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• Example: What is the shortest path from

• Zuse Institute Berlin

• TU Berlin

• Primal Bound: 8.07 km driving route

• Heuristic solution

• Addressing a different objective

• Dual Bound: Bee line: 6.74 km
• https://www.distance.to/

• Gap: 
8.07−6.74

8.07
= 16.48%

https://www.distance.to/




• All representations can be converted into each other:

• min to max: multiply objective vector 𝑐 bei -1

• Equation to inequality: 𝑎𝑖
𝑇𝑥 = 𝑏𝑖 → 𝑎𝑖

𝑇𝑥 ≤ 𝑏𝑖 , −𝑎𝑖
𝑇𝑥 ≤ −𝑏𝑖

• ≤-inequality to ≥-inequality: multiply by -1

• Inequality to equation: Introduce slack variable, 𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 → 𝑎𝑖

𝑇𝑥 + 𝑠𝑖 = 𝑏𝑖

• Unbounded variable to bounded: 𝑥 = 𝑥+ − 𝑥−, 𝑥 ∈ ℝ, 𝑥+, 𝑥− ∈ ℝ≥0

• Bounded to unbounded: Consider bounds as constraints

• LP literature typically uses the standard form min {𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} 

• MIP literature often uses inequalities for the constraints







LP History

Ambros Gleixner

HTW Berlin & ZIB



• In 1827 Fourier described a variable elimination method for linear inequalities, today often 
called Fourier-Motzkin elimination (Motzkin 1936).

• By adding one variable and one inequality, Fourier-Motzkin elimination can be turned into 
an LP solver.

• Who formulated the first LP? 

• The usual credit goes to George J. Stigler (1939)

• Full example:

• 77 foods, 9 nutritients

• Stigler’s heuristic solution 
was 0.7% from optimal



• 1939 L. V. Kantorovitch (1912-1986): Foundations of linear programming 

• 1947 G. B. Dantzig (1914-2005): Invention of the (primal) simplex algorithm

• 1954 C.E. Lemke & E.M.L. Beale: Dual simplex algorithm 

• 1953 G.B. Dantzig, 1954 W. Orchard Hays, and 1954 G. B. Dantzig & W. Orchard Hays: 
Revised simplex algorithm





• The first commercial LP-Code was on the market in 1954 and available on an IBM CPC 
(card programmable calculator)

• Record: 71 variables, 26 constraints, 8 h running time 

• About 1960: LP became commercially viable, used largely by oil companies

• 1972: first commercial IP solver (almost 50 years ago)
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For nice, interactive visualiza-
tions of the 120 regular convex  
polyhedra, check out:
https://polyhedra.tessera.li/

Image source: Wikipedia

https://polyhedra.tessera.li/


• Linear programming lives (for our purposes) in the n-dimensional real vector space.

• polyhedron: intersection of finitely many halfspaces

• P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏}

• polytope: convex hull of finitely many points

• P = conv(V), V a finite set in ℝ𝑛.

• convex polyhedral cone: 
conic combination (i.e., a nonnegative linear combination) of finitely many rays

• K = cone(E), E  a finite set in ℝ𝑛.



• Theorem: For a subset P ⊆ ℝ𝑛 the following are equivalent:

1. 𝑃 is a polyhedron: the intersection of finitely many halfspaces, i.e., there exist a matrix 
A and a vector b with P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏} (outer representation).

2. 𝑃 is the sum of a convex polytope and a finitely generated (polyhedral) cone, i.e., there 
exist finite sets V and E with P = conv(V) + cone(E) (inner representation)



• 𝑃 = 𝑐𝑜𝑛𝑣 0, 𝑒𝑖 𝑃 = 𝑥 𝑥 ≥ 0,σ 𝑥𝑖 ≤ 1}

• Simplex: n+1 points, n+1 inequalities

• 𝑃 = 𝑐𝑜𝑛𝑣 −𝑒𝑖 , 𝑒𝑖 𝑃 = 𝑥 𝑎𝑇𝑥 ≤ 1, ∀ 𝑎 ∈ {−1,1}𝑛}

• Cross polytope: 2n points, 2n inequalities

• 𝑃 = 𝑐𝑜𝑛𝑣 {−1,1}𝑛 𝑃 = 𝑥 𝑎𝑇𝑥 ≤ 1, ∀ 𝑎 ∈ {−𝑒𝑖 , 𝑒𝑖}}

• Cube: 2n points, 2n inequalities

Image source: aliexpress.com

Image source: healingcrystals.com

Image source: naturshop.cz



An n-dimensional polyhedron has the following different faces:

• Vertex (0-dimensional)

• Edge (1-dimensional)

• ...

• Ridge = subfacet (n-2)-dimensional

• Facet (n-1)-dimensional

and each of them is a polyhedron itself!

Source: polyhedra.tessera.li 



Answered by the Farkas-Lemma (1908): 

𝑃 = ∅ ⇔ ∃𝑦 ≥ 0: 𝑦𝑇𝐴 = 0𝑇 , 𝑦𝑇𝑏 < 0𝑇

• i.e., if we can reformulate 𝐴𝑥 ≤ 𝑏 to the trivially wrong statement  0 ≤ 𝑦𝑇𝑏 < 0
by scaling and adding constraints with dual multipliers 𝑦𝑖 .

• Example: 

• This Theorem of Alternatives is the foundation of all important higher-level LP theory: 
duality theorems, complementary slackness, proof of LP optimality, etc.

2𝑥1 + 2𝑥2 ≤ 1
𝑥1 ≥ 1

𝑥2 ≥ 1

2𝑥1 + 2𝑥2 ≤ +1 | ∙ 1 +
−𝑥1 ≤ −1 | ∙ 2 +

−𝑥2 ≤ −1 | ∙ 2 +
0 ≤ −3

Yes, trivially 𝑉 ⊆ 𝑃 !• Given P = conv(V) + cone(E)  →

• Given P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏}  →
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• Picture a ball resting between two planes:

• How do we get a proof that (1,1) is indeed
the minimal position of the ball?

• Build a conic combination of the constraints to act precisely against the objective function:

• This is the dual LP.                            Note: The dual of the dual LP is again the primal LP.

min                   x2
s. t. 5x1 + 2x2 ≥ 6 | ∙ 𝑦1 (1/11)

−x1 + 2x2 ≥ 1 | ∙ 𝑦2 (5/11)

max    6𝑦1 + 1𝑦2
s. t. 5y1 − 1𝑦2 = 0 | ∙ 𝑥1 (1)

1𝑦1 + 2y2 = 1 | ∙ 𝑥2 (1)

𝑦1, y2 ≥ 0

min     0x1 + 1x2
s. t. 5x1 + 1x2 ≥ 6 | ∙ 𝑦1 (1/11)

−1x1 + 2x2 ≥ 1 | ∙ 𝑦2 (5/11)

(5,1)

(-1,2)

(0,1)



• How do we get a proof of solution quality?

• Easy case: One of our constraints underestimates the objective function

• E.g., if 𝑐𝑇𝑥 = 2𝑥1 + 𝑥2 and one constraint 𝑥1 + 𝑥2 ≥ 3, then also min 𝑐𝑇𝑥 ≥ 3

• General case: Conic combinations of constraints yield valid constraints.

• Observation 1: Constraints are invariant to scaling by positive numbers.

• Observation 2: The sum of two valid constraints is a valid constraint.

• Dual LP: 

• Find a conic combination of all constraints that is a

• maximal underestimator for the objective function.

min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} 



• Dual multipliers: 𝑦 ≥ 0

• Conic combination of all constraints...: yT𝐴𝑥 ≥ 𝑦𝑇b

• ...that is an (...)underestimator for our objective: y𝑇𝐴 ≤ 𝑐

• ...and that is a maximal underestimator: max 𝑦𝑇𝑏

• This gives the dual LP:

min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} 

max{𝑦𝑇𝑏 | 𝑦T𝐴 ≤ 𝑐, 𝑦 ≥ 0}



• Each constraint in the primal LP becomes a variable in the dual LP.

• Each variable in the primal LP becomes a constraint in the dual LP.

• The objective direction is inversed.

• Signs are inversed:

• ≥-constraints become ≤-bounds,

• ≤-constraints become ≥-bounds

• Consequently, =-constraints become free variables

• By this scheme: Easy to see that the dual of the dual is the primal.

min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0}   ↔ max{𝑦𝑇𝑏| 𝑦𝑇𝐴 ≤ 𝑐, 𝑦 ≥ 0} 



max{𝑦𝑇𝑏| 𝑦𝑇𝐴 ≤ 𝑐, 𝑦 ≥ 0} ≤ min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} 

• Trivial to proof:

• 𝑦𝑇𝑏 ≤ 𝑦𝑇 𝐴𝑥 = (𝑦𝑇𝐴)𝑥 ≤ 𝑐𝑇𝑥

• q.e.d.



• The most important and influential theorem in optimization:

• Primal has a finite optimum if and only if dual has a finite optimum, and

• A relation of this type is called min-max result.

• Proof is not straight-forward, uses weak duality and Farkas lemma.

• Three combinations of primal and dual status are possible:

• finite (and equal) optima,

• unbounded and infeasible,

• both infeasible.

min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0}  =  max{𝑦𝑇𝑏| 𝑦𝑇𝐴 ≤ 𝑐, 𝑦 ≥ 0}



• At an optimal solution pair (x,y),

• for all constraints 𝑖 : either 𝑦𝑖 = 0 or σ𝑗=1
𝑛 𝑎𝑖𝑗 𝑥𝑗 = 𝑏𝑖 (or both hold);

• analogously, for all variables 𝑗 : either 𝑥𝑗 = 0 or σ𝑗=1
𝑛 𝑎𝑖𝑗 𝑦𝑖 = 𝑐𝑗

• Proof: By weak duality, because otherwise

does not hold with equality.

• Consequence: To construct an optimality proof, we can only use 
constraints that are tight at the optimal point.

• Strong complementary slackness: There is a solution, s.t. 𝑦𝑖 > 0 ⇔ σ𝑗=1
𝑛 𝑎𝑖𝑗 𝑥𝑗 = 𝑏𝑖 .

• Sensitivity: Interpretation of dual variables as shadow prices: How much would the objective
increase, if we released the constraint?

𝑦𝑇𝑏 ≤ 𝑦𝑇 𝐴𝑥 = (𝑦𝑇𝐴)𝑥 ≤ 𝑐𝑇𝑥



• Picture a ball resting between two planes:

• How do we get a proof that (1,1) is indeed
the minimal position of the ball?

• Build a conic combination of the constraints to act precisely against the objective function:

• This is the dual LP.                            Note: The dual of the dual LP is again the primal LP.

min                   x2
s. t. 5x1 + 2x2 ≥ 6 | ∙ 𝑦1 (1/11)

−x1 + 2x2 ≥ 1 | ∙ 𝑦2 (5/11)

max    6𝑦1 + 1𝑦2
s. t. 5y1 − 1𝑦2 = 0 | ∙ 𝑥1 (1)

1𝑦1 + 2y2 = 1 | ∙ 𝑥2 (1)

𝑦1, y2 ≥ 0

min     0x1 + 1x2
s. t. 5x1 + 1x2 ≥ 6 | ∙ 𝑦1 (1/11)

−1x1 + 2x2 ≥ 1 | ∙ 𝑦2 (5/11)

(5,1)

(-1,2)

(0,1)



• If a dual variable has a nonzero value in an optimal primal-dual solution:

• the corresponding primal variable is nonzero as well

• the corresponding primal constraint is nonzero as well

• the corresponding primal constraint is tight

• Describing a polyhedron as P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏} is called the

• Standard form

• Outer representation

• Inner representation

• The dual of  min{𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} is 

• min{𝑦𝑇𝑏| yT𝐴 = 𝑐, 𝑦 ≤ 0}

• max{𝑦𝑇𝑏| yT𝐴 ≤ 𝑐, 𝑦 ≥ 0}

• max{𝑦𝑇𝑏| yT𝐴 ≤ 𝑐, 𝑦 free }



• If a dual variable has a nonzero value in an optimal primal-dual solution:

• the corresponding primal variable is nonzero as well

• the corresponding primal constraint is nonzero as well

• the corresponding primal constraint is tight

• Describing a polyhedron as P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏} is called the

• Standard form

• Outer representation

• Inner representation

• The dual of  min{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} is 

• min{𝑦𝑇𝑏| yT𝐴 = 𝑐, 𝑦 ≤ 0}

• max{𝑦𝑇𝑏| y𝑇𝐴 ≤ 𝑐, 𝑦 ≥ 0}

• max{𝑦𝑇𝑏| y𝐓𝐴 ≤ 𝑐, 𝑦 free }
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• Fourier, 1827, rediscovered by Motzkin, 1936  

• Method: successive projection of a polyhedron in n-dimensional space into a vector space 
of dimension n-1 by elimination of one variable.

• Can

• check whether a polyhedron is nonempty.

• be used to prove Farkas Lemma.

• be used for Linear Programming.



• Each elimination step might square the number of rows, hence in total 𝑂(𝑚2𝑛).

• Fourier-Motzkin essentially the best-known method for polyhedral transformations: 

• Let a polyhedron be given as P = conv(V) + cone(E) 

• Goal: Find a representation of P in the form P = {𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏}

• Idea: Write

• and eliminate y and z

• With some tricks, FME can be reduced to single-exponential running time, which is already 
best possible for cube/cross polytope.

P = {𝑥, 𝑦, 𝑧 ∈ ℝ𝑑| 𝑥 = 𝑉𝑦 + 𝐸𝑧, σ𝑦𝑖 = 1, 𝑦 ≥ 0, 𝑧 ≥ 0}



• Start at a random vertex

• Among neighboring vertices, choose on which improves 
the objective, if none: optimal 

• Special case: An unbounded ray along which the objective
improves→ then, the LP is unbounded.

• Move along edges towards an optimal vertex.

• Why does this work?

1. Show that an optimal boundary solution exists (convexity)

2. Narrow down further an optimal vertex solution exists (linearity)

3. Local optimality is global optimality (convexity)

image source: WIkipedia



• By adding slack variables etc., every LP can be equivalently transformed to

• Nonempty LPs in standard form always have vertices, and are the

• intersection of a cone (nonnegative orthant) and an affine subspace, e.g.

min{𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} = max{𝑦𝑇𝑏 | 𝑦𝑇𝐴 ≤ 𝑐, 𝑦 free } 

(primal LP)                                           (dual LP)



• W.l.o.g. let 𝑟𝑎𝑛𝑘 𝐴 = 𝑚 < 𝑛 and consider the computational form

• For every vertex there is a non-singular 𝑚 ×𝑚 sub-matrix 𝐵 of 𝐴

• and the corresponding basic solution is given by

• LP is a discrete optimization task: 
𝑛
𝑚

possible bases.

• Basic solution = vertex solution ⟺ 𝑥 primal feasible ⟺ 𝑥 ≥ 0 ⟺ 𝑥𝐵 ≥ 0.

𝑥𝐵 = 𝐵−1𝑏, 𝑥𝑁 = 0

min{𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} 

𝐴 = 𝐵 𝑁

?



• W.l.o.g. let 𝑟𝑎𝑛𝑘 𝐴 = 𝑚 < 𝑛 and consider the computational form

• For every vertex there is a non-singular 𝑚 ×𝑚 sub-matrix 𝐵 of 𝐴

• and the corresponding basic solution is given by

• Basic solution = vertex solution ⟺ 𝑥 primal feasible ⟺ 𝑥 ≥ 0 ⟺ 𝑥𝐵 ≥ 0

• 𝑥 optimal ⟺ 𝑥 dual feasible ⟺ 𝑐𝐵
𝑇𝐵−1 𝐴 ≥ 𝑐

𝑥𝐵 = 𝐵−1𝑏, 𝑥𝑁 = 0, 𝑦𝑇 = 𝑐𝐵
𝑇𝐵−1

min{𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} = max{𝑦𝑇𝑏 | 𝑦𝑇𝐴 ≤ 𝑐, 𝑦 free } 

𝐴 = 𝐵 𝑁

⟺ Ƹ𝑐 = 𝑐 − 𝑐𝐵
𝑇𝐵−1 𝐴 ≥ 0  reduced costs

?



1. Check optimality = dual feasibility:   ෝ𝑐𝑗 ≤ 0 for all columns 𝑗?

2. If not dual feasible, choose pivot column:  Ƹ𝑐𝑗 > 0 and increase 𝑥𝑗 from 0 to 𝛿 > 0 .

3. Check boundedness (ratio test):

for 𝑏 = 𝐵−1𝑏, መ𝐴 = 𝐵−1𝐴, and all rows 𝑖 with ො𝑎𝑖,𝑗 > 0.

4. Pick pivot row with minimal ൗ
𝑏𝑖

ො𝑎𝑖,𝑗
and exchange:

• variable 𝑥𝑗 becomes basic: in 𝐵

• variable 𝑥𝑖 becomes nonbasic: in 𝑁, i.e., 𝑥𝑖 = 0

5. Update all data structures መ𝐴, 𝑏, Ƹ𝑐 and 𝐵−1. 

𝐵𝑥𝐵 + 𝐴∗𝑗𝛿 = 𝑏 ↝ 𝑥𝐵 = 𝐵−1 𝑏 − 𝐴∗𝑗𝛿 ≥ 0 ⇔ 𝛿 ≤ ൘
𝑏𝑖

ො𝑎𝑖,𝑗



• If all vertices non-degenerate, simplex algorithm finds solution in finite time

• Each step new, strictly improving basis

• Otherwise, cycling can be resolved by lexicographic rules or by slight pertubation

• But: major numerical issue in practice

• Phase I: an initial feasible solution can be found by auxiliary LP, which itself has a trivial 
initial feasible solution

• Ensure 𝑏 ≥ 0, then 𝐴 𝐼
𝑥
𝑠

= 𝑏 has trivial solution 𝑥 = 0, 𝑦 = 𝑏ow minimize 𝛴𝑦

• Phase I LP is bounded and 𝑟𝑎𝑛𝑘 𝐴 = 𝑚 < 𝑛

• Final step: Pivot all auxiliary columns out of the basis



• Primal degeneracy:

• Naïve thought: one optimal solution in ℝ𝑛 is uniquely determined by 𝑛 constraints.

• Second thought: one optimal solution can have more than 𝑛 tight constraints

• Dual degeneracy:

• The set of optimal solutions is a higher-dimensional face.

• Can be exploited in some ways, but is mostly a burden.



• Primal simplex: pivot through primal feasible bases until dual feasible→ optimal.

• Dual simplex: pivot through dual feasible bases until primal feasible→ optimal.

• Theoretically equivalent to the primal simplex on the dual LP

• But practically much more efficient to implement



Suppose you have reached an optimal basic solution and you …

• change the objective

• Basis stays primal feasible, warm-start primal simplex

• add a column

• Basis stays primal feasible (add to nonbasis), warm-start primal simplex

• add a row

• Basis stays dual feasible (add slack to basis), warm-start dual simplex

• change a right hand side / variable bound

• Basis stays dual feasible, warm-start dual simplex

This makes the simplex a very efficient method in branch-and-bound (→Wednesday) and 
other algorithms where similar LPs need to be solved after small modifications.







• Idea: From coefficients in A and b, we can determine largest possible solution value for x 
and minimum size of polyhedron

• Find large ball, which must contain a feasible solution, if one exist

• Check whether center point is feasible

• Cut ball/ellipsoid in (less than) half, determine smallest ellipsoid 
that contains half ellipsoid

• Repeat until ellipsoid is so small that polytope must be contained 
in ellipsoid (or is empty)

• Good online lecture:
https://www.coursera.org/lecture/advanced-algorithms-and-
complexity/optional-the-ellipsoid-algorithm-N9rzA

image source: WIkipedia

https://www.coursera.org/lecture/advanced-algorithms-and-complexity/optional-the-ellipsoid-algorithm-N9rzA


image source: M. Grötschel



• Instead of min {𝑐𝑇𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} solve min {𝑐𝑇𝑥 - 𝜇 σ ln 𝑥𝑖 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} 

• Strictly convex problem, has a single unique solution (when original problem feasible)

• For small x, -ln x becomes large, hence solution is an interior point

• Converges to optimum of original LP when 𝜇 → 0

• Integrate primal and dual LP into the following nonlinear(!) equation system: 

• 𝐴𝑥 = 𝑏 primal

• 𝑦𝐴 + 𝑠 = 𝑐 dual

• 𝑥𝑠 = 𝜇 complementary slackness

• 𝑥, 𝑠 ≥ 0

• This can be solved by a Newton method



• Barrier solutions are not basic

• Typically only few columns at their bound

• Can neither be used for simplex warmstart, nor for Gomory cuts

• Numerically slightly off

• Crossover: similar to simplex

• Creates a basic vertex solution from a nonbasic interior point solution

• Guesses initial basis (crash) and nonbasis (note: some columns might be at their 
bounds), maintains set of superbasic columns (not at their bound and not basic) and 
tries to push those to zero or to push a basic column to zero and a superbasic into the 
basis

• Primal and dual crossover 

• Polynomial-time algorithm



Thank you! Questions?
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