
Ralf Borndörfer

Design of Public Transit Systems

09:15 Ralf Borndörfer Design of Public Transit Systems

10:00 Niels Lindner Periodic timetable optimization in public transport

11:15 Daniel Rehfeldt Optimizing vehicle and crew schedules in public transport

12:00 Daniel Roth Using airline planning software to plan ICU personnel

14:15-

17:45 Milena Petkovic Computational Challenge Day 4



Long Economic Waves & Basic Innovations

Nikolai D. Kondratieff Joseph Schumpeter
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What significance has mobility?
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► Volume

► Urbanization

► Complexity

► Digitization

What is happening?
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Billions of ton kilometers, FIS Mobilität und Verkehr (www.forschungsinformationssystem.de)

Truck Railways River boats Aircraft

# trains with less than 6 minutes of delay (www.myway.de/e.lauterbach/pstat.html)

Volkswagen Group Italy S.P.A. (modo.volkswagengroup.it)
Digitale Schiene Deutschland, www.digitaleschiene.de



54°

43°

The bent pyramid of Dashur

Do we need mathematics?
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Smart City = Netzworks + Data + Math + … 
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► Leonid V. Kantorovich
Nobel prize for Economics 1975 

► Tjalling C. Koopmans
Nobel prize for Economics 1975

Mathematics & Mobility
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Resource Allocation: Sea Freight
(Koopmans [1965], 7 Sources, 7 Sinks, all Sea Links)
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► D. Ray Fulkerson ► L. Randolph Ford Jr.

Mathematics & Mobility

9



Network Flows: Military Logistics
(Ford & Fulkerson [1955], Schrijver [2002])
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► Abraham Charnes
Finalist for the Nobel prize

in Economics 1975

► Merton H. Miller
Nobelprize for Economics 1990

mit Markowitz & Sharpe

Mathematics & Mobility
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Charnes & Miller 1956
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Borndörfer | Mathematische Optimierung im Verkehr | 39. urbanicom Studientagung

Ralf Borndörfer 12



Mathematics & Mobility

13

Edsger W. Dijkstra



Shortest-Path-Algorithms: Route Planning
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Planning Problems in Public Transport

15

Strategic Planning

Operational Planning

Operations Control



Track Capacity
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► 180 trains for network small (no station routing, no buffer times)

► 196 trains for network big with precise routing through stations (no buffer times)

► 175 trains for network big with precise routing through stations and buffer times

The corridor capacity can be explored.
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Line Planning @ Karlsruhe

18

0%

>0% to 2%

>2% to 4%

>4% to 6%

>6% to 8%

>8% to 10%

>10% to 20%

>20% to 30% 

>30%

Districts

Extrapolation factor 14-25



Substantial improvements are possible.

19

Scenario Average Perceived 
TT

 perceived TT [% 
plan VBK]

 # transfers  transfer freq. [% 
plan VBK]

Operation costs [% 
plan VBK]

Reference case 26.771 99.4% 0.3959 98.9% 108.6%

Plan VBK 26.922 100.0% 0.4004 100.0% 100.0%

Quality 26.601 98.8% 0.3958 98.9% 102.1%

Costs 26.695 99.2% 0.3972 99.2% 90.4%

TTK

Costs

Quality

FrequencyA

FrequencyB

c
o

s
ts

in
 u

n
it
s

travel time in minutes x 106 (system optimum) improvements in # direct travelers



► Metrobüs BRT System

Line Planning @ Istanbul

20

Demand (Weekday, Forward)

Demand (Weekday, Backward)



► Demand & Status Quo vs. Unimodal Timetable (14:00)

Mathematics can explore new ideas. 
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► Morning & Evening Peak Timetable (Open Lines)

Mathematics can explore new ideas. 
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Planning Problems in Public Transport

23

Strategic Planning

Operational Planning

Operations Control



Konrad Zuse

24

Konrad Zuse and his Z1

FU Zedat

Metropolis



„So … an engineer. Berlin, my 

birthplace, was not far. There 

was enough technology and 

enough that needed 

improving here. However, 

why should I spend my time 

on a completely built-up 

city? No, I wanted to design 

the city of the future. At that 

time the magazines were 

filled with designs of such 

dream cities, and the film 

Metropolis, a city of some 35 

million inhabitants, along with 
traffic engineering lines." 

„In those days, either the Am-

erican grid system or a purely 

centralized system was con-

sidered optimal. I chose a 

combination of the two, 

where the outer centralized 

street system turned into a 

homogeneous system in the 

center. From a traffic engi-

neering pov the 60 system 

seemed to me a good one, 

and it was also an appealing 

solution in terms of city plan-

ning. The outer centripetal 
system would change into a 
60 system in the center." 

Metropolis (-Grid with Branches & Rings)

25



Once built, networks persist.

26

Scenario 𝒑 |𝑽| |𝑬|
𝜿

relative cost
𝝂

pax utility

𝒒∗

pax-operator
efficiency

10x10,1,0 3 121 220 1.8334 0.6001 0.5952

Metropolis 3 252 450 1.9736 0.7121 0.6443

Berlin 3 122 157 1.3039 0.5365 0.4115

Tokyo 3 125 183 1.6668 0.5424 0.3254

Grid / Tokyo Metropolis / Berlin

Thoma [2016]



Planning Problems in Public Transport

27

Strategic Planning

Operational Planning

Operations Control



"Kombiverkehr" (Combined Traffic) @ Karlsruhe
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"Kombiverkehr" (Combined Traffic) @ Karlsruhe

29

Good mood above.

Good move below.



"Kombiverkehr" Construction Site

30

Ka-news.de



Solution

Data Basis / Visum Model / Targets

SWOT / Standards

Draft Versions
new structure/lines

design and model

Impact Analysis

Planning Process

31

Optimisation

Participation 
Process

1.001 ideas, 
complaints, 
suggestiions



Solution

Data Basis / Visum Model / Targets

SWOT / Standards

Draft Versions
new structure/lines

design and model

Impact Analysis

Optimisation

Planning Process

32

Requirements / Restrictions

Participation 
Process

1.001 ideas, 
complaints, 
suggestiions

Impact Analysis



Data to set up Visum Model

33

stops: appropriate/not 

appropriate for double 

traction

routes/stops: 

appropriate/not 

appropriate for tram / 

light rail / bus 

define potential 

terminal stops/stations

turns for trams/LRT 

possible, not possible

Public transport network including lengths and travel 

times (bus, tram, light rail)



2015 PT Demand Data

34

Demand Estimate:

OD-Data (KVV inquiry 

2008, pax counts 2015)



0%

>0% to 2%

>2% to 4%

>4% to 6%

>6% to 8%

>8% to 10%

>10% to 20%

>20% to 30% 

>30%

Districts

Extrapolation factor 14-25

2025 PT Demand Forecast

35

Demand Estimate:

extrapolation of OD-data

Population growth 

2015 -> 2025

Caption



Planning Process: Definitions

36

fixed passenger 

demand (2025)

determine vehicle 

capacities and 

costs per kilometer 

taking fleet 

development into 

account

Reference Case:

The overall costs 

should not exceed the 

„Standi“ solution, 

constructed for a cost 

benefit-study in 2003

Vehicle costs = ⌈"line travel time (to+fro)" /“frequency"  " " ⌉⋅fixed cost rate

Operation costs = line length (to+fro) ⋅frequenz ⋅cost rate

small penalties on 

overloaded segments

transfer penalty: 

8 minutes



Planning Process: Restrictions / Iterations

37

fixed bus linespermit only 10 

minutes headway or 

superposition of at 

least 2 frequencies of 

20 minutes

fixed LRT lines

lines should 

not cross 

themselves

forbid some branch-

combinations: weakly 

vs. highly capacitated

maximum capacity of 

the tunnel



Planning Process: “Specific” Restrictions

38

e.g. S2 generally 

considered as 

operating in 

single traction

one direct connection 

via Karlsstr. / via 

Ettlinger Str. / 

via Rüppurer Str.

to Karlsruhe main 

station

at most 6 lines 

via Gottesauer 

Platz

all tracks must 

be covered 

(except 

Kapellenstr.)

special effect: 

Konzerthaus



► Various solutions computed with varied restrictions

► Travel time improvements vs. cost reductions

Computing Solutions 

39



► Capacity utilization at maximum

► no direct connection between Wolfartsweier and 

center 

Extreme "Costs" Optimization

40



► Tunnel capacity and costs at maximum

Extreme Travel Time Optimization

41



► 8 lines (reference case: 9)

"Quality" Solution

42



Solution  Overview
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c
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 i
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travel time in minutes

(system optimum)



Scenario "Costs" (6 Lines of Maximum Load) 
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Reference Case 
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Solution "Quality"
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Solution "Costs" 
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Reference Case: Visum Pax Routing
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Solution "Quality": Visum Pax Routing
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Solution "Costs": Visum Pax Routing

52



► Scenario "Costs": -10% costs compared to status quo ante 

► Quality: - 6% costs compared to reference case

Visum Pax Routing: Comparison of KPIs  

53

Scenario Average 

perceived TT 

[min]

Average 

perceived TT 

[% plan VBK]

Average # of

transfers

Average 

transfer

frequency [% 

plan VBK]

Operation

costs [% plan 

VBK]

Reference case: 

Stand. Bewertung
26 771 99.4% 0.3959 98.9% 108.6%

Current plan VBK 26 922 100.0% 0.4004 100.0% 100.0%

Network TTK 2025 

updated
27 200 101.0% 0.4005 100.0% 100.1%

ZIB scenario basis 26 627 98.9% 0.3947 89.6% 97.9%

ZIB scenario quality 26 601 98.8% 0.3958 98.9% 102.1%

ZIB scenario costs 26 695 99.2% 0.3972 99.2% 90.4%

ZIB scenario

frequency A
26 434 98.2% 0.3814 95.3% 95.0%



► Tunnel (East-West): 4 instead of 5 lines (10-mins headway) 

Vsisum Pax Routing: Comparison of Loads  

54

Scenario

Load Kaiserstr.

West 

[pax/weekday]

Load Kriegsstr.

West 

[pax/weekday]

Load Kriesstr. West 

[percentage]

Reference case: 

Stand. Bewertung
80 500 16 600 17.1%

Current plan VBK 78 300 16 700 17.6%

Network TTK 2025 

updated
81 400 25 200 23.6%

ZIB scenario basis 77 100 28 900 27.3%

ZIB scenario quality 76 200 29 900 28.2%

ZIB scenario costs 78 400 24 200 23.6%

ZIB scenario

frequency A
72 800 32 700 31.0%



► Basis: Average travel 

time in network VBK

► Difference of average 

travel time  in percent

► Bar goes up = higher 

average travel time

► Bar goes down = 

smaller average travel 

time

Average Travel Time (Comparison to "VBK")

55

TTK

Costs

Quality

FrequencyA

FrequencyB



► Basis: Number of direct 

travelers (starting in 

region) in network VBK

► Difference of direct 

travelers in percent

► Bar goes up = more 

direct travelers

► Bar goes down = less 

direct travelers

Direct Travelers (Comparison to "VBK")

56

TTK

Costs

Quality

FrequencyA

FrequencyB



► The demand justifies only the extension on Kriegsstraße.

Network Extensions  

57

1
2

3

4

5



► A high level of accuracy is required regarding the 

modelling of infrastructural and operational parameters.

► Optimization needs high quality OD-data.

► Restrictions can be standardized to some extent, but some 

requirements will be specific in each case/town.

► Discussions in the planning process focus on restrictions, not 

on quality measures/solutions.

► An iterative planning process is essential to improve 

solutions.

Conclusions
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Features

► Bicriteria problem
(cost vs. quality)

► Passenger behavior

(transfers)

Line Planning and Steiner Path Connectivity

59

Line Planning Problem

Find a cost minimal set of lines 
and associated frequencies, 
s.t. a given set of travel 
demands can be transported 
in minimal time.

Steiner Path Connectivity 
Problem

Find a cost minimal set of 
paths that provide enough 
capacity to route a fastest
multi-commodity flow.

Graphics: JavaView, F4



Steiner (Path) Connectivity Problem

60

Minimize cost

Connect all OD nodes

Terminals T 
(OD nodes)



Mathematical Line Planning Example

► line capacity 50

► demands:
𝑎 → 𝑓: 50; 𝑎 → 𝑏: 50;
𝑑 → 𝑓: 20; 𝑑 → 𝑐: 80

► feasible solution:
lines ℓ3, ℓ4 at frequency 2
line ℓ5 at frequency 1

61

61



► travel time on path = sum of travel times on edges
𝑝1 = (𝑎, 𝑒, 𝑓) 𝜏𝑝1 = 𝜏𝑎𝑒 + 𝜏𝑒𝑓
𝑝2 = (𝑎, 𝑒, 𝑓, 𝑏) 𝜏𝑝2 = 𝜏𝑎𝑒 + 𝜏𝑒𝑓 + 𝜏𝑓𝑏
𝑝3 = (𝑑, 𝑔, 𝑓) 𝜏𝑝3 = 𝜏𝑑𝑓 + 𝜏𝑔𝑓
𝑝4 = (𝑑, 𝑔, 𝑐) 𝜏𝑝4 = 𝜏𝑑𝑔 + 𝜏𝑔𝑐

► direct connections are not distinguished from non-direct 

connections, transfer times (within a mode) are ignored

Basic Line Planning Model

► feasible solution:

lines ℓ3, ℓ4 at frequency 2

line ℓ5 at frequency 1

62



Features

► Complete line pool

► Multi-criteria objective

► Integrated passenger routing

Basic Line Planning Model

63

Disadvantage

► No transfers (within a mode)

Minimize cost and travel time

Transport all demand

Capacity constraints

One frequency per line



Maximize direct travelers

Bussieck, Kreuzer & Zimmermann [1997],  Bussieck [1997]

► System split (a priori pax routing)

Minimize transfers/transfer time

Scholl [2005]; Schöbel & Scholl [2005]; Schmidt [2012]

► detailed treatment of transfers

► change-&-go-graph on the basis of all lines; large scale model

Maximize travel quality

Nachtigall & Jerosch [2008]

► utility for each path including all transfers

► capacity constraint for each partial route and line; large scale 

model

Minimize pareto function of line cost and travel times

B., Grötschel & Pfetsch [2007]; B., Neumann & Pfetsch [2008]

► allows line pricing; computationally tractable

► ignores transfers within same transportation mode

Literature (with Passenger Routing)
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► travel time on path = sum of travel times on edges
𝑝1 = (𝑎, 𝑒, 𝑓) 𝜏𝑝1 = 𝜏(𝑎,ℓ3)(𝑒,ℓ3) + 𝜏(𝑒,ℓ3)(𝑓,ℓ3)
𝑝2 = (𝑎, 𝑒, 𝑓, 𝑏) 𝜏𝑝2 = 𝜏(𝑎,ℓ3)(𝑒,ℓ3) + 𝜏(𝑒,ℓ3)(𝑓,ℓ3) + 𝜏(𝑓,ℓ3)(𝑓,ℓ5)

+ 𝜏(𝑓,ℓ5)(𝑏,ℓ5)
𝑝3 = (𝑑, 𝑔, 𝑓) 𝜏𝑝3 = 𝜏(𝑑,ℓ4)(𝑔,ℓ4) + 𝜏 𝑔,ℓ4 𝑔,ℓ5 + 𝜏(𝑔,ℓ5)(𝑓,ℓ5)
𝑝4 = (𝑑, 𝑔, 𝑐) 𝜏𝑝4 = 𝜏(𝑑,ℓ4)(𝑔,ℓ5) + 𝜏(𝑔,ℓ4)(𝑐,ℓ5)

► all transfers are considered

Change-and-Go Model
(Schöbel & Scholl [2005])

65

► change-and-go graph

► each node/edge is copied 

for each line covering it
𝒱 = { 𝑣, ℓ : 𝑣 ∈ 𝑉, ℓ ∈ ℒ, 𝑣 ∈ 𝑉(ℓ)

► complete graph (of transfers)

𝑣, ℓ , 𝑣, ℓ′ ∀ℓ, ℓ′ ∈ ℒ



Features

► (Complete) line pool

► Multi-criteria objective

► Integrated passenger routing with transfers

Change-and-Go Model
(Schöbel & Scholl [2005])

66

Disadvantage

► Very large scale (needs 
enumeration of all possible lines)

Variables: 𝑥ℓ,𝑓 = 1 if line ℓ ∈ L is chosen with frequency 𝑓 ∈F; 𝑥ℓ,𝑓 = 0 otherwise

𝑦𝑝 ≥ 0 passenger flow on path 𝑝 ∈P

Minimize cost and travel time

Transport all demand

Capacity constraints

One frequency per line



► add transfer penalty 𝜎 on non-direct connections

𝑝1 = (𝑎, 𝑒, 𝑓) 𝑧𝑝1,0
ℓ3 = 50 𝜏𝑝1 = 𝜏𝑎𝑒 + 𝜏𝑒𝑓

𝑝2 = (𝑎, 𝑒, 𝑓, 𝑏) 𝑦𝑝2,1 = 50 𝜏𝑝2 = 𝜏𝑎𝑒 + 𝜏𝑒𝑓 + 𝜏𝑓𝑏 + 𝜎

𝑝3 = (𝑑, 𝑔, 𝑓) 𝑦𝑝3,1 = 20 𝜏𝑝3 = 𝜏𝑑𝑓 + 𝜏𝑔𝑓 + 𝜎

𝑝4 = (𝑑, 𝑔, 𝑐) 𝑧𝑝4,0
ℓ4 = 80 𝜏𝑝4 = 𝜏𝑑𝑔 + 𝜏𝑔𝑐

► transfer times for ≥ 2 transfers are underestimated

Idea of the Direct Connection Model

67

► Idea: Associate a passenger 
path either with a direct 

connection line or with a 

transfer penalty

𝑧𝑝,0
ℓ # passengers on path 𝑝

traveling directly with line ℓ

𝑦𝑝,1 # passengers on path 𝑝

traveling with ≥ 1 transfer



Problem

► Still many variables

► Primal degeneracy (pax paths

can be assigned to many lines)

Direct Path Connection Model
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Idea

► Line independent aggregation 

of direct connections as 



Properties

► Only necessary variables

► Treatment of direct connec-

tions needs to be added

"Skeleton" Direct Connection Model
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Idea

► Line independent aggregation 

of direct connections as 



Either the aggregated direct connection flow can be split …

… or the Farkas dual solves:

What about the direct connection capacities?

71



► Consider a solution of the dual:

► W.l.o.g.

(C) has a solution if and only if there exists 𝜇 ∈ 0,1 ℒ×𝐴 s.t. 

What about direct connection capacities?
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► Characterization of path capacities that support a direct 

connection routing

► Can be generalized to more than one transfer

► Relation to multicommodity flow results of Iri [1971] & Kakusho & 

Onaga [1971] 

► Characterize arc capacities that support a multicommodity 

flow by metric inequalities

► Paths are more general than arcs

► Direct connection routing is more restrictive than gen. routing

The Direct Connection Metric Inequalities

73

Theorem (Direct Connection Metric Inequalities):

A capacity vector 𝑐 ∈ ℝ+
ℒ supports a direct connection routing 𝑦𝑝,0

∗ if and 

only if



► Equivalent to basic DC model 

Direct Connection Model

74

► Algorithmically tractable?



Restating the Farkas dual as an optimization problem:

Separating the DC Metric Inequalities
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►

► Feasible region does not depend on flow

► Polyhedron, polynomial number of (explicitly known) 

constraints

► Objective value = amount of flow mistakenly 

considered as being routed directly

Separating the DC Metric Inequalities
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Proposition (Separation of Direct Connection Metric Inequalities):

The dcmetric inequalities can be separated in polynomial time. Hence, the LP relaxation 
of the direct connection model can be solved in polynomial time (non-direct 
connection paths can be priced in polynomial time).



Planning Problems in Public Transport
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Strategic Planning

Operational Planning

Operations Control



Dutch Intercity Network
(Bussieck [1998], Bussieck, Kreuzer, Zimmermann [1996], Claessens, van Dijk, Zwaneveld [1998])

78

Hr Asn Zl Hgl Ah   Ut Shl Asdz Asd Gv  Gvc Rtd Bd Ehv Std  Mt Lls Rsdg Zvg Odzg

Lw 478      380     13  145  20   21   90    6   26   36   14    9   9   4   77    7  14

Gn 1720 720         331  48   88  205   12   73   75   34   28  29  13  200   33  14

Hr 511     11  209  20   16  115   10   48   58   16   11   8   4   77   10  19

Asn 854     16  502  32   58  235   13  117  125   42   33  28  14  152   48  19

Zl 56 1112  64  171  400   33  163  182   79   47  46  21  390  100  32

Apd 468    1160  32   76  917   21  202  143   57   62  10   5        47  83   71

Hgl 422  11   24  287   20   81   52   39   28  20  12        24       75

Ah                     4244  60  721  726  109  741  180  136  101            8  320 602

Ut 278 5826 4919  225 3138 2260 1165 3109 720 359   89  325 996   21

Shl 1456 6469 1339 1503  509    7   99  44  29  103  164

Asdz 461  207  369  138  542 203 149  819    6 155

Asd 730 2540 1756  154  437 155  37 2783 2258 489   22

Gv                                              785 4586  531   35  22   8   29  890

Gvc 2829  228  335 104  41   31    3 229    7

Rtd 1829  569 179  73   46 1077 157   11

Bd 950 157  79    6  329  14    5

Ehv 936 404    8   75  11    3

Std                                                                     863    2   19

Mt 1   22

Lls 15

Hr Asn Zl Hgl Ut Shl Asdz Asd Gv Gvc Rtd Bd Ehv Std Mt Lls Rsdg Zvg Odzg

Lw 29

Gn 28   

Hr 66       

Asn 78       

Zl 85                                        50

Apd 69 64           89   

Hgl 18

Ah               58                                                 19

Ut 34  39     61  57 92  81

Shl 9  19 43  43    

Asdz 9                                    56

Asd 54

Gv                                    1  23

Rtd 49                  18

Ehv 78   

Std                                                     21

Fair?



► 𝑁 = [𝑛] players

► 𝑁 grand coalition

► Σ ⊆ 2𝑁, Σ+ = Σ ∖ ∅ coalitions

► 𝑐: Σ+ → ℝ≥0 cost function

► 𝑃 ⊆ ℝ≥0
𝑁 feasible prices (polyhedron)

► Γ = 𝑁, 𝑐, 𝑃, Σ cost allocation game

► 𝑓: Σ+ → ℝ>0 weight function (1, | ⋅ |, 𝑐)

► 𝑒𝑓 𝑆, 𝑥 =
𝑐 𝑆 −𝑥(𝑆)

𝑓 𝑆
, 𝑆 ∈ Σ+, 𝑥 ∈ 𝑃 𝑓-excess of 𝑆 at price 𝑥

► 𝒳 Γ = {𝑥 ∈ 𝑃: 𝑥 𝑁 = 𝑐(𝑁)} imputation set

► 𝒞 ≔ {𝑥 ∈ 𝒳: 𝑒𝑓 ⋅, 𝑥 ≥ 0} core

► 𝒞𝜖,𝑓 ≔ {𝑥 ∈ 𝒳: 𝑒𝑓 ⋅, 𝑥 ≥ 𝜖} (𝜖, 𝑓)-core

► 𝜖𝑓 ≔ max 𝜖: 𝒞𝜖,𝑓 ≠ ∅ 𝑓-least core radius

► ℒ𝒞𝑓 ≔ 𝒞𝜖𝑓,𝑓 𝑓-least core

► 𝒩𝑓 ≔ lexmax ℒ𝒞𝑓 𝑓-nucleolus

► 𝜙: Γ → 𝑃 cost allocation method

Cost Allocation Games
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1. 𝜙(Γ) 𝑁 = 𝑐(𝑁) efficiency

2. 𝜙 Γ 𝑆 ≤ 𝜙 Γ𝑆 (𝑆) ∀𝑆 ∈ Σ+ coalitional stability

3. 𝜙 Γ ∈ 𝒞 core price

4. ∃𝐾, 𝛼 > 0: ǁ𝑐 ⋅ − 𝑐 ⋅ ≤ 𝛼𝑐 ⋅
⟹ 𝜙 ǁ𝑐 𝑖 − 𝜙 𝑐 𝑖 ≤ 𝐾𝛼𝜙 𝑐 𝑖∀𝑖 bounded variation

Cost allocation methods

► 𝜙 Γ 𝑖 = 𝑐 𝑖 ∀𝑖 ∈ 𝑁 fixed-price (¬1,¬3)

► 𝜙 Γ 𝑖 = 𝑐 𝑖 ⋅
𝑐(𝑁)

σ𝑗∈𝑁 𝑐(𝑗)
∀𝑖 ∈ 𝑁 proportional (¬2,¬3)

► 𝜙 Γ = ℒ𝒞𝑓 𝑓-least core (¬2,¬4)

= argmax𝑥 𝜖
𝑥 𝑆 + 𝜖𝑓 𝑆 ≤ 𝑐 𝑆 ∀𝑆 ∈ Σ+ ∖ 𝑁
𝑥 𝑁 = 𝑐 𝑁
𝑥 ∈ 𝑃

Desirable Properties
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1. 𝜙(Γ) 𝑁 = 𝑐(𝑁) efficiency

2. 𝜙 Γ 𝑆 ≤ 𝜙 Γ𝑆 (𝑆) ∀𝑆 ∈ Σ+ coalitional stability

3. 𝜙 Γ ∈ 𝒞 core price

4. ∃𝐾, 𝛼 > 0: ǁ𝑐 ⋅ − 𝑐 ⋅ ≤ 𝛼𝑐 ⋅
⟹ 𝜙 ǁ𝑐 𝑖 − 𝜙 𝑐 𝑖 ≤ 𝐾𝛼𝜙 𝑐 𝑖∀𝑖 bounded variation

► Proposition (Hoang [2010]): There is no (general) cost allo-

cation method that can guarantee more than 2 out of the 

above 4 properties (for all games), even for cost allocation 

games with monotone, subadditive cost functions.

► Theorem (Hoang [2010]): For weight functions 𝑓 = 𝛼𝑔 + 𝛽𝑐, 

where 𝛼, 𝛽 ∈ ℚ, 𝛼 + 𝛽 > 0, 𝑔: Σ → ℚ modular and positive on 
Σ+, the 𝑓-nucleolus of a "strongly bounded" cost allocation 

game can be computed in time that is polynomial in 

oracles for computing 𝑐 𝑆 , 𝑔(𝑆), membership for Σ, and 

separation for 𝑃.

Desirable Properties
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► Λ = {{𝑖}: 𝑖 ∈ 𝑁} ∪ 𝑁
► R: Λ → ℝ>0, σ𝑖 𝑅({𝑖}) = 𝑐(𝑁) reference price function

► 𝑟𝑖 = 𝑅 {𝑖} , 𝑖 ∈ 𝑁 reference price for player 𝑖
► ℒ𝒞𝑓,𝑟 ≔𝒩𝑅(𝑁, 𝑅, ℒ𝒞𝑓 Γ , Λ) (𝑓, 𝑟)-least core

:= arglexmin𝑥∈ℒ𝒞𝑓
𝑥𝑖

𝑟𝑖 𝑖∈𝑁
as 𝑒𝑅 {𝑖}, 𝑥 =

𝑟𝑖−𝑥𝑖

𝑟𝑖
= 1 −

𝑥𝑖

𝑟𝑖

Fairness Diagram
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𝑐 𝑆 = min ෍

𝑟,𝑓 ∈ℛ×ℱ

𝑐𝑟,𝑓
1 𝜉𝑟,𝑓 + 𝑐𝑟,𝑓

2 𝜌𝑟,𝑓

s. t. ෍

𝑒∈𝑟∈ℛ

෍

𝑓∈ℱ

𝑐𝑐𝑎𝑝𝑓 𝑚𝜉𝑟,𝑓 + 𝜌𝑟,𝑓 ≥෍

𝑖∈𝑆

𝑃𝑒
𝑖 ∀𝑒 ∈ 𝐸

෍

𝑒∈𝑟∈ℛ

෍

𝑓∈ℱ

𝑓𝜉𝑟,𝑓 ≥ 𝐹𝑒
𝑖 ∀ 𝑒, 𝑖 ∈ 𝐸 × 𝑆

𝜌𝑟,𝑓 − 𝑀 −𝑚 𝜉𝑟,𝑓 ≤ 0 ∀ 𝑟, 𝑟 ∈ ℛ × ℱ

෍

𝑓∈ℱ

𝜉𝑟,𝑓 ≤ 1 ∀𝑟 ∈ ℛ

𝜉 ∈ {0,1}ℛ×ℱ , 𝜌 ∈ ℤ≥0
ℛ×ℱ

Separation problem extends to OD-pair choice plus objective change to excess.

Cost Function (Line Planning Problem)
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route 𝑟 has frequency 𝑓
route 𝑟 with frequency 𝑓

has 𝑚+ 𝜌𝑟,𝑓 coaches

≤ 1 frequencies per route

arc capacities for shortest path routing

min frequencies for shortest path routing



► Players

𝑛 = 81 OD-pairs of highest demand, 281 − 1 coalitions

► Reference price 

𝑃𝑠𝑡 =
𝑐 𝑁

σ𝑠𝑡∈𝑁 𝑑𝑠𝑡
⋅ 𝑑𝑠𝑡

► Monotonicity

0 ≤
𝑥𝑢𝑣
𝑃𝑢𝑣

≤
𝑥𝑠𝑡
𝑃𝑠𝑡

≤ ෍

𝑢𝑣∈𝒫𝑠𝑡

𝑥𝑢𝑣
𝑃𝑢𝑣

∀𝑠𝑡 ∈ 𝑆, 𝑢𝑣 ∈ 𝒫𝑠𝑡

► Distance-likeness

max
𝑠𝑡

𝑥𝑠𝑡
𝑑𝑠𝑡𝑃𝑠𝑡

≤ 𝐾min
𝑠𝑡

𝑥𝑠𝑡
𝑑𝑠𝑡𝑃𝑠𝑡

∀𝑠𝑡 ∈ 𝑆

► Weight function

𝑓 = 𝑐,

i.e, 𝑒𝑓 𝑆, 𝑥 = 𝑒𝑐 𝑆, 𝑥 =
𝑐 𝑆 −𝑥(𝑆)

𝑐 𝑆
= relative savings

Setup
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Least-core Prices (𝐾 = +∞)
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ss

𝑥
𝑠𝑡

𝑃
𝑠𝑡

coalition coalition

coalition coalition

max lc loss 1.1%
max 𝑃 loss 25.67%

max 𝑃 loss for Randstadt
coalition

2 coalitions have increases > 
3.775, Den Haag CS-Den Haag HS 

has 14.4, Hengelo–Oldenzaal 
Grens 11.85, and Apeldoorn–

Oldenzaal Grens 3.775



Least-core Prices (𝐾 = +∞ vs. 𝐾 = 3)
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Least-core Prices (𝐾 = 3)
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𝑐-
ex
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𝑐-
ex
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ss

𝑥
𝑠𝑡

𝑃
𝑠𝑡

coalition coalition

coalition coalition

max lc loss 1.1%
max 𝑃 loss 25.67%

max 𝑃 loss for Randstadt
coalition with high lc excess

max increase is 1.89



Arnhem-Zevenaar Grens 0.63

Amsterdam CS-Roosendaal 0.63

Breda-Eindhoven 0.63

Roosendaal-Rotterdam CS 0.63

Roosendaal-Zwolle 0.65

Eindhoven-Den Haag CS 0.65

Roosendaal-Schiphol 0.69

Eindhoven-Roosendaal 0.70

Eindhoven-Rotterdam CS 0.71

Amsterdam CS-Eindhoven 0.72

Den Haag HS-Roosendaal 0.73

Roosendaal-Utrecht CS 0.73

Rotterdam CS-Zwolle 0.74

Amsterdam CS-Rotterdam CS 0.76

Amsterdam CS-Zevenaar 0.79

Best 15 (𝑥𝑠𝑡/𝑃𝑠𝑡 for 𝐾 = 3 and 𝐾 = +∞)
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Breda-Roosendaal 1.30

Hengelo-Utrecht CS 1.30

Schiphol-Zwolle 1.30

Den Haag CS-Schiphol 1.35

Den Haag HS-Schiphol 1.36

Amsterdam Zuid-Zwolle 1.42

Amsterdam CS-Zwolle 1.52

Breda-Rotterdam CS 1.55

Leylstad-Utrecht CS 1.55

Amsterdam Zuid-Leylstadt 1.84

Apeldoorn-Hengelo 1.89

Apeldoorn-Oldenzaal 1.89

Den Haag HS-Den Haag CS 1.89

Hengelo-Oldenzaal 1.89

Leylstad-Zwolle 1.89

Worst 15 (𝑥𝑠𝑡/𝑃𝑠𝑡 for 𝐾 = 3 and 𝐾 = +∞)
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Worst 15 (𝑥𝑠𝑡/𝑃𝑠𝑡 for 𝐾 = 3 and 𝐾 = +∞)
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Thank you very much for your attention!
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Strategic Planning

Operational Planning

Operations Control



Beijing (-Grid with Ls & Rings)
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