Global Optimization of Mixed-Integer Nonlinear Programs

Ksenia Bestuzheva, bestuzheva@zib.de

CO@Work · Berlin, Germany · September 19, 2024

Introduction

Mixed-Integer Nonlinear Programs

$$\min c^{\mathsf{T}} x \\ \text{s.t. } Ax \leq b \\ g_k(x) \leq 0 \qquad \forall k \in [m] \\ x_i \in [\ell_i, u_i] \qquad \forall i \in [n] \\ x_i \in \mathbb{Z} \qquad \forall i \in \mathcal{I} \subseteq [n]$$

The nonlinear part: functions $g_k \in C^1([\ell, u], \mathbb{R})$:

Examples of Nonlinearities

• Variable multiplier $p \in [0, 1]$ of variable quantity q: qp. Example: water treatment unit

• AC power flow - nonlinear function of voltage magnitudes and angles

$$p_{ij} = g_{ij}v_i^2 - g_{ij}v_iv_j\cos(\theta_{ij}) + b_{ij}v_iv_j\sin(\theta_{ij})$$

Distance constraints

$$(x - x_0)^2 + (y - y_0)^2 \le R$$

etc.

Solving a Mixed-Integer Optimization Problem

Two major tasks:

- 1. Finding and improving feasible solutions (primal side)
 - Ensure feasibility, not necessarily maintaining optimality
 - Important for many practical applications
- 2. Proving optimality (dual side)
 - Ensure optimality, not necessarily maintaining feasibility
 - Necessary in order to actually solve the problem
 - Provides guarantees on solution quality

Linked by:

- 3. Strategy
 - Ensure convergence
 - Divide: branching, decompositions, ...
 - Put together all components to find a solution that is feasible and optimal (or within a proven gap from the optimum)

Nonlinearity Brings New Challenges

1. Primal side

- Feasible solutions must also satisfy nonlinear constraints
- If nonconvex: local optima, local infeasibility
- 2. Dual side
 - NLP relaxations capture the problem better, LP relaxations are faster
 - Strong cuts needed for various nonlinearities
 - If nonconvex: straightforward continuous relaxation no longer provides a lower bound

3. Strategy

- Need to account for all of the above
- Warmstart for NLP is less efficient than for LP
- More numerical issues
- NLP solving is less efficient and reliable than LP

 \rightarrow

Finding Feasible Solutions

Primal Heuristics

The goal of primal heuristics is to find solutions that are:

- feasible (satisfying all constraints) and
- good quality (solutions with lower objective value are preferable).

The best solution found so far is referred to as **best feasible** or **incumbent**. It provides an **upper/primal bound** on the optimal value.

Common theme in primal heuristics: **restrict the problem** to obtain an 'easier' subproblem for which a feasible solution can be found.

Nonconvex case: NLP subproblems are usually solved to local optimality.

- Local optima are still feasible solutions
- Not finding the global optimum affects the quality of upper bounds

Primal Heuristics for MINLPs

MILP heuristics

Can be applied to MINLPs (solutions violating nonlinear constraints can be passed to NLP local search).

NLP local search

- Fix integer variables to values at reference point; solve the NLP.
- Reference point examples: integer feasible solution of the LP relaxation, solution from an MILP heuristic.

Undercover

• Fix some variables so that constraints become linear; solve the MILP.

Sub-MINLP

- Extensions of MILP large neighbourhood search heuristics.
- Search around promising solutions.
- The region is restricted by additional constraints and/or fixing variables.

Proving Optimality

Proving Optimality

- Using relaxations for finding lower bounds
- Relaxations for convex MINLPs
- Relaxations for nonconvex MINLPs
- Managing cuts: initial cuts and dynamically added cuts
- How to strengthen relaxations

Finding Lower Bounds: Relaxations

```
A relaxation R of a feasible set F is a set such that F \subseteq R.
```

Requirement: the relaxed problem should be efficiently solvable to global optimality.

Relaxations can be:

- Convex: NLP solutions are globally optimal, infeasibility detection is reliable
- Linear: solving is more efficient, good for warmstarting

MILP and MINLP relaxations are sometimes used as well.

It is preferable that relaxations:

- Are tight: small $R \setminus F$, dual bound close to the optimal value
- Are compact: avoid excessive numbers of constraints and variables
- Have reasonable numerics

Relaxations for Convex MINLPs

Relax integrality

Replace the nonlinear set with a linear outer approximation

- Relax integrality + linear outer approximation \rightarrow LP relaxation

Outer Approximating Convex Constraints

A linear inequality $ax \le b$ is valid if $x \in F \Rightarrow ax \le b$ (cutting planes, or cuts, are valid inequalities) Given constraint $g(x) \le 0$ and a reference point \hat{x} , one can build:

Gradient cuts (Kelley): $g(\hat{x}) + \nabla g(\hat{x})(x - \hat{x}) \leq 0$

Projected cuts: same, but move \hat{x} to the boundary of *F*

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid \Rightarrow construct a convex relaxation.

The best relaxation is conv(F): convex hull of F, i.e. the smallest convex set containing F. In general, cannot be constructed explicitly.

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid \Rightarrow construct a convex relaxation.

The best relaxation is conv(F): convex hull of F, i.e. the smallest convex set containing F. In general, cannot be constructed explicitly. Therefore:

• Relax sets given by individual constraints: $g_k(x) \le 0$

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid \Rightarrow construct a convex relaxation.

The best relaxation is conv(F): convex hull of F, i.e. the smallest convex set containing F. In general, cannot be constructed explicitly. Therefore:

- Relax sets given by individual constraints: g_k(x) ≤ 0
 ↑
- Find convex underestimators g_k^{cv} of functions g_k : $g_k^{cv}(x) \le g_k(x) \ \forall x \in [l, u]$

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid \Rightarrow construct a convex relaxation.

The best relaxation is conv(F): convex hull of F, i.e. the smallest convex set containing F. In general, cannot be constructed explicitly. Therefore:

- Relax sets given by individual constraints: g_k(x) ≤ 0
 ↑
- Find convex underestimators g^{cv}_k of functions g_k: g^{cv}_k(x) ≤ g_k(x) ∀x ∈ [l, u]
 ↑
- Find and combine relaxations of simple functions

Examples of simple functions: x^2 , x^k , \sqrt{x} , xy, etc.

Combining Relaxations

Expression trees

Algebraic structure of nonlinear constraints can be stored in one directed acyclic graph:

- nodes: variables, operations, constraints
- arcs: flow of computation

Underestimators of compositions

Find underestimator for $g(x) = \phi(\psi_1(x), \dots, \psi_p(x))$, where functions can be convexified directly.

- McCormick relaxations for factorable functions: piecewise continuous relaxations utilising convex and concave envelopes of φ and ψ_j.
- Auxiliary variable method: introduce variables y_j = ψ_j(x). Then g(x) = φ(y₁,..., y_p). Enables individual handling of each function.

- If possible, directly construct linear underestimators for nonconvex functions
 - Secants for concave functions
 - McCormick envelopes for bilinear products
 - etc.

- If possible, directly construct linear underestimators for nonconvex functions
 - Secants for concave functions
 - McCormick envelopes for bilinear products
 - etc.

Construct gradient cuts for a convex relaxation

- If possible, directly construct linear underestimators for nonconvex functions
 - Secants for concave functions
 - McCormick envelopes for bilinear products
 - etc.

Construct gradient cuts for a convex relaxation

- If possible, directly construct linear underestimators for nonconvex functions
 - Secants for concave functions
 - McCormick envelopes for bilinear products
 - etc.

Construct gradient cuts for a convex relaxation

- If possible, directly construct linear underestimators for nonconvex functions
 - Secants for concave functions
 - McCormick envelopes for bilinear products
 - etc.

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a relaxation solution $\hat{x} \notin F$
- Valid inequalities $ax \leq b$ violated by \hat{x} : $a\hat{x} > b$
- Thus \hat{x} is **separated** from *F*

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a relaxation solution $\hat{x} \notin F$
- Valid inequalities $ax \leq b$ violated by \hat{x} : $a\hat{x} > b$
- Thus \hat{x} is **separated** from *F*

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a relaxation solution $\hat{x} \notin F$
- Valid inequalities $ax \leq b$ violated by \hat{x} : $a\hat{x} > b$
- Thus \hat{x} is **separated** from *F*

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a relaxation solution $\hat{x} \notin F$
- Valid inequalities $ax \leq b$ violated by \hat{x} : $a\hat{x} > b$
- Thus \hat{x} is **separated** from *F*

Initial cuts

- Added before the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Separation

- Reference point is a relaxation solution $\hat{x} \notin F$
- Valid inequalities $ax \leq b$ violated by \hat{x} : $a\hat{x} > b$
- Thus \hat{x} is **separated** from *F*

Cut selection: choose from violated cuts using various criteria for cut usefulness (e.g. violation, orthogonality, density, etc.).

Strengthening Relaxations: Tighter Variable Bounds

Tighter bounds \Rightarrow tighter relaxations.

Example: McCormick relaxation of a bilinear product relation z = xy:

 $z \le x^{\mu}y + xy^{\prime} - x^{\mu}y^{\prime}$ $z \le x^{\prime}y + xy^{\mu} - x^{\prime}y^{\mu}$ $z \ge x^{\prime}y + xy^{\prime} - x^{\prime}y^{\prime}$ $z \ge x^{\mu}y + xy^{\mu} - x^{\mu}y^{\mu}$

 $(x, y) \in [-1, 2] \times [-2, 2]$

 $(\textbf{x},\textbf{y}) \in [0,1] \times [-1,1]$

Tighter bounds obtained from:

- Branching (more on this in the Strategy section)
- Specialized bound tightening techniques
- Piecewise-linear relaxations

Strengthening Relaxations: Using More Constraints

More constraints \Rightarrow tighter relaxations.

Example: perspective formulations. Use an additional constraint that requires x to be semicontinuous.

 $g(x) \le 0, \ lz \le x \le uz$

Strategy

- Goal: bring together the primal and dual side, i.e. find the optimal solution and prove that it is optimal
 - Sometimes finding a solution within a certain proven gap is enough
- A brief overview of algorithms for convex MINLPs
- Spatial branch and bound for nonconvex MINLPs

Algorithms for Convex MINLP: Overview

Outer Approximation:

- Solve MILP relaxations and NLP subproblems
- Add gradient cuts at solutions of NLP subproblems
- Uses the equivalence of MINLP to MILP

Extended Cutting Planes:

- Solve MILP relaxations
- Add gradient cuts at solutions of MILP relaxations

Branch and Bound:

- Generalization of MILP B&B
- The continuous relaxation is nonlinear (but convex)
- Different choices between LP and NLP relaxations

Algorithms for Nonconvex MINLP: Spatial Branching

Recall: variable bounds determine the convex relaxation, e.g.,

$$\mathbf{x}^2 \leq \ell^2 + rac{\mathbf{u}^2 - \ell^2}{\mathbf{u} - \ell} (\mathbf{x} - \ell) \quad \forall \mathbf{x} \in [\ell, \mathbf{u}]$$

Branch on variables in violated nonconvex constraints to improve relaxations

- Solve a relaxation \rightarrow lower bound
- Branch on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is integer feasible and satisfies nonlinear constraints → upper bound
- Discard parts of the tree that are infeasible or where lower bound
 best known upper bound
- Repeat until gap is below given tolerance

Smaller domains \rightarrow improved relaxations \rightarrow improved bounds.

- Solve a relaxation \rightarrow lower bound
- Branch on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is integer feasible and satisfies nonlinear constraints → upper bound
- Discard parts of the tree that are infeasible or where lower bound
 best known upper bound
- Repeat until gap is below given tolerance

Smaller domains \rightarrow improved relaxations \rightarrow improved bounds.

- Solve a relaxation \rightarrow lower bound
- Branch on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is integer feasible and satisfies nonlinear constraints → upper bound
- Discard parts of the tree that are infeasible or where lower bound
 best known upper bound
- Repeat until gap is below given tolerance

Smaller domains \rightarrow improved relaxations \rightarrow improved bounds.

- Solve a relaxation \rightarrow lower bound
- Branch on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is integer feasible and satisfies nonlinear constraints → upper bound
- Discard parts of the tree that are infeasible or where lower bound
 best known upper bound
- Repeat until gap is below given tolerance

Smaller domains \rightarrow improved relaxations \rightarrow improved bounds.

- Solve a relaxation \rightarrow lower bound
- Branch on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is integer feasible and satisfies nonlinear constraints → upper bound
- Discard parts of the tree that are infeasible or where lower bound
 best known upper bound
- Repeat until gap is below given tolerance

Smaller domains \rightarrow improved relaxations \rightarrow improved bounds.

MINLP in SCIP

MINLP in SCIP

- SCIP is a constraint integer programming (CIP) solver
- CIP is a generalization of MILP allowing for arbitrary constraints as long as a tractable relaxation can be built
- CIP includes MINLP (and a few other problem classes)

- SCIP implements LP-based spatial B&B
- Convex relaxations are constructed via the auxiliary variable method
- The handling of nonlinear constraints is based on expression graphs
- The nonlinear constraint handler coordinates sub-plugins handling various nonlinearities

Expression Trees in SCIP

Expression Trees in SCIP

Operators:

- variable index, constant
- +, -, *, ÷
- \cdot^2 , $\sqrt{\cdot}$, \cdot^p $(p \in \mathbb{R})$, \cdot^n $(n \in \mathbb{Z})$, $x \mapsto x |x|^{p-1}$ (p > 1)
- exp, log
- min, max, abs
- \sum , \prod , affine-linear, quadratic, signomial
- (user)

Reformulation (During Presolve)

Goal: reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain. Implements the auxiliary variable method.

Example:

$$g(x) = \sqrt{\exp(x_1^2)\ln(x_2)}$$

Introduces new variables and new constraints.

Reformulation (During Presolve)

Goal: reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain. Implements the auxiliary variable method.

Example:

$$g(x) = \sqrt{\exp(x_1^2)\ln(x_2)}$$

Reformulation:

$$g = \sqrt{y_1} y_1 = y_2 y_3 y_2 = \exp(y_4) y_3 = \ln(x_2) y_4 = x_1^2$$

Introduces new variables and new constraints.

Explicit reformulation of constraints ...

- ... loses the connection to the original problem.
- ... loses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
- ... prevents simultaneous exploitation of overlapping structures.

SCIP's Handling of Reformulations

- Avoid explicit split-up of constraints
- Introduce extended formulation as annotation to the original formulation
- Use extended formulation for relaxation
- Use original formulation for feasibility checking
- To resolve infeasibility in original constraints, tighten relaxation of extended formulation
- The original formulation is kept
- This avoids wrong feasibility checks

Practical Topics

Impact of Modeling

The choice of formulation makes a difference.

Example: x and y contained in circle of radius c if z = 1 and are both zero if z = 0.

One could model this as:

$$x^2 + y^2 \le cz$$

x, y \in \mathbb{R}, z \in \{0, 1\}

Or as:

$$x^{2} + y^{2} \le cz^{2}$$
$$x, y \in \mathbb{R}, \ z \in \{0, 1\}$$

These describe the same feasible set ($z^2 = z$ if $z \in \{0, 1\}$). But the second formulation leads to a tighter continuous relaxation ($z^2 < z$ if $z \in (0, 1)$).

How to Experiment

- Performance variability
 - · Significant changes in performance caused by small changes in model/algorithm
 - Occurs in MILP, but tends to be even more pronounced in MINLP
- Obtaining more reliable results
 - If possible and makes sense, use large and heterogeneous testsets
 - Take advantage of performance variability: model permutations (reordering variables and constraints) can help against random effects (for example, in SCIP this is controlled by a parameter)
- Using solver statistics
 - Information on tree nodes, primal and dual bounds, effects of solver components
 - Helpful for finding bottlenecks
- Isolating feature effects
 - Turn off some components to get rid of some random effects...
 - or to analyse interaction: some component might make the feature redundant, etc.

Recap

- MINLPs combine integrality and nonlinearity
- Algorithms are based on finding and improving primal and dual bounds
- Primal bounds are found by heuristics; there are many extensions of MILP techniques
- Dual bounds are found via relaxations (usually convex or linear)
- Spatial branch and bound solves nonconvex MINLPs globally by also branching on continuous variables

Questions?