
Global Optimization of Mixed-Integer Nonlinear Programs

Ksenia Bestuzheva,
bestuzheva@zib.de

CO@Work · Berlin, Germany · September 19, 2024

mailto:bestuzheva@zib.de


Introduction

Ksenia Bestuzheva (ZIB) Global Optimization of Mixed-Integer Nonlinear Programs 1 / 34

https://kbestuzheva.github.io/


Mixed-Integer Nonlinear Programs

min cTx
s.t. Ax ≤ b

gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ [ℓi, ui] ∀i ∈ [n]
xi ∈ Z ∀i ∈ I ⊆ [n]

The nonlinear part: functions gk ∈ C1([ℓ, u],R):
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Examples of Nonlinearities

• Variable multiplier p ∈ [0, 1] of variable quantity q: qp. Example: water treatment unit

• AC power flow - nonlinear function of voltage magnitudes and angles

pij = gijv2i − gijvivj cos(θij) + bijvivj sin(θij)

• Distance constraints

(x − x0)2 + (y − y0)2 ≤ R

• etc.
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Solving a Mixed-Integer Optimization Problem

Two major tasks:

1. Finding and improving feasible solutions (primal side)
• Ensure feasibility, not necessarily maintaining optimality
• Important for many practical applications

2. Proving optimality (dual side)
• Ensure optimality, not necessarily maintaining feasibility
• Necessary in order to actually solve the problem
• Provides guarantees on solution quality

Linked by:

3. Strategy
• Ensure convergence
• Divide: branching, decompositions, ...
• Put together all components to find a solution that is feasible and optimal

(or within a proven gap from the optimum)
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Nonlinearity Brings New Challenges
1. Primal side

• Feasible solutions must also satisfy nonlinear constraints
• If nonconvex: local optima, local infeasibility

2. Dual side
• NLP relaxations capture the problem better, LP relaxations are faster
• Strong cuts needed for various nonlinearities
• If nonconvex: straightforward continuous relaxation no longer provides a lower bound

3. Strategy
• Need to account for all of the above
• Warmstart for NLP is less efficient than for LP

• More numerical issues
• NLP solving is less efficient and reliable than LP

→
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Finding Feasible Solutions
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Primal Heuristics

The goal of primal heuristics is to find solutions that are:
• feasible (satisfying all constraints) and
• good quality (solutions with lower objective value are preferable).

The best solution found so far is referred to as best feasible or incumbent. It provides an upper/primal bound
on the optimal value.

Common theme in primal heuristics: restrict the problem to obtain an ’easier’ subproblem for which a feasible
solution can be found.

Nonconvex case: NLP subproblems are usually solved to local optimality.
• Local optima are still feasible solutions
• Not finding the global optimum affects the quality of upper bounds
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Primal Heuristics for MINLPs
MILP heuristics
• Can be applied to MINLPs (solutions violating nonlinear constraints can be passed to NLP local search).

NLP local search
• Fix integer variables to values at reference point; solve the NLP.
• Reference point examples: integer feasible solution of the LP relaxation,
solution from an MILP heuristic.

min

Undercover
• Fix some variables so that constraints become linear; solve the MILP.

Sub-MINLP
• Extensions of MILP large neighbourhood search heuristics.
• Search around promising solutions.
• The region is restricted by additional constraints and/or fixing variables.
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Proving Optimality
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Proving Optimality

• Using relaxations for finding lower bounds
• Relaxations for convex MINLPs
• Relaxations for nonconvex MINLPs
• Managing cuts: initial cuts and dynamically added cuts
• How to strengthen relaxations
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Finding Lower Bounds: Relaxations

A relaxation R of a feasible set F is a set such that F ⊆ R.

Requirement: the relaxed problem should be efficiently solvable to global optimality.

Relaxations can be:
• Convex: NLP solutions are globally optimal, infeasibility detection is reliable
• Linear: solving is more efficient, good for warmstarting

MILP and MINLP relaxations are sometimes used as well.

It is preferable that relaxations:
• Are tight: small R \ F, dual bound close to the optimal value
• Are compact: avoid excessive numbers of constraints and variables
• Have reasonable numerics
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Relaxations for Convex MINLPs

• Relax integrality

→

• Replace the nonlinear set with a linear outer approximation

• Relax integrality + linear outer approximation → LP relaxation
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Outer Approximating Convex Constraints

A linear inequality ax ≤ b is valid if x ∈ F ⇒ ax ≤ b (cutting planes, or cuts, are valid inequalities)

Given constraint g(x) ≤ 0 and a reference point x̂, one can build:

Gradient cuts (Kelley):
g(x̂) +∇g(x̂)(x − x̂) ≤ 0

Projected cuts: same, but move x̂ to the boundary of F
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Convex Relaxations for Nonconvex MINLPs

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid ⇒ construct a
convex relaxation.

The best relaxation is conv(F): convex hull of F, i.e. the smallest convex set containing F. In general, cannot
be constructed explicitly.

Therefore:

• Relax sets given by individual constraints: gk(x) ≤ 0

↑
• Find convex underestimators gcv

k of functions gk: gcv
k (x) ≤ gk(x) ∀x ∈ [l, u]

↑
• Find and combine relaxations of simple functions

Examples of simple functions: x2, xk, √x, xy, etc.
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Combining Relaxations

Expression trees
Algebraic structure of nonlinear constraints can be
stored in one directed acyclic graph:

• nodes: variables, operations, constraints
• arcs: flow of computation

Underestimators of compositions
Find underestimator for g(x) = ϕ(ψ1(x), . . . , ψp(x)),
where functions can be convexified directly.

• McCormick relaxations for factorable functions:
piecewise continuous relaxations utilising convex
and concave envelopes of ϕ and ψj.

• Auxiliary variable method: introduce variables
yj = ψj(x). Then g(x) = ϕ(y1, . . . , yp). Enables
individual handling of each function.

log(x)2 + 2 log(x)y + y2

+

·2

log

x

×

2

·2

y

[−∞, 4]

[1, 4]

[1, 4]
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Linear Relaxations for Nonconvex MINLPs

• If possible, directly construct linear underestimators for nonconvex
functions

• Secants for concave functions
• McCormick envelopes for bilinear products
• etc.
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• Construct gradient cuts for a convex relaxation
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Cut Generation

Initial cuts
• Added before the first LP relaxation is solved
• Reference points chosen based on feasible set only
• Aiming for a compact formulation that roughly captures F and yields a

reference point for separation

Separation
• Reference point is a relaxation solution x̂ /∈ F
• Valid inequalities ax ≤ b violated by x̂: ax̂ > b
• Thus x̂ is separated from F

Cut selection: choose from violated cuts using various criteria for cut usefulness (e.g. violation, orthogonality,
density, etc.).
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Strengthening Relaxations: Tighter Variable Bounds
Tighter bounds ⇒ tighter relaxations.

Example: McCormick relaxation of a bilinear product relation z = xy:

z ≤ xuy + xyl − xuyl

z ≤ xly + xyu − xlyu

z ≥ xly + xyl − xlyl

z ≥ xuy + xyu − xuyu

(x, y) ∈ [−1, 2]× [−2, 2] (x, y) ∈ [0, 1]× [−1, 1]

Tighter bounds obtained from:
• Branching (more on this in the Strategy section)
• Specialized bound tightening techniques
• Piecewise-linear relaxations
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Strengthening Relaxations: Using More Constraints

More constraints ⇒ tighter relaxations.
Example: perspective formulations. Use an additional constraint that requires x to be semicontinuous.

g(x) ≤ 0, lz ≤ x ≤ uz
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Strategy
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Strategy

• Goal: bring together the primal and dual side, i.e. find the optimal solution and prove that
it is optimal

• Sometimes finding a solution within a certain proven gap is enough

• A brief overview of algorithms for convex MINLPs
• Spatial branch and bound for nonconvex MINLPs
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Algorithms for Convex MINLP: Overview

MIP

NLP

Outer Approximation:
• Solve MILP relaxations and NLP subproblems
• Add gradient cuts at solutions of NLP subproblems
• Uses the equivalence of MINLP to MILP

MIP

Extended Cutting Planes:
• Solve MILP relaxations
• Add gradient cuts at solutions of MILP relaxations

Branch and Bound:
• Generalization of MILP B&B
• The continuous relaxation is nonlinear (but convex)
• Different choices between LP and NLP relaxations
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Algorithms for Nonconvex MINLP: Spatial Branching

• Recall: variable bounds determine the convex relaxation, e.g.,

x2 ≤ ℓ2 +
u2 − ℓ2

u − ℓ
(x − ℓ) ∀x ∈ [ℓ, u]

• Branch on variables in violated nonconvex constraints to improve relaxations
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Spatial Branch and Bound for MINLP

• Solve a relaxation → lower bound
• Branch on a suitable variable (integer, or

continuous in a violated nonconvex constraint)
• If a solution is integer feasible and satisfies

nonlinear constraints → upper bound
• Discard parts of the tree that are infeasible or

where lower bound ≥ best known upper bound
• Repeat until gap is below given tolerance

Smaller domains → improved relaxations → improved bounds.

In practice algorithms also include presolving, heuristics, propagation, etc.
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MINLP in SCIP
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MINLP in SCIP

• SCIP is a constraint integer programming (CIP) solver
• CIP is a generalization of MILP allowing for arbitrary constraints as long as a tractable relaxation can be

built
• CIP includes MINLP (and a few other problem classes)

• SCIP implements LP-based spatial B&B
• Convex relaxations are constructed via the auxiliary variable method
• The handling of nonlinear constraints is based on expression graphs
• The nonlinear constraint handler coordinates sub-plugins handling various nonlinearities
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Expression Trees in SCIP

Operators:
• variable index, constant
• +, −, ∗, ÷
• ·2, √·, ·p (p ∈ R), ·n (n ∈ Z), x 7→ x|x|p−1 (p > 1)
• exp, log
• min, max, abs
•

∑
,
∏

, affine-linear, quadratic, signomial
• (user)

log(x)2 + 2 log(x)y + y2

+

·2

log

x

×

2

·2

y

[−∞, 4]

[1, 4]

[1, 4]
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Reformulation (During Presolve)

Goal: reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic)
remain. Implements the auxiliary variable method.

Example:

g(x) =
√

exp(x21) ln(x2)

Reformulation:

g =
√y1

y1 = y2y3
y2 = exp(y4)
y3 = ln(x2)
y4 = x21

0.0

0.5
1.0

1.5
2.0

1.01.52.0 0

2

4

6

Introduces new variables and new constraints.
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Problem with classic approach

Explicit reformulation of constraints ...
• ... loses the connection to the original problem.
• ... loses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
• ... prevents simultaneous exploitation of overlapping structures.
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SCIP’s Handling of Reformulations

• Avoid explicit split-up of constraints
• Introduce extended formulation as annotation to the original formulation
• Use extended formulation for relaxation
• Use original formulation for feasibility checking
• To resolve infeasibility in original constraints, tighten relaxation of extended formulation
• The original formulation is kept
• This avoids wrong feasibility checks
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Practical Topics
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Impact of Modeling

The choice of formulation makes a difference.

Example: x and y contained in circle of radius c if z = 1 and are both zero if z = 0.

One could model this as:

x2 + y2 ≤ cz
x, y ∈ R, z ∈ {0, 1}

Or as:

x2 + y2 ≤ cz2

x, y ∈ R, z ∈ {0, 1}

These describe the same feasible set (z2 = z if z ∈ {0, 1}). But the second formulation leads to a tighter
continuous relaxation (z2 < z if z ∈ (0, 1)).
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How to Experiment

• Performance variability
• Significant changes in performance caused by small changes in model/algorithm
• Occurs in MILP, but tends to be even more pronounced in MINLP

• Obtaining more reliable results
• If possible and makes sense, use large and heterogeneous testsets
• Take advantage of performance variability: model permutations (reordering variables and constraints) can help

against random effects (for example, in SCIP this is controlled by a parameter)
• Using solver statistics

• Information on tree nodes, primal and dual bounds, effects of solver components
• Helpful for finding bottlenecks

• Isolating feature effects
• Turn off some components to get rid of some random effects...
• or to analyse interaction: some component might make the feature redundant, etc.
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Recap

• MINLPs combine integrality and nonlinearity
• Algorithms are based on finding and improving primal and dual bounds
• Primal bounds are found by heuristics; there are many extensions of MILP techniques
• Dual bounds are found via relaxations (usually convex or linear)
• Spatial branch and bound solves nonconvex MINLPs globally by also branching on continuous variables

Questions?
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