
Aspects of
MIP Modelling

Ambros Gleixner

HTW Berlin & ZIB

• Modelling is the first and recurring step in solving a real-world problem.

• “Art is a lie that makes us realize truth.”
(Picasso, Cocteau, Camus, …)

• A mathematical model is also a lie that helps us to see particular aspects of a problem:

• by selecting, ignoring, simplifying, emphasizing, weighting, …

• This is also a creative process.

• Like art, mathematical modelling is also a craft:

• Can learn tools and skills: some of them today!

• Building a model

• 0/1 vs general integer, assignment formulations

• TSP example

• Combinatorial Constraints

• Indicator Constraints

• How not to do it

• Concluding remarks

Building a model
Ambros Gleixner

HTW Berlin & ZIB

• Describing a particular situation using a collection of logical and mathematical
relationships.

• In Optimization:

• An objective function is used to evaluate alternative solutions.

• Constraints define the alternative solutions that are feasible for the situation under
consideration.

• Why do we build models?

• To capture essential aspects

• Reality is too detail: simplify

• To evaluate what-if scenarios

• Experimentation or simulation might not be possible

• …

• Think about what is important to the situation
and the problem considered

• An abstraction of the complete problem

• Simplification of the problem can yield tractable
problems and interpretable solutions

• Identify the problem

• Can be abstract or real world

• Single out a concrete question

• Identify the important features

• Define this problem in mathematical and logical notation

• Never forget that your model is an abstraction of reality

• Transfer the mathematical problem formulation to a model

• Make use of available modelling tools

• direct coding via API or modeling language

• Think about alternative formulations

• Employ tools to solve the mathematical model

• In our case, typically a MIP solver

• Check validity of solution in practice

• Deployment:

• Design a procedure to implement the solution

• This is where a lot of OR projects fail!

• FEEDBACK is crucial

• Each stage helps refine the previous stages

• The modelling process aids the understanding
of the problem.

• The problem understanding develops and the
solution approach becomes clearer.

A burglar has a knapsack with 15kg capacity and breaks into a house with the following items:
1kg worth 2000€, 1kg worth 1000€, 2kg worth 2000 €, 4kg worth 10000€, 12kg worth 4000 €

• What are the variables? What are the constraints? What is the objective?

• Variables: xi ∈ {0,1}: Do I take item i?

• Constraint: Must not exceed capacity: 𝑥1 + 𝑥2 + 2𝑥3 + 4𝑥4 + 12𝑥5 ≤ 15

• Objective: Maximize revenue: max 2𝑥1 + 𝑥2 + 2𝑥3 + 10𝑥4 + 4𝑥5

• Final model:

• max 2𝑥1 + 𝑥2 + 2𝑥3 + 10𝑥4 + 4𝑥5
s.t. 𝑥1+𝑥2 + 2𝑥3 + 4𝑥4 + 12𝑥5 ≤ 15

xi∈ {0,1}

General integers and
other variable types
Ambros Gleixner

HTW Berlin & ZIB

• Rule of thumb

• Use general integers whenever they represent actual quantities and ordering is important

• Whenever integers represent just „some different values“, use binaries instead

• Example: Sudoku

Naive approach:
Use 81 integer variables 1 ≤ 𝑦𝑖 ≤ 9
And then...?

• Each number corresponds to a color,
each cell to a vertex.

• 9 binaries per cell: 𝑥𝑖𝑗𝑘

• Exactly one color: σ𝑘 𝑥𝑖𝑗𝑘 = 1 ∀𝑖, 𝑗

• Edges when two cells must not have the
same color/number, e.g., 𝑥1,1,1 + 𝑥1,2,1 ≤ 1

• Can do better and add clique equations:
σ𝑗 𝑥𝑖𝑗𝑘 = 1 ∀𝑖, 𝑘

• Sudoku corresponds to the question: Is
there a feasible 9-coloring of a partially
colored graph with 27 9-cliques?

• Important concept: Assignment structure

• Assignment problem: Given costs 𝑐𝑖𝑗 for assigning object 𝑖 to person 𝑗

• minσ𝑖,𝑗 𝑐𝑖𝑗𝑥𝑖𝑗
s.t. σ𝑖 𝑥𝑖𝑗 = 1

σ𝑗 𝑥𝑖𝑗 = 1

• Easy, but a common substructure in other problems

• X-Sudoku

• 16x16-Sudoku

• 3D-Sudoku

• Ensaimada

• Killer-Sudoku

• Comparison-Sudoku

Many choices in
modelling
Ambros Gleixner

HTW Berlin & ZIB

• TSP: Given a complete graph 𝐺 = (𝑉, 𝐸) and
distances 𝑐𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝐸:

• Find a Hamiltonian cycle (tour)
of minimum length.

• Classical MIP formulation:

• minσ𝑐𝑒𝑦𝑒
s.t. σ𝑒∈𝛿(𝑣) 𝑦𝑒 = 2 for all v ∈ 𝑉

σ𝑒∈𝛿(𝑆) 𝑦𝑒 ≥ 2 for all S ⊆ 𝑉, 𝑆 ≠ ∅

𝑦𝑒 ∈ 0,1

• Highly efficient special pupose codes

• Concorde

• Consider 𝐺 as directed graph with arcs 𝑖𝑗 and (𝑗𝑖) between all 𝑖, 𝑗 ∈ 𝑉. Use variables

• 𝑦𝑖𝑗 whether (𝑖𝑗) is part of the tour

• 𝑢𝑖 for the number of nodes visited before 𝑖

• Model:

• minσ𝑐𝑖𝑗𝑦𝑖𝑗
s.t. σ(𝑖,𝑗)∈𝛿−(𝑗) 𝑦𝑖𝑗 = 1 for all 𝑗 ∈ 𝑉

σ(𝑖,𝑗)∈𝛿+(𝑖) 𝑦𝑖𝑗 = 1 for all i ∈ 𝑉

𝑢1 = 0
𝑢𝑖 − 𝑢𝑗 + 𝑛 − 1 𝑦𝑖𝑗 ≤ 𝑛 − 2 for all 𝑖, 𝑗 ∈ 𝐴, 𝑗 ≠ 1

1 ≤ 𝑢𝑖 ≤ 𝑛 − 1 for all 𝑖 ∈ ෨𝑉 ≔ 𝑉\{1}
𝑦𝑖𝑗 ∈ 0,1

𝑢𝑖 ∈ ℤ≥0

• Now, interpret TSP as fixed charge network design problem

• delivering one unit of flow from source node to each other node

• For each city 𝑙 ∈ 𝑉, define neighborhood 𝑙 ∈ 𝑉𝑙 ⊆ 𝑉 (typically k nearest nodes)

• Introduce variables 𝑤𝑖𝑗
𝑙 for flow to city 𝑙 on arc 𝑖, 𝑗

minσ𝑐𝑖𝑗𝑦𝑖𝑗
s.t. σ(𝑖,𝑗)∈𝛿−(𝑗) 𝑦𝑖𝑗 = 1 for all 𝑗 ∈ 𝑉

σ(𝑖,𝑗)∈𝛿+(𝑖) 𝑦𝑖𝑗 = 1 for all i ∈ 𝑉

𝑢1 = 0
𝑢𝑖 − 𝑢𝑗 + 𝑛 − 1 𝑦𝑖𝑗 ≤ 𝑛 − 2

for all 𝑖, 𝑗 ∈ 𝐴, 𝑗 ≠ 1
1 ≤ 𝑢𝑖 ≤ 𝑛 − 1 for all 𝑖 ∈ ෨𝑉
𝑦𝑖𝑗 ∈ 0,1 , 𝑢𝑖 ∈ ℤ≥0

σ(𝑖,𝑙)∈𝛿−(𝑙)𝑤𝑖𝑙
𝑙 − σ 𝑙,𝑖 ∈𝛿+ 𝑙 𝑤𝑙𝑖

𝑙 = 1

for all 𝑙 ∈ ෨𝑉
σ(𝑖,𝑗)∈𝛿−(𝑗)𝑤𝑖𝑗

𝑙 − σ 𝑖,𝑗 ∈𝛿+ 𝑖 𝑤𝑗𝑖
𝑙 = 0

for all 𝑙 ∈ ෨𝑉, 𝑗 ∈ 𝑉𝑙 , 𝑗 ≠ 𝑙

0 ≤ 𝑤𝑖𝑗
𝑙 ≤ 𝑦𝑖𝑗

for all 𝑙 ∈ ෨𝑉, 𝑖, 𝑗 ∈ 𝐴 𝑉𝑙 ∪ 𝛿− 𝑉𝑙

• Vyve-Wolsey strengthens Miller-Tucker-Zemlin: It gives a better LP bound

• In the following, we consider redundant changes, that do not change the LP bound (or the
set of integer optimal solutions)

• Yet, they can have a huge effect on solver performance

• Relaxations (that remove redundant constraints):

• Remove upper bounds on 𝑢𝑖

• Equality in the flow conservation constraints can be ommited:

σ(𝑖,𝑙)∈𝛿−(𝑙)𝑤𝑖𝑙
𝑙 − σ 𝑖,𝑙 ∈𝛿+ 𝑙 𝑤𝑙𝑖

𝑙 ≥ 1

σ(𝑖,𝑗)∈𝛿−(𝑗)𝑤𝑖𝑗
𝑙 − σ 𝑖,𝑗 ∈𝛿+ 𝑗 𝑤𝑗𝑖

𝑙 ≥ 0

• Additional restrictions, some of which, the solver can figure out itself

• E.g., fixing 𝑤𝑖𝑗
𝑙 with 𝑖, 𝑗 ∈ 𝛿+ 𝑉𝑙 to zero

• Others lead to huge reductions (e.g., changing flow constraints to inequality)

• 64 cases, which fall into three clusters w.r.t. problem size (minor variations still occur)

• Some solve in seconds, others not in a day

• “very important to precisely state the model formulation when reporting computational
results. Otherwise reproducibility will be difficult to achieve.”

• “the intractability of a specific formulation of a model using a specific solver does not
necessary imply that the model in general is intractable.”

• “might be useful to identify solving strategies that are likely to be independent of the
specific formulation.”

• “One candidate in this regard clearly is the branching strategy. The strategy used in
SCIP, while considerably slower in the best case than CPLEX, has a much smaller
dependency on the formulation.”

• “As a first step, we have proposed the notion of implicit integer variables”

Logical constraints

Ambros Gleixner

HTW Berlin & ZIB

• For binary resultant r and operators 𝑥𝑖

• 𝑟 = AND(𝑥1, … , 𝑥𝑛) : 𝑟 = 1 ⇔ 𝑥1 = ⋯ = 𝑥𝑛 = 1

• 𝑟 = OR(𝑥1, … , 𝑥𝑛) : 𝑟 = 1 ⇔ ∃𝑖: 𝑥𝑖 = 1

• 𝑟 = XOR(𝑥1, … , 𝑥𝑛) : 𝑟 = 1 ⇔ |𝑖: 𝑥𝑖 = 1| is odd

• Relatively common constructs in modelling

• Easy to linearize

• Or are they?

• Convenient for modelling

• Supported by many languages and solver interfaces

• Together with MIN, MAX, ABS constraints

• Solver might decide dynamically how to linearize them

• Solver might use constraint specific presolving techniques

• 𝑟 = AND 𝑥, 𝑦, 𝑧 , 𝑧 = AND 𝑎, 𝑏 ⇒ 𝑟 = AND 𝑥, 𝑦, 𝑎, 𝑏

• Higher-level formulation might give additional structural insights that can be exploited

• σ𝑖=1
𝑛 𝑥𝑖 − 𝑟 ≤ 𝑛 − 1

• σ𝑖=1
𝑛 𝑥𝑖 − 𝑛𝑟 ≥ 0

• Weak relaxation

• 2 linear constraints

• Contains fractional vertices (red)

• σ𝑖=1
𝑛 𝑥𝑖 − 𝑟 ≤ 𝑛 − 1

• 𝑥𝑖 − 𝑟 ≥ 0 for all 𝑖 ∈ {1, … , 𝑛}

• Strong relaxation

• n+1 linear constraints

• Only integral vertices (green)

• There are four propagation rules for AND constraints

1. 𝑟 = 1 → 𝑥𝑖 = 1 for all 𝑖

2. 𝑥𝑖 = 1 for all 𝑖 → 𝑟 = 1

3. ∃𝑖: 𝑥𝑖 = 0 → 𝑟 = 0

4. 𝑟 = 0 and 𝑥𝑖 = 1∀𝑖 ∈ {1, … , 𝑛}\{𝑗} → 𝑥𝑗 = 0

• Do we lose information by using a linearization?

• Rule 1 is enforced by σ𝑖=1
𝑛 𝑥𝑖 − 𝑛𝑟 ≥ 0 or by all 𝑥𝑖 − 𝑟 ≥ 0

• Rule 2 is enforced by σ𝑖=1
𝑛 𝑥𝑖 − 𝑟 ≤ 𝑛 − 1

• Rule 3 is enforced by σ𝑖=1
𝑛 𝑥𝑖 − 𝑛𝑟 ≥ 0 or by 𝑥𝑖 − 𝑟 ≥ 0

• Rule 4 is enforced by σ𝑖=1
𝑛 𝑥𝑖 − 𝑟 ≤ 𝑛 − 1

• Not necessarily, but can slow down the LP.

Indicator constraints

Ambros Gleixner

HTW Berlin & ZIB

• Model If-then relations

• Most simple form: If (x==1) then y==0 with x binary, y continuous

• Often written as 𝑥 → 𝑦 = 0

• x is called the indicator variable

• General form: Indicator for constraints 𝑥0 → 𝑎𝑇𝑥 ≤ 𝑏

• Constraint is enforced when 𝑥0 = 1 , relaxed otherwise

• Used to model that subsets of constraints have to hold

• Or for adding penalty terms when certain constraints do not hold

• The same indicator variable can be used in different indicator constraints to model different
scenarios

• Take indicator constraints 𝑦 → 𝑎𝑇𝑥 ≤ 𝑏

• Linearize as 𝑎𝑇𝑥 ≤ 𝑏 + 1 − 𝑦 M

• Requires careful choice of 𝑀

• E.g. M = max(𝑎𝑇𝑥 − 𝑏), but with user knowledge, much smaller values might be feasible

• Too small 𝑀 might lead to solutions being cut off

• Propagation, theoretically the same, but numerically it might be different...

• Big-M formulations are known to be numerically cumbersome

• For 𝑦 ≤ 1000000𝑥, 𝑥 ∈ {0,1}, the solution 𝑥 = 0.0000001, 𝑦 = 1 is feasible (and „integer“)

• Indicator formulation often solve slower because information is not present in the LP
relaxation

• Choose your big-Ms wisely!!! Try both variants, indicators and big-Ms

Some caveats

Ambros Gleixner

HTW Berlin & ZIB

• MIP solvers are great at making deductions from single constraints or pairs of constraints

• Less so from a specific combinatorial structure that is implictly captured in hundreds of
constraints

• The solver will, e.g., detect a single-layer network flow structure, but not necessarily
further layers or dependencies.

• You as a modeler are the „structure“ expert, try passing information to the solver

• Often, hard to prove optimality for symmetric models

• If possible, choose a non-symmetric formulation

• MIP solvers employ sophisticated methods to handle symmetries

• Breaking them by hand („I fixed a few of the decisions“) might do
more harm than good

• Also, it increases the risk of making a non-obvious error

Some conclusions

Ambros Gleixner

HTW Berlin & ZIB

• Compact is not always better

• There are huge models (>1M variables) that solve in seconds and small (<50 variables)
that do not solve in days

• Ideally, the LP optimum should be close to the integer optimum (tight formulation)

• Small number of fractionals in the LP solution is a plus

• Fixing variables should have an impact on other variables (not too many degrees of freedom)

• Keep numerics under control: not too large span of coefficients

• Not more than six orders of magnitudes for single row/column

• Not more than nine over the whole model

• Try to avoid big-M formulations

• The first modelling attempt often is infeasible or unbounded

• MIP solvers are typically super fast in detecting those „trivial“ errors

• The „second“ attempt often produces unsatisfying solutions

• Might violate some implicit constraints that were forgotten in the model

• MIP solvers prefer extremal solutions

• Customers often do not

• Most often, there are alternative optima

• Or solutions almost as good that might fulfill some robustness considerations

• Try to stress-test your model

• Do the solutions for corner cases make sense?

• Always ensure your solutions are at least two-opt.

• A solution is only always optimal (or [in]feasible) w.r.t. your model

• ...and the data that was fed into your model

• Slight violations might still be tolerable in practice

• Often enough solving to exact optimality is not required (e.g., due to inaccurate data)

• Be prepared for a pushback

Thank you! Questions?

Ambros Gleixner

HTW Berlin & ZIB

