Aspects of MIP Modelling

Ambros Gleixner HTW Berlin & ZIB

und Wirtschaft Berlin **University of Applied Sciences**

 \bullet

Grötschel's Problem Solving Cycle in Modern Applied Mathematics

• Modelling is the first and recurring step in solving a real-world problem.

Modelling as an art?

• "Art is a lie that makes us realize truth." (Picasso, Cocteau, Camus, …)

- A mathematical model is also a lie that helps us to see particular aspects of a problem:
	- by selecting, ignoring, simplifying, emphasizing, weighting, …
- This is also a creative process.
- Like art, mathematical modelling is also a craft:
	- Can learn tools and skills: some of them today!

Agenda

- Building a model
- 0/1 vs general integer, assignment formulations
- TSP example
- Combinatorial Constraints
- Indicator Constraints
- How not to do it
- Concluding remarks

Building a model

Ambros Gleixner HTW Berlin & ZIB

und Wirtschaft Berlin

 \bullet

What is modelling?

- Describing a particular situation using a collection of logical and mathematical relationships.
- In Optimization:

• …

- An objective function is used to evaluate alternative solutions.
- Constraints define the alternative solutions that are feasible for the situation under consideration.
- Why do we build models?
	- To capture essential aspects
	- Reality is too detail: simplify
	- To evaluate what-if scenarios
	- Experimentation or simulation might not be possible

- Think about what is important to the situation and the problem considered
- An abstraction of the complete problem
- Simplification of the problem can yield tractable problems and interpretable solutions

- Identify the problem
	- Can be abstract or real world
	- Single out a concrete question

- Identify the important features
	- Define this problem in mathematical and logical notation
	- Never forget that your model is an abstraction of reality

- Transfer the mathematical problem formulation to a model
	- Make use of available modelling tools
		- direct coding via API or modeling language
	- Think about alternative formulations

- Employ tools to solve the mathematical model
	- In our case, typically a MIP solver
	- Check validity of solution in practice

- Deployment:
	- Design a procedure to implement the solution
	- This is where a lot of OR projects fail!

The model building CYCLE

• FEEDBACK is crucial

- Each stage helps refine the previous stages
- The modelling process aids the understanding of the problem.
- The problem understanding develops and the solution approach becomes clearer.

Example: Knapsack

A burglar has a knapsack with 15kg capacity and breaks into a house with the following items: 1kg worth 2000€, 1kg worth 1000€, 2kg worth 2000 €, 4kg worth 10000€, 12kg worth 4000 €

- What are the variables? What are the constraints? What is the objective?
	- Variables: $x_i \in \{0,1\}$: Do I take item i?
	- Constraint: Must not exceed capacity: $x_1 + x_2 + 2x_3 + 4x_4 + 12x_5 \leq 15$
	- Objective: Maximize revenue: max $2x_1 + x_2 + 2x_3 + 10x_4 + 4x_5$
- Final model:
	- max $2x_1 + x_2 + 2x_3 + 10x_4 + 4x_5$ s.t. $x_1+x_2 + 2x_3 + 4x_4 + 12x_5 \le 15$ $x_i \in \{0,1\}$

General integers and other variable types

Ambros Gleixner HTW Berlin & ZIB

Hochschule für Technik und Wirtschaft Berlin

Binaries or integer variables?

- Rule of thumb
	- Use general integers whenever they represent actual quantities and ordering is important
	- Whenever integers represent just "some different values", use binaries instead
- Example: Sudoku

Naive approach: Use 81 integer variables $1 \le y_i \le 9$ And then...?

Sudoku as graph coloring

- Each number corresponds to a color, each cell to a vertex.
	- 9 binaries per cell: x_{iik}
	- Exactly one color: $\sum_k x_{ijk} = 1 \ \forall i, j$
- Edges when two cells must not have the same color/number, e.g., $x_{1,1,1} + x_{1,2,1} \le 1$
	- Can do better and add clique equations: $\sum_i x_{ijk} = 1 \; \forall i, k$
- Sudoku corresponds to the question: Is there a feasible 9-coloring of a partially colored graph with 27 9-cliques?

Assignment structure

maximize Ω maximize 0

subject to $\sum_{v=1}^{9} x_{vrc} = 1$ for $r, c \in [1, 9]$
 $\sum_{r=1}^{9} x_{vrc} = 1$ for $v, c \in [1, 9]$
 $\sum_{c=1}^{9} x_{vrc} = 1$ for $v, r \in [1, 9]$
 $\sum_{r=3p}^{3p} \sum_{r=3q-2}^{3q} x_{vrc} = 1$ for $v \in [1, 9]$ and $p, q \in [1, 3]$

- Important concept: Assignment structure
	- Assignment problem: Given costs c_{ij} for assigning object *i* to person *j*
	- min $\sum_{i,j} c_{ij} x_{ij}$ s.t. $\sum_i x_{ii} = 1$ $\sum_i x_{ij} = 1$
	- Easy, but a common substructure in other problems

Many variants, similar models

- X-Sudoku
- 16x16-Sudoku
- 3D-Sudoku

- Ensaimada
- Killer-Sudoku
- Comparison-Sudoku

Many choices in modelling

Ambros Gleixner HTW Berlin & ZIB

und Wirtschaft Berlin

University of Applied Sciences

 \bullet

TSP - the most famous optimization problem?

- TSP: Given a complete graph $G = (V, E)$ and distances c_{ij} for all $(i, j) \in E$:
	- Find a Hamiltonian cycle (tour) of minimum length.
- Classical MIP formulation:
	- min $\sum c_e y_e$ s.t. $\sum_{e \in \delta(v)} y_e = 2$ for all $v \in V$ $\sum_{e \in \delta(S)} y_e \geq 2$ for all $S \subseteq V, S \neq \emptyset$ $y_e \in \{0,1\}$
- Highly efficient special pupose codes
	- Concorde

TSP - Miller Tucker Zemlin formulation (1960)

- Consider G as directed graph with arcs (ij) and (ji) between all $i, j \in V$. Use variables
	- y_{ij} whether (ij) is part of the tour
	- $\cdot \;\: u_i$ for the number of nodes visited before i
- Model:

\n- \n
$$
\min \sum c_{ij} y_{ij}
$$
\n s.t. \n $\sum_{(i,j) \in \delta^-(j)} y_{ij} = 1$ \n for all $j \in V$ \n $\sum_{(i,j) \in \delta^+(i)} y_{ij} = 1$ \n for all $i \in V$ \n $u_1 = 0$ \n $u_i - u_j + (n-1)y_{ij} \leq n-2$ \n for all $(i,j) \in A, j \neq 1$ \n $1 \leq u_i \leq n-1$ \n for all $i \in V := V \setminus \{1\}$ \n $y_{ij} \in \{0,1\}$ \n $u_i \in \mathbb{Z}_{\geq 0}$ \n
\n

TSP - Vyve Wolsey formulation (2006)

- Now, interpret TSP as fixed charge network design problem
	- delivering one unit of flow from source node to each other node
	- For each city $l \in V$, define neighborhood $l \in V_l \subseteq V$ (typically k nearest nodes)
	- Introduce variables w_{ij}^l for flow to city l on arc (i, j)

$$
\min \sum c_{ij} y_{ij}
$$
\n
$$
\sum_{(i,j)\in\delta^{-}(j)} w_{ij}^{l} = 1 \text{ for all } j \in V
$$
\n
$$
\sum_{(i,j)\in\delta^{+}(i)} y_{ij} = 1 \text{ for all } i \in V
$$
\n
$$
\sum_{(i,j)\in\delta^{+}(i)} y_{ij} = 1 \text{ for all } i \in V
$$
\n
$$
\sum_{(i,j)\in\delta^{+}(i)} w_{ij}^{l} - \sum_{(i,j)\in\delta^{+}(i)} w_{ji}^{l} = 0
$$
\n
$$
u_{1} = 0 \qquad \text{for all } l \in \tilde{V}, j \in V_{l}, j \neq l
$$
\n
$$
u_{i} - u_{j} + (n - 1)y_{ij} \le n - 2 \qquad 0 \le w_{ij}^{l} \le y_{ij}
$$
\n
$$
1 \le u_{i} \le n - 1 \text{ for all } i \in \tilde{V}
$$
\n
$$
y_{ij} \in \{0,1\}, u_{i} \in \mathbb{Z}_{\ge 0}
$$
\n
$$
\text{for all } i \in \tilde{V}
$$

 V_l , $j \neq l$

Many different variations (Achterberg et al 2008)

- Vyve-Wolsey strengthens Miller-Tucker-Zemlin: It gives a better LP bound
- In the following, we consider redundant changes, that do not change the LP bound (or the set of integer optimal solutions)
- Yet, they can have a huge effect on solver performance

- Relaxations (that remove redundant constraints):
	- Remove upper bounds on u_i
	- Equality in the flow conservation constraints can be ommited: $\sum_{(i,l)\in\delta^-(l)} w_{il}^l - \sum_{(i,l)\in\delta^+(l)} w_{li}^l \ge 1$
		- $\sum_{(i,j)\in\delta^-(j)} w_{ij}^l \sum_{(i,j)\in\delta^+(j)} w_{ji}^l \ge 0$

Many different variations II

- Additional restrictions, some of which, the solver can figure out itself
	- E.g., fixing w_{ij}^l with $(i, j) \in \delta^+(V_l)$ to zero
- Others lead to huge reductions (e.g., changing flow constraints to inequality)
- 64 cases, which fall into three clusters w.r.t. problem size (minor variations still occur)
	- Some solve in seconds, others not in a day

Conclusions from (Achterberg et al. 2008)

- "very important to precisely state the model formulation when reporting computational results. Otherwise reproducibility will be difficult to achieve."
- "the intractability of a specific formulation of a model using a specific solver does not necessary imply that the model in general is intractable."
- "might be useful to identify solving strategies that are likely to be independent of the specific formulation."
	- "One candidate in this regard clearly is the branching strategy. The strategy used in SCIP, while considerably slower in the best case than CPLEX, has a much smaller dependency on the formulation."
	- "As a first step, we have proposed the notion of implicit integer variables"

Logical constraints

Ambros Gleixner HTW Berlin & ZIB

htuu Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

 \bullet

Logical Constraints

• For binary resultant r and operators x_i

•
$$
r = \text{AND}(x_1, ..., x_n) : r = 1 \Leftrightarrow x_1 = ... = x_n = 1
$$

•
$$
r = \text{OR}(x_1, ..., x_n)
$$
 : $r = 1 \Leftrightarrow \exists i : x_i = 1$

•
$$
r = XOR(x_1, ..., x_n) : r = 1 \Leftrightarrow |i : x_i = 1|
$$
 is odd

- Relatively common constructs in modelling
- Easy to linearize
	- Or are they?

Advantages

- Convenient for modelling
	- Supported by many languages and solver interfaces
	- Together with MIN, MAX, ABS constraints
- Solver might decide dynamically how to linearize them
- Solver might use constraint specific presolving techniques
	- $r = AND(x, y, z), z = AND(a, b) \Rightarrow r = AND(x, y, a, b)$
- Higher-level formulation might give additional structural insights that can be exploited

Linearizing AND constraints

- $\sum_{i=1}^{n} x_i r \leq n-1$
- $x_i r \ge 0$ for all $i \in \{1, ..., n\}$
- Strong relaxation
	- n+1 linear constraints
	- Only integral vertices (green)

- $\sum_{i=1}^{n} x_i r \leq n-1$
- $\sum_{i=1}^{n} x_i nr \ge 0$
- Weak relaxation
	- 2 linear constraints
	- Contains fractional vertices (red)

Domain propagation

- There are four propagation rules for AND constraints
	- 1. $r = 1 \rightarrow x_i = 1$ for all i
	- 2. $x_i = 1$ for all $i \rightarrow r = 1$
	- 3. $\exists i: x_i = 0 \rightarrow r = 0$
	- 4. $r = 0$ and $x_i = 1 \forall i \in \{1, ..., n\} \setminus \{j\} \rightarrow x_j = 0$
- Do we lose information by using a linearization?
	- Rule 1 is enforced by $\sum_{i=1}^{n} x_i nr \ge 0$ or by all $x_i r \ge 0$
	- Rule 2 is enforced by $\sum_{i=1}^{n} x_i r \leq n-1$
	- Rule 3 is enforced by $\sum_{i=1}^{n} x_i nr \ge 0$ or by $x_i r \ge 0$
	- Rule 4 is enforced by $\sum_{i=1}^{n} x_i r \leq n-1$
- Not necessarily, but can slow down the LP.

Indicator constraints

Ambros Gleixner HTW Berlin & ZIB

 \bullet

Indicator Constraints

- Model If-then relations
- Most simple form: If $(x==1)$ then $y==0$ with x binary, y continuous
	- Often written as $x \rightarrow y = 0$
	- x is called the indicator variable
- General form: Indicator for constraints $x_0 \to a^T x \leq b$
	- Constraint is enforced when $x_0 = 1$, relaxed otherwise
- Used to model that subsets of constraints have to hold
- Or for adding penalty terms when certain constraints do not hold
- The same indicator variable can be used in different indicator constraints to model different scenarios

Indicator Constraints: big-M formulation

- Take indicator constraints $y \to a^T x \leq b$
- Linearize as $a^T x \leq b + (1 y)M$
	- Requires careful choice of M
	- E.g. $M = max(a^T x b)$, but with user knowledge, much smaller values might be feasible
	- \cdot Too small M might lead to solutions being cut off
- Propagation, theoretically the same, but numerically it might be different...
	- Big-M formulations are known to be numerically cumbersome
	- For $y \le 1000000x$, $x \in \{0,1\}$, the solution $x = 0.0000001$, $y = 1$ is feasible (and "integer")
- Indicator formulation often solve slower because information is not present in the LP relaxation
- Choose your big-Ms wisely!!! Try both variants, indicators and big-Ms

Some caveats

Ambros Gleixner HTW Berlin & ZIB

 \bullet

Making assumptions what structure a MIP solver can recognize

- MIP solvers are great at making deductions from single constraints or pairs of constraints
	- Less so from a specific combinatorial structure that is implictly captured in hundreds of constraints
	- The solver will, e.g., detect a single-layer network flow structure, but not necessarily further layers or dependencies.
- You as a modeler are the "structure" expert, try passing information to the solver

Destroying structure that is there

- Often, hard to prove optimality for symmetric models
	- If possible, choose a non-symmetric formulation
- MIP solvers employ sophisticated methods to handle symmetries
- Breaking them by hand ("I fixed a few of the decisions") might do more harm than good
	- Also, it increases the risk of making a non-obvious error

Some conclusions

Ambros Gleixner HTW Berlin & ZIB

 \bullet

What does a good model look like?

- Compact is not always better
	- There are huge models (>1M variables) that solve in seconds and small (<50 variables) that do not solve in days
- Ideally, the LP optimum should be close to the integer optimum (tight formulation)
- Small number of fractionals in the LP solution is a plus
- Fixing variables should have an impact on other variables (not too many degrees of freedom)
- Keep numerics under control: not too large span of coefficients
	- Not more than six orders of magnitudes for single row/column
	- Not more than nine over the whole model
- Try to avoid big-M formulations

Things to keep in mind

- The first modelling attempt often is infeasible or unbounded
	- MIP solvers are typically super fast in detecting those "trivial" errors
- The "second" attempt often produces unsatisfying solutions
	- Might violate some implicit constraints that were forgotten in the model
- MIP solvers prefer extremal solutions
	- Customers often do not
	- Most often, there are alternative optima
	- Or solutions almost as good that might fulfill some robustness considerations

Things to keep in mind

- Try to stress-test your model
	- Do the solutions for corner cases make sense?
	- Always ensure your solutions are at least two-opt.
- A solution is only always optimal (or [in]feasible) w.r.t. your model
	- ...and the data that was fed into your model
	- Slight violations might still be tolerable in practice
	- Often enough solving to exact optimality is not required (e.g., due to inaccurate data)
- Be prepared for a pushback

Thank you! Questions?

Ambros Gleixner HTW Berlin & ZIB

University of Applied Sciences

 \bullet

