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Mathematical Optimization

— variables — solution — feasibility
— constraints — activity — feasibility
— objective function — value — quality

Optimization
Problem

— optimal solution = feasible + best possible objective value

Dual bound <= GAP = Primal bound

If the gap is zero, we have a mathematical proof,
that the incumbent solution is optimal.




Example: Primal-Dual Gap

Example: What is the shortest path from
 Zuse Institute Berlin
« TU Berlin

Primal Bound: 8.07 km driving route
* Heuristic solution
+ Addressing a different objective

Dual Bound: Bee line: 6.74 km

https://www.distance.to/

8.07-6.74
8.07

* Gap =16.48%



https://www.distance.to/

Linear Programming

Linear Program

Objective function:

> linear function

Feasible set:

> described by linear constraints

Variable domains:

> real values

min c¢'x > convex set

st. Ax=0b > “basic”’ solutions
X € R£O



Various forms, all equivalent

* All representations can be converted into each other:
* min to max: multiply objective vector ¢ bei -1
- Equation to inequality: al x = b; » a] x < b;, —aj x < —b;
+ <-inequality to =-inequality: multiply by -1
- Inequality to equation: Introduce slack variable, al x < b; = al x +s; = b;
- Unbounded variable to bounded: x = x* —x7, x € R, x*,x~ € R,
» Bounded to unbounded: Consider bounds as constraints

- LP literature typically uses the standard form min {cTx | Ax = b, x = 0}

* MIP literature often uses inequalities for the constraints



Integer Programming

Integer Program

Objective function:
> linear function

Feasible set:
> described by linear constraints . o
Varlable domains: A O/O
> integer values
min ¢’ x > not even connected
s.t.  Ax<b > NP-hard problem

X € L~



Mixed-Integer Programming

Definition: MIP

Objective function: %L

> linear function

Feasible set:
> described by linear constraints

Variable domains: |

> integer or real values

min c¢'x > not even connected
s.t. Ax<b > NP-hard problem
x € 7! x R€
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LP History: The first LP

* In 1827 Fourier described a variable elimination method for linear inequalities, today often
called Fourier-Motzkin elimination (Motzkin 1936).

» By adding one variable and one inequality, Fourier-Motzkin elimination can be turned into
an LP solver.
« Who formulated the first LP?
 The usual credit goes to George J. Stigler (1939)

Min x1 + x2 costs
2x1 + x2>3 protein * Full example:
X1 +2x2>3 carbohydrates - 77 foods, 9 nutritients
x1 >0 potatoes ‘ o ‘
x2 >0 beans - Stigler’s heuristic solution

] .
7 m m
minimizing the cost of food was 0.7% from optimal



LP History: The first LP algorithms

1939 L. V. Kantorovitch (1912-1986): Foundations of linear programming

1947 G. B. Dantzig (1914-2005): Invention of the (primal) simplex algorithm

1954 C.E. Lemke & E.M.L. Beale: Dual simplex algorithm

1953 G.B. Dantzig, 1954 W. Orchard Hays, and 1954 G. B. Dantzig & W. Orchard Hays:
Revised simplex algorithm
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First computational study in 1953

COMPUTATIONAL EXPERIENCE
IN SOLVING LINEAR PROGRAMS*

A. HOFFMAN, M. MANNOS, D. SOKOLOWSKY
and N. WIEGMANN

1. Introduction. This paper is a discussion of three methods
which have been employed to solve problems in linear programming, and
a comparison of results which have been yielded by their use on the
Standards Eastern Automatic Computer (SEAC) at the National Bureau of
Standards.



LP history: commercial implementations

* The first commercial LP-Code was on the market in 1954 and available on an IBM CPC
(card programmable calculator)

« Record: 71 variables, 26 constraints, 8 h running time
« About 1960: LP became commercially viable, used largely by oil companies

« 1972: first commercial IP solver (almost 50 years ago)

NIC 10424 Karl Kelley
NWG/RFC 345 University of Illinocis
May 26, 1972

INTEREST IN MIXED INTEGER PROGRAMMING (MPSX ON 360/91 AT CCN)

MPSX is a newer version of the IBM project MP3, used for integer
programming. From what I've been told, MPSX outperforms the previous
package. In addition, it has available a feature of mixed integer

programming.
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LP & Polyhedra

For nice, interactive visualiza-
tions of the 120 regular convex
polyhedra, check out:
https://polyhedra.tessera.li/

Image source: Wikipedia


https://polyhedra.tessera.li/

LP & Polyhedra

Linear programming lives (for our purposes) in the n-dimensional real vector space.

polyhedron: intersection of finitely many halfspaces
- P={x € R"| Ax < b}

polytope: convex hull of finitely many points
* P=conv(V), V afinite set in R™.

convex polyhedral cone:
conic combination (i.e., a nonnegative linear combination) of finitely many rays

* K=cone(E), F afinite setin R™.



Representation of polyhedra

« Theorem: For a subset P € R" the following are equivalent:

1. P isapolyhedron: the intersection of finitely many halfspaces, i.e., there exist a matrix
A and a vector b with P={x € R™ | Ax < b} (outer representation).

2. P isthe sum of a convex polytope and a finitely generated (polyhedral) cone, i.e., there
exist finite sets V and E with P = conv(V) + cone(E) (inner representation)

@
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Important special cases

e P = conv(0,e;) P={x|x=0)x; <1}

« Simplex: n+1 points, n+1 inequalities image source: aliexpress.com

P = conv(—e;e;)) P={x|a"x<1,Va €{-1,1}"}
« Cross polytope: 2n points, 2" inequalities

Image source: healingcrystals.com

P=conv({—-1,1}") P={x|a’x<1,Va €{—e;,e}}
» Cube: 2" points, 2n inequalities

Image source: naturshop.cz



Faces of polyhedra

An n-dimensional polyhedron has the following different faces:

« Vertex (0-dimensional)

Edge (1-dimensional)

Ridge = subfacet (n-2)-dimensional

Facet (n-1)-dimensional

and each of them is a polyhedron itself!

Source: polyhedra.tessera.li



Question: Is a polyhedron non-empty?

« Given P = conv(V) + cone(E) - Yes, triviallyV € P!
Given P={x € R"| Ax < b} > Answered by the Farkas-Lemma (1908):

P=0 © 3y>0: yTA=07, yTh < 07

i.e., if we can reformulate Ax < b to the trivially wrong statement 0 < y7h < 0
by scaling and adding constraints with dual multipliers y;.

« Example:
le + 2x2 < 1 le + ZXZ < 1
Xy >1 —X> < -1

This Theorem of Alternatives is the foundation of all important higher-level LP theory:
duality theorems, complementary slackness, proof of LP optimality, etc.
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The dual LP: example

* Picture a ball resting between two planes: (1.2)

min 0xq + 1x,
S. t. 5X1 + 1X2 = 6
—1X1 + ZXZ = 1

« How do we get a proof that (1,1) is indeed (0,1)
the minimal position of the ball? '

« Build a conic combination of the constraints to act precisely against the objective function:
max 6y; + 1y,
s.t. 5y;—1y, =0
Iy + 2y, =1
Y1,¥2 20
 Thisis the dual LP.



The dual LP: general

min{cTx | Ax > b,x > 0}

How do we get a proof of solution quality?

Easy case: One of our constraints underestimates the objective function
- E.g,if cTx = 2x; + x, and one constraint x; + x, = 3, then also min ¢Tx > 3

General case: Conic combinations of constraints yield valid constraints.
+ Observation 1: Constraints are invariant to scaling by positive numbers.
* Observation 2: The sum of two valid constraints is a valid constraint.

Dual LP:
» Find a conic combination of all constraints that is a
* maximal underestimator for the objective function.



The dual LP: formally

min{c'x | Ax > b, x > 0}

Dual multipliers: y = 0
Conic combination of all constraints.... yTAx > yTb
..thatis an (...)underestimator for our objective: yTA < ¢

..and that is a maximal underestimator: max yTb

This gives the dual LP:

max{y’bh | yTA<c,y=>0

}



The dual LP: scheme

min{c’x | Ax > b,x >0} & max{y'b|yTA<c,y >0}

Each constraint in the primal LP becomes a variable in the dual LP.

Each variable in the primal LP becomes a constraint in the dual LP.

The objective direction is inversed.

Signs are inversed:
« >-constraints become <-bounds,
+ <-constraints become >-bounds
« Consequently, =-constraints become free variables

By this scheme: Easy to see that the dual of the dual is the primal.



Weak duality theorem

max{y'b|yTA < c,y =0} < min{c"x|Ax = b,x = 0}

* Trivial to proof:
« yTh <yT(Ax) = (yTA)x < cTx

* g.e.d.

1©)

:

Marco Liibbecke @mlueb... - 30. Juni
weak duality #orms

let P={x=0 | Ax=b}, D={y=0 | yA=c}, then
cxsybforanyxinPyinD.

proof. cx < yAx = yh.

3, Michael Nielsen @mi.. - 30. Juni

What are your favourite tweet-length
mathematical proofs?

Here's a couple of mine.
Diesen Thread anzeigen

QO 5 N 14 ¥ 9% o



Strong duality theorem

The most important and influential theorem in optimization:

Primal has a finite optimum if and only if dual has a finite optimum, and

min{c’x | Ax = b,x > 0} = max{y’b|yTA < ¢,y = 0}

A relation of this type is called min-max result.

Proof is not straight-forward, uses weak duality and Farkas lemma.

Three combinations of primal and dual status are possible:
- finite (and equal) optima,
« unbounded and infeasible,
* both infeasible.



Complementary slackness

At an optimal solution pair (x,y),
- forall constraints i : either y; = 0 or ¥7_; a;j x; = b; (or both hold);

. : o B n _
analogously, for all variables j : either x; = 0 or X7 a;; y; = ¢;

Proof: By weak duality, because otherwise
yT'b < yT(Ax) = (yTA)x < cTx

does not hold with equality.

Consequence: To construct an optimality proof, we can only use
constraints that are tight at the optimal point.

Strong complementary slackness: There is a solution, s.t.y; > 0 & ¥i_ja;jx; = b; .

Sensitivity: Interpretation of dual variables as shadow prices: How much would the objective
increase, if we released the constraint?



The dual LP: example

* Picture a ball resting between two planes: (1.2)

min 0xq + 1x,
S. t. 5X1 + 1X2 > 6 | *V1 (1/11)
—1X1+2X2 >1 | ) (5/11)

« How do we get a proof that (1,1) is indeed (0,1)
the minimal position of the ball? '

« Build a conic combination of the constraints to act precisely against the objective function:
max 6y; + 1y,
s.t. 5y;—1y, =0
ly1 + 2y, =1
Y1,¥2 20
 Thisis the dual LP.



Quiz time

« |f a dual variable has a nonzero value in an optimal primal-dual solution:
* the corresponding primal variable is nonzero as well
* the corresponding primal constraint is nonzero as well
* the corresponding primal constraint is tight

 Describing a polyhedron as P ={x € R" | Ax < b} is called the
- Standard form
+ Quter representation
* Inner representation

 The dual of min{cTx | Ax = b,x > 0} is
- min{yTh|yTA =c,y < 0}
« max{yTh|yTA < c,y = 0}

- max{yTh|yTA < c,y free} — —



Quiz time

« |f a dual variable has a nonzero value in an optimal primal-dual solution:
* the corresponding primal variable is nonzero as well
* the corresponding primal constraint is nonzero as well
* the corresponding primal constraint is tight

 Describing a polyhedron as P ={x € R" | Ax < b} is called the
+ Standard form
 Quter representation
* Inner representation

 The dual of min{cTx | Ax > b,x > 0} is
« min{y"b|yTA = ¢,y < 0}
« max{yTh|yTA <c,y = 0}

- max{y"b|yTA < c,y free} T —
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Fourier-Motzkin Elimination

 Fourier, 1827, rediscovered by Motzkin, 1936

» Method: successive projection of a polyhedron in n-dimensional space into a vector space
of dimension n-1 by elimination of one variable.

b

Projection on x: (x,0)

« Can
« check whether a polyhedron is nonempty.
* be used to prove Farkas Lemma.
* be used for Linear Programming.



From inner to outer representation

« Each elimination step might square the number of rows, hence in total 0 (m?").

 Fourier-Motzkin essentially the best-known method for polyhedral transformations:
* Let a polyhedron be given as P = conv(V) + cone(E)
+ Goal: Find a representation of P in the form P={x € R"™ | Ax < b}
* |dea: Write

P={x,y,z€ R x=Vy+EzYy; =1,y=>0,z >0}

« and eliminate y and z

« With some tricks, FME can be reduced to single-exponential running time, which is already
best possible for cube/cross polytope.



Simplex idea

Start at a random vertex

Among neighboring vertices, choose on which improves
the objective, if none: optimal

« Special case: An unbounded ray along which the objective
improves - then, the LP is unbounded.

Move along edges towards an optimal vertex.

Why does this work?
1. Show that an optimal boundary solution exists (convexity) image source: Wikipedi
2. Narrow down further an optimal vertex solution exists (linearity)

3. Local optimality is global optimality (convexity)



Computational standard form

» By adding slack variables etc., every LP can be equivalently transformed to
min{c'x | Ax = b,x > 0} =max{y’b | yTA < ¢,y free }
(primal LP) (dual LP)

» Nonempty LPs in standard form always have vertices, and are the

* intersection of a cone (nonnegative orthant) and an affine subspace, e.g.

/[ ;

™N
N\




Basic solution: primal
 W.lo0.g. let rank(A) = m < n and consider the computational form
min{cTx | Ax = b, x = 0}

For every vertex there is a non-singular m x m sub-matrix B of A

A= B N

and the corresponding basic solution is given by

Xp = B_lb, XN = 0

LP is a discrete optimization task: (::l) possible bases.

Basic solution = vertex solution < ?



Basic solution: primal-dual
 W.lo0.g. let rank(A) = m < n and consider the computational form

min{cx | Ax = b,x > 0} =max{y’b | yTA < ¢,y free }

For every vertex there is a non-singular m x m sub-matrix B of A

A= B N

and the corresponding basic solution is given by

xg = B71h, xy =0, yl'=clB™?

Basic solution = vertex solution & x primalfeasible & x>0 & x5 =0

x optimal & 2



One step of the primal simplex algorithm (Dantzig 1947)

1.
2.
3.

4.

Check optimality = dual feasibility: ¢; < 0 for all columns j?

If not dual feasible, choose pivot column: ¢; > 0 and increase x; from0to§ > 0.

Check boundedness (ratio test):

_ 5.
BXB+A*j5=b ~» xg=21B 1(b—A*]5)20 S 6 < l/a

for b = B~1b, A = B~1A, and all rows i with a;; > 0.

Pick pivot row with minimal Bi/dij and exchange:

« variable Xj becomes basic: in B

* variable x; becomes nonbasic:in N,ie,x; = 0

Update all data structures A, 15, ¢and B~ 1,

ij //




Correctness of simplex algorihm

« |If all vertices non-degenerate, simplex algorithm finds solution in finite time
 Each step new, strictly improving basis

» Otherwise, cycling can be resolved by lexicographic rules or by slight pertubation
 But: major numerical issue in practice

« Phase |: an initial feasible solution can be found by auxiliary LP, which itself has a trivial
initial feasible solution

* Ensure b = 0,then (4 1) (DSC) = b has trivial solution x = 0,y = bow minimize Xy

* Phase | LP is bounded and rank(4) = m <n
* Final step: Pivot all auxiliary columns out of the basis



LP degeneracy

* Primal degeneracy:
 Naive thought: one optimal solution in R™ is uniquely determined by n constraints.

» Second thought: one optimal solution can have more than n tight constraints

» Dual degeneracy:
» The set of optimal solutions is a higher-dimensional face.

« Can be exploited in some ways, but is mostly a burden.




More general: pivoting through infeasible bases

» Primal simplex: pivot through primal feasible bases until dual feasible > optimal.

» Dual simplex: pivot through dual feasible bases until primal feasible = optimal.
» Theoretically equivalent to the primal simplex on the dual LP
* But practically much more efficient to implement



Re-optimization after changing your LP

Suppose you have reached an optimal basic solution and you ...

» change the objective
* Basis stays primal feasible, warm-start primal simplex

« add a column
- Basis stays primal feasible (add to nonbasis), warm-start primal simplex

« add arow
- Basis stays dual feasible (add slack to basis), warm-start dual simplex

» change a right hand side / variable bound
* Basis stays dual feasible, warm-start dual simplex

This makes the simplex a very efficient method in branch-and-bound (= Wednesday) and
other algorithms where similar LPs need to be solved after small modifications.



Simplex warmstarting during branch-and-bound

depth avg. iters

Wurzel  383.7 383.7/3.3 ~ 116x speedup
1 17.0
2 14.9
3 12.2 330 MIPs “lsec—1hour”
4 103
5 9.0
6 8.2
13 4.2 50
14 4.1
. s |I |I“
A i
17 3.3 . el I
18 3']— I T T I T T i T T T T T ] T T | T T T T ' T ! I
19 2.8 0 10 20 30 40 50 60
20 2.7

21 2.5 @ 2vg. nodes per depth @ avg. LP relaxations per depth



Khachiyan‘s algorithm - the first polynomial time LP solver

Hoxaangst Axagemnn sayx CCCP
1979, Tonr 244, N2 5

VIR 519.95 MATEMATIIEA

JL T. XAYHAH

MOMMHOMMAJIBHBIN AJITOPATM B JIMHEHHOM
IIPOTPAMMUPOBAHIN

(pedcraeaena aradexuron A. A. Jopodnuystnnin £ X 1978)

Pacemorpum cmerem i
V H3 m=2 JNHeiiHpIX HepaBeHCTB OTHOCHTEIBH 2
ABHO n=2
BEMECTBEHHBIX MePEMEHHBIX Ly, ..., Ly ..., Lo

anzt .. Faaz.<b, i=1,2,..., m, (1)
¢ measMir Koapdumenramit ag, by, [lvern
L =[i§ 1032([%;1'!'1.)+;10g:(|bll+1}+iog,nm] +1 @)

€CTh JUUIHA BXOfR CHCTeMB, T. €. TUCI0 CIMBOIOB 0 w 1, meobxoanMeIx Las
aamiucH (1) B FBoUYHOI cHCTeMe CIHCTEHI

Mathematical Programming Study 14 (1981) 61-68.
North-Holland Publishing Company

KHACHIYAN’S ALGORITHM FOR LINEAR PROGRAMMING*

Peter GACS and Laszlo LOVASZ
Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.

Received 10 October 1979

L.G. Khachiyan's algorithm to check the solvability of a system of linear inequalities with integral
coefficients is described. The running time of the algorithm is polynomial in the number of digits

of the coefficients. [t can be applied to solve linear programs in polynomial time.

Key Words: Linear Programming, Inequalities, Complexity, Polynomial Algorithms.

0. Introduction

L.G. Khachiyan [1, cf. also 2, 3] published a polynomial-bounded algorithm to
solve linear programming. These are some notes on this paper. We have ignored
his considerations which concern the precision of real computations in order to
make the underlying idea clearer; on the other hand, proofs which are missing
from his paper are given in Section 2. Let

ax < b (i=1,....m.a,EZ".b.~EZ) 1)

be a system of strict linear inequalities with integral coefficients. We present an
algorithm which decides whether or not (1) is solvable, and yields a solution if it
is. Define

L= log(lay| + 1)+ X log(|b,| + 1) +log nm +1.
[¥] i

L is a lower bound on the space nceded to state the problem.



Ellipsoid method

* |dea: From coefficients in A and b, we can determine largest possible solution value for x
and minimum size of polyhedron

 Find large ball, which must contain a feasible solution, if one exist
+ Check whether center point is feasible . '

« Cut ball/ellipsoid in (less than) half, determine smallest ellipsoid

that contains half ellipsoid

» Repeat until ellipsoid is so small that polytope must be contained
in ellipsoid (or is empty)

» Good online lecture:
https://www.coursera.org/lecture/advanced-algorithms-and-
complexity/optional-the-ellipsoid-algorithm-N9rzA

image source: Wikipedia


https://www.coursera.org/lecture/advanced-algorithms-and-complexity/optional-the-ellipsoid-algorithm-N9rzA

Karmarkar‘s algorithm, poly-time with practical impact
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Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets

crisscross the U.S,, Mexico, Canada and
the Caribbean, stopping in 110 cities and bear-
ing over 80,000 passengers. More than 4 000
pilots, copilots, flight personnel, mainienance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bolts,
altimeters, landing gears and the ike must be
checked at each destination. And while per-
forming these scheduling gymnastics, the
company musi keep a close eye on costs, pro-
Jected revenue and profits,

Like American Airlines, thousands of com-
panies must routinely untangle the myriad
vaniables that complicate the efficient distribu-
tion of their resources. Solving such monstrous
problems requires the use of an abstruse
branch of mathematics known as linsar pro-
gramming. It is the kind of math that has
frustrated theoreticians for years, and even the
fastest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born  mathematician at  Bell
Laboratories in Murray Hill, N.J., after only
ayears' work has cracked the puzzle of linear
programming by devising a new algorithim, &
step-by-step mathematical formula, He has
translated the procedure into a program that
should allow computers o track a greater com-
bination of tasks than ever before and in a frac-
tion of the time.

Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world
“Breakthrough s one of the most abused
wonds in science.” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs
“But this is one situation where it is truly ap-
propriate.”

Before the Kermarkar method, linear equa-
tions could be solved only in a cumbersome
fashion, ironically known as the simplex
method, devised by Mathematician George
Dantzig in 1947 Problems are conceived of
as giant geodesic domes with thousands of
sides. Each corner of a facet on the dome

image source: M. Grotschel



Barrier method

Instead of min {c¢"x | Ax = b,x > 0} solve min {cTx-u Y Inx; | Ax = b,x > (0}
- Strictly convex problem, has a single unique solution (when OI’IF‘ Da we)

» For small x, -In x becomes large, hence solution is an ints O‘(\
 Converges to optimum of original LP wher 3

* Integrate primal and dual LP into.th ‘e( 4.car(!) equation system:
c Ax =b primal ‘\5
* YA+ s =ca 0"\‘.\\
© XS wo(e sentary slackness
°X,S

This can be solved by a Newton method



Crossover

« Barrier solutions are not basic
* Typically only few columns at their bound
» Can neither be used for simplex warmstart, nor for Gomory cuts
* Numerically slightly off

» Crossover: similar to simplex
* Creates a basic vertex solution from a nonbasic interior point solution

 Guesses initial basis (crash) and nonbasis (note: some columns might be at their
bounds), maintains set of superbasic columns (not at their bound and not basic) and
tries to push those to zero or to push a basic column to zero and a superbasic into the
basis

« Primal and dual crossover
 Polynomial-time algorithm



Thank you! Questions?
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