus, ...)

« A mathematical model is also a lie that helps us to see particular aspects of a problem:
* by selecting, ignoring, simplifying, emphasizing, weighting, ...

* This is also a creative process.

* Like art, mathematical modelling is also a craft:
» Can learn tools and skills: some of them today!
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What is modelling?

 Describing a particular situation using a collection of logical and mathematical
relationships.
* In Optimization:
* An objective function is used to evaluate alternative solutions.
« Constraints define the alternative solutions that are feasible for the situation under
consideration.
« Why do we build models?
« To capture essential aspects

Reality is too detail: simplify

To evaluate what-if scenarios

Experimentation or simulation might not be possible



The model building process

* Think about what is important to the situation
and the problem considered

« An abstraction of the complete problem

 Simplification of the problem can yield tractable
problems and interpretable solutions




The model building process

* |dentify the problem
» Can be abstract or real world
+ Single out a concrete question

Recognise the problem

l

Formulate the problem

1

Build a model

1

Find a solution

l

Establish a procedure

|




The model building process

* |dentify the important features
* Define this problem in mathematical and logical notation
» Never forget that your model is an abstraction of reality

Recognise the problem

l

Formulate the problem
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Build a model

l

Find a solution

l

Establish a procedure
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The model building process

» Transfer the mathematical problem formulation to a model
* Make use of available modelling tools
» direct coding via APl or modeling language
 Think about alternative formulations

Recognise the problem

1

Formulate the problem

l

Build a model

l

Find a solution

l

Establish a procedure
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The model building process

* Employ tools to solve the mathematical model
* Inour case, typically a MIP solver
+ Check validity of solution in practice

Recognise the problem

1

Formulate the problem

l

Build a model

l

Find a solution

1

Establish a procedure
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The model building process

« Deployment:
 Design a procedure to implement the solution
 This is where a lot of OR projects faill

Recognise the problem

l

Formulate the problem

l

Build a model

l

Find a solution

l

Establish a procedure
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The model building CYCLE

« FEEDBACK is crucial
 Each stage helps refine the previous stages

* The modelling process aids the understanding
of the problem.

* The problem understanding develops and the
solution approach becomes clearer.

Recognise the problem

l

Formulate the problem

l

A

Build a model

l

A

Find a solution

l

Establish a procedure
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Example: Knapsack

A burglar has a knapsack with 15kg capacity and breaks into a house with the following items:
Tkg worth 2000€, Tkg worth T000€, 2kg worth 2000 €, 4kg worth 10000€, 12kg worth 4000 €
* What are the variables? What are the constraints? What is the objective?

 Variables: x; € {0,1}: Do | take item i?

« Constraint: Must not exceed capacity: x; + x, + 2x3 + 4x, + 12x5 < 15

+ Objective: Maximize revenue: max 2x; + x5, + 2x3 + 10x, + 4x5

* Final model:

°* max 2xqy + xy + 2x3 + 10x, + 4x5
st xq+xy + 2x3+4x, + 12x5 < 15
xiE {0,1}



General integers and
other variable types
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Binaries or integer variables?

 Rule of thumb
» Use general integers whenever they represent actual quantities and ordering is important
* Whenever integers represent just ,some different values®, use binaries instead

» Example: Sudoku

8 6 9 5
2 3(1 .
71317118 6 Naive approach:
Use 81 integer variables 1 < y; <9

21 73 And then...?

21719 1
5 8 3|6

3




Sudoku as graph coloring

« Each number corresponds to a color,
each cell to a vertex.

* 9 binaries per cell: x;
* Exactly one color: Y x;jx = 1 Vi, j

« Edges when two cells must not have the
same color/number, e.g., x; 11 + X121 <1

« Can do better and add clique equations:

ijijk =1 Vl,k

» Sudoku corresponds to the question: Is
there a feasible 9-coloring of a partially
colored graph with 27 9-cliques?
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Assignment structure

0 3

maximize

9
subject to Y zype = 1 for r,e € [1,9]

v=1
9
ST Zyre =1 for v, ¢ € [1,9] 7
e 2 | 4
" Zyre = 1 for v,r € [1, 9]
c=§ip 3q 2
Y zyre=1forwve 1,9 and p,q € [1, 3]

r=3p—2 c=3q—2 5

* Important concept: Assignment structure
* Assignment problem: Given costs c;; for assigning object i to person j
© minY; ; C;jX;
st Xix; =1
2jxij =1
* Easy, but a common substructure in other problems



Many variants, similar models

X-Sudoku
16x16-Sudoku
3D-Sudoku

Ensaimada

Killer-Sudoku

Comparison-Sudoku




Many choices in
modelling
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TSP - the most famous optimization problem?

« TSP: Given a complete graph ¢ = (V, E) and
distances c;; for all (i, ) € E:

- Find a Hamiltonian cycle (tour)
of minimum length.

e Classical MIP formulation:

* min}ceye
St YeeswyYe = 2 forallvev
Yeess)Ye =2 forallScV,s+9¢

ye € {0,1}

 Highly efficient special pupose codes

« Concorde




TSP - Miller Tucker Zemlin formulation (1960)

 Consider G as directed graph with arcs (ij) and (ji) between all i, j € V. Use variables
* y;; Whether (ij) is part of the tour
* u; for the number of nodes visited before i

« Model:
°© min}c;;yi;
st Xijpes-hYiy =1 foralljev

i jest@ Vij =1 forallieV
u =0
u—u+(m—1)y;; <n-—2forall(i,j) €4,j#1
1<u;, <n-—1foralli eV :=V\{1}
yij € {0,1}
U; € Zxg



TSP - Vyve Wolsey formulation (2006)

* Now, interpret TSP as fixed charge network design problem
* delivering one unit of flow from source node to each other node
 For each city I € V, define neighborhood [ € V; € V (typically k nearest nodes)
* Introduce variables w for flow to city L on arc (i, j)

min ».c;;y;; 2(i1)es (D) wi — 2(Li)es () wy; = 1

st Xajes-(jYi =1 foralljev for aII leV

Z(i;j)ES"'(i) Yij = 1 forallieV 2(11)66 () Wl] 2(11)66"’(1) ji — 0

u; =0 forallleV,jeV,j+1
w—u+m—-1Dy;<n-2 OSWilijij

forall(i,j)) €A,j#1 foralll e V,(i,j) € A(WV) U8~ (V)

1<uy;<n-—1forallieV
yij € {O,l},ll,i € ZEO



Many different variations (Achterberg et al 2008)

Vyve-Wolsey strengthens Miller-Tucker-Zemlin: It gives a better LP bound

In the following, we consider redundant changes, that do not change the LP bound (or the
set of integer optimal solutions)

Yet, they can have a huge effect on solver performance

Relaxations (that remove redundant constraints):
* Remove upper bounds on u;
+ Equality in the flow Conservation constraints can be ommited:
Yines-m Wi~ Lapes+o Wi = 1

Y nes-) Wi — 2 es+(y Wi = 0



Many different variations Il

 Additional restrictions, some of which, the solver can figure out itself
- E.g., fixing wj; with (i, ) € 6% (V) to zero
« Others lead to huge reductions (e.g., changing flow constraints to inequality)

64 cases, which fall into three clusters w.r.t. problem size (minor variations still occur)
« Some solve in seconds, others not in a day



Conclusions from (Achterberg et al. 2008)

« “very important to precisely state the model formulation when reporting computational
results. Otherwise reproducibility will be difficult to achieve.”

* “the intractability of a specific formulation of a model using a specific solver does not
necessary imply that the model in general is intractable.”

* "'might be useful to identify solving strategies that are likely to be independent of the
specific formulation.”

+ “One candidate in this regard clearly is the branching strategy. The strategy used in
SCIP, while considerably slower in the best case than CPLEX, has a much smaller
dependency on the formulation.”

» “As a first step, we have proposed the notion of implicit integer variables”



Logical constraints
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Logical Constraints

 For binary resultant r and operators x;
s r=AND(xq, ...,xp)  r=10x,==x,=1
cr=0R(xq, ....,x,) r=1e3i:x;=1

1 =XOR(xq, ..., xy) ;v =1& |i:x; = 1] is odd

 Relatively common constructs in modelling

» Easy to linearize
« Or are they?



Advantages

Convenient for modelling
 Supported by many languages and solver interfaces
» Together with MIN, MAX, ABS constraints

Solver might decide dynamically how to linearize them

Solver might use constraint specific presolving techniques
 r=AND(x,y,z), z=AND(a,b) > r = AND(x,y,a,b)

Higher-level formulation might give additional structural insights that can be exploited



Linearizing AND constraints

| /,f
| st
T P /’/ /
[ A
/" // //’l
s | // 2
// : // -~ Jf
f/ /f;k:\ii .?’/
V- ~ /
‘/ ~
e Y ixi—r<n-—1 c Yiixi—r<n-1
« x;—r=>0forallie{1,..,n} e Yt x;—nr=0
« Strong relaxation « Weak relaxation
* n+1 linear constraints « 2 linear constraints

* Only integral vertices (green) - Contains fractional vertices (red)



Domain propagation

» There are four propagation rules for AND constraints
1. r=1 ->x;=1foralli
2 x;=1foralli-r=1
.o 3i:x;=0->r=0
4. r=0andx; =1Vvie€ {1,..,n}]\{j} - x; =0

« Do we lose information by using a linearization?
* Rule Tisenforced by ¥ ;x; —nr=0orbyallx; —r>0
* Rule 2isenforced by ¥ ;x; —r<n-1
* Rule 3isenforced by Y yx; —nr =0o0rbyx; —r=0
* Rule 4isenforced by Yiv;x; —r<n-—1

* Not necessarily, but can slow down the LP.



Indicator constraints
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Indicator Constraints

Model If-then relations

Most simple form: If (x==1) then y==0 with x binary, y continuous
« Often writtenas x » y =0
* X is called the indicator variable

General form: Indicator for constraints x, = a’x < b
 Constraint is enforced when x, = 1, relaxed otherwise

Used to model that subsets of constraints have to hold

Or for adding penalty terms when certain constraints do not hold

The same indicator variable can be used in different indicator constraints to model different
scenarios



Indicator Constraints: big-M formulation

Take indicator constraints y - a’x < b

Linearizeasa’x < b+ (1 — y)M
* Requires careful choice of M
« E.g. M = max(a’x — b), but with user knowledge, much smaller values might be feasible
» Too small M might lead to solutions being cut off

Propagation, theoretically the same, but numerically it might be different...
* Big-M formulations are known to be numerically cumbersome
« Fory <1000000x, x € {0,1}, the solution x = 0.0000001,y = 1 is feasible (and ,integer”)

Indicator formulation often solve slower because information is not present in the LP
relaxation

Choose your big-Ms wisely!ll Try both variants, indicators and big-Ms



Some caveats
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Making assumptions what structure a MIP solver can recognize

« MIP solvers are great at making deductions from single constraints or pairs of constraints

* Less so from a specific combinatorial structure that is implictly captured in hundreds of
constraints

« The solver will, e.g., detect a single-layer network flow structure, but not necessarily
further layers or dependencies.

* You as a modeler are the ,structure” expert, try passing information to the solver



Destroying structure that is there

 Often, hard to prove optimality for symmetric models
* If possible, choose a non-symmetric formulation

« MIP solvers employ sophisticated methods to handle symmetries

 Breaking them by hand (,! fixed a few of the decisions”) might do
more harm than good

* Also, it increases the risk of making a non-obvious error



Some conclusions
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What does a good model look like?

Compact is not always better

 There are huge models (>1M variables) that solve in seconds and small (<50 variables)
that do not solve in days

Ideally, the LP optimum should be close to the integer optimum (tight formulation)

Small number of fractionals in the LP solution is a plus

Fixing variables should have an impact on other variables (not too many degrees of freedom)

Keep numerics under control: not too large span of coefficients
» Not more than six orders of magnitudes for single row/column
« Not more than nine over the whole model

Try to avoid big-M formulations



Things to keep in mind

» The first modelling attempt often is infeasible or unbounded
* MIP solvers are typically super fast in detecting those ,trivial” errors

* The ,second” attempt often produces unsatisfying solutions
* Might violate some implicit constraints that were forgotten in the model

* MIP solvers prefer extremal solutions
+ Customers often do not
+ Most often, there are alternative optima
+ Or solutions almost as good that might fulfill some robustness considerations



Things to keep in mind

* Try to stress-test your model
Do the solutions for corner cases make sense?
« Always ensure your solutions are at least two-opt.

- A solution is only always optimal (or [in]feasible) w.r.t. your model
+ ...and the data that was fed into your model
- Slight violations might still be tolerable in practice
- Often enough solving to exact optimality is not required (e.g., due to inaccurate data)

* Be prepared for a pushback



Thank you! Questions?
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