Linear Programming:
Barrier and First Order Methods

Joachim Dahl & Qi Huangfu
Cardinal Operations

CO®Work - September 2024

12 U 1

Cardinal Operations

Linear Programming

Standard primal and dual linear programming problems:

minimize c¢'x maximize b’y
subject to Ax = b subjectto c— ATy =s
x =0, s = 0.

Optimality conditions:
A N —b | |0
AT 0 s I
x =0 .

Consequently,
c'x—bTy=0.

Barrier methods
Primal barrier problem

minimize c¢'x — pY; log xi
subjectto Ax=0b
x =0,

for a centrality parameter > 0. Lagrange function:

L(x,y)=c"x— ,uZIogx; —yT(Ax — b)

Optimality conditions:
Ax=b, x>0 c—ATy=pX"1le
Dual barrier problem

maximize bTy + u>) logs;
subjectto c— ATy =s
s> 0.

has same optimality conditions.

Primal-dual methods and the central path

Perturbed optimality conditions:
0 A v -b| |0
-AT 0 x c | | s |’
x=20, s=20, Xs=pe.
Linearized central path:
A(x+Ax) = b, c—AT(y+Ay) = s+As, XAs+SAx = pe—Xs

or equivalently

0 A Ay | r
—AT X-1s Ax | rg + X tre

where

rp:=Ax—>b, rq =c—ATy—s, rc=Xs— pe.

A practical primal-dual algorithm
Step 1. Select interior starting point. E.g.,

X =5=g¢, y=0.
Step 2. Compute residuals and check termination.
rp:=Ax—b, rq:= c—ATy—s
Terminate if r,, ry and x s are all small.

Step 3. Compute affine search direction.

|-
~AT X-1s DXt rg+s
SAXye + XAsye = —Xs.
and step-sizes
afie .= max{a e [0,1] | x + alxy = 0}

=
> 0}.

ol = max{a e [0,1] | s+ aQs

A practical primal-dual algorithm

Step 4. Select centering parameter.

3
(X + OZfﬂ:AXaff)T(S + OéchASaff)
xTs

Step 5. Compute combined search direction.
0 A Ay | _ Ip
—AT X~1s Ax | rg + X7r!
SAx + XAs = —Xs + ope — AXyAsar =: —rL.
Step 6. Compute step-sizes and update iterates.

af := max{a e [0,1] | x + aAx

=
aP .= max{a e [0,1] | s + als = 0}.

x:=x+099a"Ax, s:=5+0.99PAs, y:=y+0.99LAy.

A practical primal-dual algorithm.

The system

en b

is typically solved by block elimination
AXSTPATAy = g, — AXS1qq, Ax = XS"Y(qq + AT Ay).

» We use a sparse Cholesky factorization to solve for Ay.

> Important to reorder rows and columns to reduce fill-in using
minimum-degree or nested dissection reordering.

> Important to handle dense columns in A separately.

v

Algorithm assumes primal-dual feasibility.

The simplified homogeneous self-dual embedding

Using (7,k) = 0, we embed the optimality conditions into

0 A —b[y
G(z):=| -AT 0 c x| =1 s |,
bT —cT 0 T

where z := (x,7,s,K,y). The system G(z) = 0 always has
solution, and
(x,s)+ 7Kk =0.
Assume G(z) =0and 7+ k > 0.
» If 7 > 0 then (x,s,y)/7 is primal-dual optimal.
» If K >0 and b"y > 0 then the primal problem is infeasible.
» If K > 0 and c"x < 0 then the dual problem is infeasible.

Redefined central path

We redefine the central path as solutions to
G(z) =0, Xs=upe, TKk=pu.
Linearized central path equations:

6(Az) = —G(2),
SAx 4+ XAs = pe—Xs, KAT 4+ TAK =y — KT.

Update using a single step size:
z:=z+alz

where
(x,s,7,k) + a(Ax, As, AT, Ar) = 0.

A practical algorithm for HSD
Step 1. Select interior starting point.

Step 2. Compute residuals and check termination.

rp = Ax — bt, rq:= cr—ATy —s, rg = bTx—cly —k
Terminate if r,, ry and ry are all small.
Step 3. Compute affine search direction.

G(Azy) = —G(2),
SAXf + XAsyp = —Xs, &ATa + TAKa = —TK

and step size

Qlaff i= max{a € [0,].] | (X, S, T, K/)"’OZ(AXaff, Azase, AT, Aliaff) = 0}

A practical algorithm for HSD

Step 4. Select centering parameter.
o:=(1- Oéaff)3.
Step 5. Compute combined search direction.

G(Az)=—(1—-0)G(2),
SAx + XAs = —Xs + oue — AXyiASaf,
KAT + TAK = —TK + o — ATairARKafr

Step 6. Compute step-size and update iterates.
o= max{a € [0, 1] | (X, S, T, Ii)-i—oz(AXaff, Az, AT, Aﬁaff) = 0}

z:=z+ 0.99aAz.

A practical algorithm for HSD

We solve

-AT 0 ¢ Ax | —| As | == rg
bT —cT 0 AT Ak re
SAx + XAs = —r., KAT+TAK = —rr

by eliminating As and Ak,

0 A —b Ay Ip
—AT X715 ¢ Ax | =—| rg+X"1re |.
bT —cT k)T AT rg + rri/T

A practical algorithm for HSD

We solve
0 A —b Ay ap
—AT X715 ¢ Ax | = qq
bT —cT k)7 AT dg

by first solving two simpler systems
0 A Ay Ayr | _ | =b gp
—AT XxX-1s Ax; Axp C q4 '

Ar — Gg — bTAy> 4+ cTAxo
= k/T—bT Ay + cTAxy’

Then

and
(Ax,Ay) = (Axa, Ayr) — AT(Axy, Ayy).

Nesterov-Todd search-directions for symmetric cones
The Nesterov-Todd scaling point w defines a primal-dual mapping,
F"(w)x = s, F"(w)F.(s) = F'(x),
where F(x) and F.(s) are primal and dual barrier functions.
For F"(w) = WT W, equivalent centrality conditions are
Wxo W™ Ts = pe,
and linearization gives the (affine) Nesterov-Todd search direction

G(Azyr) = —G(2),
WAt + W T Asyis = —W™Ts, kATafr + TARKaf = —TH.

Pioneered by SeDuMi and SDPT3, and basis of all commercial
second-order cone solvers.

Simplex vs Barrier

Simplex Method vs Barrier Method

Suitable for
Very sparse LP problems Dense LP problems
Huge scale LP problems Degenerated LP problems
MIP reoptimization Numerically hard problems
Implementation techniques
Presolving Remove linear dependencies
LU factorization and update | Cholesky decomposition
Exploiting hyper-sparsity Crossover (basic solution)
Handling numerical issues Efficient parallelization
Handling degeneracy Handling infeasibility
Our highlights
Parallel (30% speedup) #threads-independent
Quad-precision support Smart crossover

The primal-dual hybrid gradient method

A first order splitting method for solving problems!

minimize,ex f(x)
subject to Ax = b,

where f is a closed convex function. The Lagrange function:
L(x,y,z) = f(x) —y T (Ax — b).
Then the dual problem becomes
maximize — f*(ATy) + by,

with
*(u) = Sl)J(p{UTX —f(x)}.

!Special case of min.ex f(x) + g(Ax).

The primal-dual hybrid gradient method

Solution is a saddle-point of

minmax L(x,y) = f(x) —y T Ax+ by,
xeX yeRm

and the optimality conditions are
ATyeof(x), Ax=0b
where 0f (x) is the subdifferential,
Of(x) :=1{g | f(y) = f(x) > g7 (y —x), ¥y € dom(f)}.
Update equations:

Xer1 = proxes(xx + TAT yi)
Yir1 = Yk + (b — A(2xk 41 — X))

where 7 and are fixed step-sizes. Converges if 70| A[3 < 1.

PDHG for linear programming
f(x) = c"x +dc(x)
where §¢ is the indicator for C = Ry. Then
prox ¢(u) := arg Xmei?{TcTX +(1/2)|lu — x|?} = Pc(u — 7¢)
resulting in update equations

Xkr1 = Pclxk — 7(c — AT yp)),
Yk+1 = Yk + (b — A2xk11 — X))

Since 0f (x) = ¢ + N¢(x), where
Ne(x) ={d | d"(z—x) <0,¥Yze C}
is the normal-cone, we get the usual optimality conditions

c—ATyzs, s=>0, x's=0, Ax=bh.

PDHG - cuPDLP-C

cuPDLP-C: a tuned GPU implementation in C (open-source).

https://github.com/COPT-Public/cuPDLP-C

» Developed by Cardinal Operations and Haihao Lu's team.

» Highly optimized.

» Can solve certain large sparse problem much faster then either
simplex or primal-dual methods. Solves zib03 to 107

accuracy in 15 minutes using an NVIDIA H100 card. In
contrast, the COPT barrier solver spends about 20 hours.

https://github.com/COPT-Public/cuPDLP-C

Simplex vs Barrier vs PDLP - a computational comparison

Instances Rows Columns Non-Zeros
Open pit mining problems
rminell 97389 12292 241240
rminel3 197155 23980 485784
rminel5 358395 42438 879732
rmine21 1441651 162547 3514884
rmine25 2053849 326599 7182744
Satellite schedule problems
satellites2-25 20916 35378 283668
satellites2-40 20916 35378 283668
satellites2-60-fs 16516 35378 125048
satellites3-25 44804 81681 698176
satellites4-25 51712 95637 821192
Unit commitment problems
uccase? 47132 33020 335644
uccase8 53709 37413 214625
uccase9 49565 33242 332316
uccaselO 196498 110818 787045
uccasel? 121161 62529 419447

Table: Group of MIPLIB 2017 instances where root LP is non-trivial.

Simplex vs Barrier vs PDLP - a computational comparison

Instances Simplex Barrier PDLP(CPU) PDLP(GPU)
rminell 3.82 2.07 41.19 4.04
rminel3 6.85 4.36 56.61 7.70
rminelb 28.07 13.08 137.99 8.30
rmine21 848.69 187.13 1531.02 111.71
rmine25 > 3600.00 1600.66 > 3600.00 681.90
satellites2-25 36.87 5.18 27.24 3.80
satellites2-40 33.90 4.86 20.61 3.51
satellites2-60-fs 4.23 0.68 30.23 6.87
satellites3-25 91.97 27.45 71.48 4.72
satellites4-25 180.60 34.68 87.77 7.64
uccase’? 5.91 1.49 103.96 13.15
uccase8 1.63 1.10 9.34 2.65
uccase9 2.99 1.64 72.78 16.30
uccaselO 1.30 1.21 4.15 12.16
uccasel?2 0.62 0.66 90.69 13.07

Table: COPT solution time comparison (seconds). Time limit: 3600s.
Setting: only LP presolving is performed, all solved to optimal basis.
Hardware: AMD 7900X with 128G and NVIDIA 4090 with 24G memory.

Active research areas

Interior-point methods.
» Theory and algorithms for non-symmetric cones.
» GPU implementations.

» Exploiting sparse structure in semidefinite optimization.

First-order methods.

» Theory and algorithms.
Improve step-size and restart strategies.

» Further investigate alternative first-order methods.

» GPU implementations.

Try COPT - quick starts

Python
pip install coptpy

Julia
Pkg.add("COPT")

Trial license
» No need to apply for a license for non-commercial use.
» Within 10000 constraints and variables for LP.
» Within 2000 constraints and variables for other problem types. |

Online documentation:
https://guide.coap.online/copt/en-doc/

https://guide.coap.online/copt/en-doc/

Applegate, David, Oliver Hinder, Haihao Lu, and Miles Lubin.
“Faster first-order primal-dual methods for linear programming
using restarts and sharpness”. In: Mathematical Programming
201.1 (2023), pp. 133-184.

Chambolle, Antonin and Thomas Pock. “A first-order
primal-dual algorithm for convex problems with applications to
imaging”. In: Journal of mathematical imaging and vision 40
(2011), pp. 120-145.

Sturm, Jos F. “Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones”. In: Optimization methods
and software 11.1-4 (1999), pp. 625-653.

Vandenberghe, Lieven. Lecture notes for EE236C -
Optimization Methods for Large-Scale Systems.

[d Wright, Stephen J. Primal-dual interior-point methods. SIAM,

1997.

	References

