Global Optimization of Mixed-Integer Nonlinear Programs

Ksenia Bestuzheva, bestuzheva@zib.de

CO@Work *·* Berlin, Germany *·* September 19, 2024

Introduction

Mixed-Integer Nonlinear Programs

The nonlinear part: functions $g_k \in C^1([l, u], \mathbb{R})$:

Examples of Nonlinearities

• Variable **multiplier** *p ∈* [0*,* 1] of variable quantity *q*: *qp*. Example: **water treatment** unit

• **AC power flow** - nonlinear function of voltage magnitudes and angles

• **Distance** constraints

• etc.

Solving a Mixed-Integer Optimization Problem

Two major tasks:

- 1. Finding and improving feasible solutions (**primal side**)
	- **Ensure feasibility**, not necessarily maintaining optimality
	- Important for many practical applications
- 2. Proving optimality (**dual side**)
	- **Ensure optimality**, not necessarily maintaining feasibility
	- Necessary in order to actually solve the problem
	- Provides guarantees on solution quality

Linked by:

3. Strategy

- **Ensure convergence**
- Divide: branching, decompositions, ...
- Put together all components to find a solution that is **feasible** and **optimal** (or within a proven gap from the optimum)

Nonlinearity Brings New Challenges

1. Primal side

- Feasible solutions must also satisfy nonlinear constraints
- If nonconvex: local optima, local infeasibility
- 2. Dual side
	- NLP relaxations capture the problem better, LP relaxations are faster
	- Strong cuts needed for various nonlinearities
	- If nonconvex: straightforward continuous relaxation no longer provides a lower bound
- 3. Strategy
	- Need to account for all of the above
	- Warmstart for NLP is less efficient than for LP
- More numerical issues
- NLP solving is less efficient and reliable than LP

→

Finding Feasible Solutions

Primal Heuristics

The goal of primal heuristics is to **find solutions** that are:

- **feasible** (satisfying all constraints) and
- **good quality** (solutions with lower objective value are preferable).

The best solution found so far is referred to as **best feasible** or **incumbent**. It provides an **upper/primal bound** on the optimal value.

Common theme in primal heuristics: **restrict the problem** to obtain an 'easier' subproblem for which a feasible solution can be found.

Nonconvex case: NLP subproblems are usually solved to local optimality.

- Local optima are still feasible solutions
- Not finding the global optimum affects the quality of upper bounds

Primal Heuristics for MINLPs

MILP heuristics

• Can be applied to MINLPs (solutions violating nonlinear constraints can be passed to NLP local search).

NLP local search

- **Fix integer variables** to values at reference point; solve the NLP.
- Reference point examples: integer feasible solution of the LP relaxation, solution from an MILP heuristic.

• **Fix some variables** so that constraints become **linear**; solve the MILP.

Sub-MINLP

- Extensions of MILP large neighbourhood search heuristics.
- Search around **promising** solutions.
- The region is restricted by additional constraints and/or fixing variables.

Proving Optimality

Proving Optimality

- Using relaxations for finding lower bounds
- Relaxations for convex MINLPs
- Relaxations for nonconvex MINLPs
- Managing cuts: initial cuts and dynamically added cuts
- How to strengthen relaxations

Finding Lower Bounds: Relaxations

A **relaxation** R of a feasible set F is a set such that $F \subseteq R$.

Requirement: the relaxed problem should be **efficiently** solvable to **global** optimality.

Relaxations can be:

- **Convex**: NLP solutions are globally optimal, infeasibility detection is reliable
- **Linear**: solving is more efficient, good for warmstarting

MILP and MINLP relaxations are sometimes used as well.

It is preferable that relaxations:

- Are tight: small $R \setminus F$, dual bound close to the optimal value
- Are **compact**: avoid excessive numbers of constraints and variables
- Have **reasonable numerics**

Relaxations for Convex MINLPs

• Relax integrality

• Replace the nonlinear set with a linear outer approximation

• Relax integrality + linear outer approximation *→* LP relaxation

Outer Approximating Convex Constraints

A linear inequality $ax \leq b$ is valid if $x \in F$ \Rightarrow $ax \leq b$ (cutting planes, or cuts, are valid inequalities) Given constraint $g(x) \leq 0$ and a reference point \hat{x} , one can build:

Gradient cuts (Kelley): $g(\hat{x}) + \nabla g(\hat{x})(x - \hat{x}) \leq 0$

Projected cuts: same, but move ˆ*x* to the boundary of *F*

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid *⇒* construct a convex relaxation.

The best relaxation is *conv*(*F*): **convex hull** of *F*, i.e. the smallest convex set containing *F*. In general, **cannot be constructed explicitly**.

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid *⇒* construct a convex relaxation.

The best relaxation is *conv*(*F*): **convex hull** of *F*, i.e. the smallest convex set containing *F*. In general, **cannot be constructed explicitly**. Therefore:

• Relax sets given by **individual constraints**: $g_k(x) \leq 0$

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid *⇒* construct a convex relaxation.

The best relaxation is *conv*(*F*): **convex hull** of *F*, i.e. the smallest convex set containing *F*. In general, **cannot be constructed explicitly**. Therefore:

• Relax sets given by **individual constraints**: $g_k(x) \leq 0$

↑

■ Find convex underestimators $g_k^{\mathcal{L}'}$ of functions $g_k: g_k^{\mathcal{L}'}(x) \leq g_k(x) \,\forall x \in [l, u]$

Relaxing integrality no longer provides a lower bound, and gradient cuts are no longer valid *⇒* construct a convex relaxation.

The best relaxation is *conv*(*F*): **convex hull** of *F*, i.e. the smallest convex set containing *F*. In general, **cannot be constructed explicitly**. Therefore:

- Relax sets given by **individual constraints**: $g_k(x) \leq 0$
- Find convex underestimators $g_k^{\mathcal{L}'}$ of functions $g_k: g_k^{\mathcal{L}'}(x) \leq g_k(x) \,\forall x \in [l, u]$ *↑*
- Find and combine relaxations of **simple functions**

Examples of simple functions: x^2 , x^k , \sqrt{x} , *xy*, etc.

↑

Combining Relaxations

Expression trees

Algebraic structure of nonlinear constraints can be stored in **one** directed acyclic graph:

- nodes: variables, operations, constraints
- arcs: flow of computation

Underestimators of compositions

Find underestimator for $g(x) = \phi(\psi_1(x), \dots, \psi_p(x))$, where functions can be convexified directly.

- **McCormick relaxations** for factorable functions: piecewise continuous relaxations utilising convex and concave envelopes of ϕ and ψ_j .
- **Auxiliary variable** method: introduce variables *y*_{*j*} = $\psi_j(x)$. Then $g(x) = \phi(y_1, \ldots, y_p)$. Enables individual handling of each function.

 $\log(x)^2 + 2\log(x)y + y^2$

- If possible, **directly** construct linear underestimators for nonconvex functions
	- Secants for concave functions
	- McCormick envelopes for bilinear products
	- etc.

- If possible, **directly** construct linear underestimators for nonconvex functions
	- Secants for concave functions
	- McCormick envelopes for bilinear products
	- etc.

- If possible, **directly** construct linear underestimators for nonconvex functions
	- Secants for concave functions
	- McCormick envelopes for bilinear products
	- etc.

- If possible, **directly** construct linear underestimators for nonconvex functions
	- Secants for concave functions
	- McCormick envelopes for bilinear products
	- etc.

- If possible, **directly** construct linear underestimators for nonconvex functions
	- Secants for concave functions
	- McCormick envelopes for bilinear products
	- etc.

 3.5 $\overline{}$ 2.5 $\overline{}$ 1.5 $\frac{1}{0.5}$ $\overline{0.5}$ $\overline{2}$ $\frac{1}{1.5}$

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a **relaxation solution** ˆ*x ∈*/ *F*
- Valid inequalities *ax ≤ b* violated by ˆ*x*: *a*ˆ*x > b*
- Thus ˆ*x* is **separated** from *F*

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a **relaxation solution** ˆ*x ∈*/ *F*
- Valid inequalities *ax ≤ b* violated by ˆ*x*: *a*ˆ*x > b*
- Thus ˆ*x* is **separated** from *F*

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a **relaxation solution** ˆ*x ∈*/ *F*
- Valid inequalities *ax ≤ b* violated by ˆ*x*: *a*ˆ*x > b*
- Thus ˆ*x* is **separated** from *F*

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

- Reference point is a **relaxation solution** ˆ*x ∈*/ *F*
- Valid inequalities *ax ≤ b* violated by ˆ*x*: *a*ˆ*x > b*
- Thus ˆ*x* is **separated** from *F*

Initial cuts

- Added **before** the first LP relaxation is solved
- Reference points chosen based on feasible set only
- Aiming for a compact formulation that roughly captures *F* and yields a reference point for separation

Separation

- Reference point is a **relaxation solution** ˆ*x ∈*/ *F*
- Valid inequalities *ax ≤ b* violated by ˆ*x*: *a*ˆ*x > b*
- Thus ˆ*x* is **separated** from *F*

Cut selection: choose from violated cuts using various criteria for cut usefulness (e.g. violation, orthogonality, density, etc.).

Strengthening Relaxations: Tighter Variable Bounds

Tighter bounds *⇒* tighter relaxations.

Example: McCormick relaxation of a bilinear product relation $z = xy$:

$$
z \le x^{u}y + xy' - x^{u}y'
$$

\n
$$
z \le x'y + xy^{u} - x'y^{u}
$$

\n
$$
z \ge x'y + xy' - x'y'
$$

\n
$$
z \ge x^{u}y + xy^{u} - x^{u}y^{u}
$$

Tighter bounds obtained from:

- **Branching** (more on this in the Strategy section)
- Specialized **bound tightening** techniques
- **Piecewise-linear** relaxations

 $(x, y) \in [-1, 2] \times [-2, 2]$ $(x, y) \in [0, 1] \times [-1, 1]$

Strengthening Relaxations: Using More Constraints

More constraints *⇒* tighter relaxations.

Example: **perspective formulations**. Use an additional constraint that requires *x* to be **semicontinuous**.

Strategy

Strategy

- **Goal**: bring together the primal and dual side, i.e. find the optimal solution and prove that it is optimal
	- Sometimes finding a solution within a certain proven gap is enough
- A brief overview of algorithms for convex MINLPs
- Spatial branch and bound for nonconvex MINLPs

Algorithms for Convex MINLP: Overview

Outer Approximation:

- Solve **MILP relaxations** and **NLP subproblems**
- Add gradient cuts at solutions of NLP subproblems
- Uses the equivalence of MINLP to MILP

Extended Cutting Planes:

- Solve MILP relaxations
- Add gradient cuts at solutions of **MILP relaxations**

Branch and Bound:

- Generalization of MILP B&B
- The continuous relaxation is **nonlinear** (but convex)
- Different choices between LP and NLP relaxations

 \bullet MIP

MIP

Algorithms for Nonconvex MINLP: Spatial Branching

• Recall: variable bounds determine the convex relaxation, e.g.,

$$
x^2 \leq \ell^2 + \frac{u^2 - \ell^2}{u - \ell}(x - \ell) \quad \forall x \in [\ell, u]
$$

• Branch on variables in **violated nonconvex** constraints to improve relaxations

- Solve a **relaxation** *→* lower bound
- **Branch** on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is **integer feasible** and **satisfies nonlinear constraints** *→* upper bound
- **Discard** parts of the tree that are infeasible or where lower bound *≥* best known upper bound
- **Repeat** until gap is below given tolerance

Smaller domains *→* improved relaxations *→* improved bounds.

- Solve a **relaxation** *→* lower bound
- **Branch** on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is **integer feasible** and **satisfies nonlinear constraints** *→* upper bound
- **Discard** parts of the tree that are infeasible or where lower bound *≥* best known upper bound
- **Repeat** until gap is below given tolerance

Smaller domains *→* improved relaxations *→* improved bounds.

- Solve a **relaxation** *→* lower bound
- **Branch** on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is **integer feasible** and **satisfies nonlinear constraints** *→* upper bound
- **Discard** parts of the tree that are infeasible or where lower bound *≥* best known upper bound
- **Repeat** until gap is below given tolerance

Smaller domains *→* improved relaxations *→* improved bounds.

- Solve a **relaxation** *→* lower bound
- **Branch** on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is **integer feasible** and **satisfies nonlinear constraints** *→* upper bound
- **Discard** parts of the tree that are infeasible or where lower bound *≥* best known upper bound
- **Repeat** until gap is below given tolerance

Smaller domains *→* improved relaxations *→* improved bounds.

- Solve a **relaxation** *→* lower bound
- **Branch** on a suitable variable (integer, or continuous in a violated nonconvex constraint)
- If a solution is **integer feasible** and **satisfies nonlinear constraints** *→* upper bound
- **Discard** parts of the tree that are infeasible or where lower bound *≥* best known upper bound
- **Repeat** until gap is below given tolerance

Smaller domains *→* improved relaxations *→* improved bounds.

MINLP in SCIP

MINLP in SCIP

- SCIP is a constraint integer programming (CIP) solver
- CIP is a generalization of MILP allowing for arbitrary constraints as long as a tractable relaxation can be built
- CIP includes MINLP (and a few other problem classes)
- SCIP implements **LP-based spatial B&B**
- Convex relaxations are constructed via the **auxiliary variable method**
- The handling of nonlinear constraints is based on **expression graphs**
- The nonlinear constraint handler coordinates sub-plugins handling various nonlinearities

Expression Trees in SCIP

$\log(x)^2 + 2\log(x)y + y^2$

Expression Trees in SCIP

Operators:

- variable index, constant
- +, *−*, *∗*, *÷*
- \bullet \cdot ², $\sqrt{\cdot}$, \cdot *^p* (*p* ∈ ℝ), \cdot ^{*n*} (*n* ∈ ℤ), $x \mapsto x|x|^{p-1}$ (*p* > 1)
- $\bullet\,$ exp, log
- min, max, abs
- ∑, ∏, affine-linear, quadratic, signomial
- (user)

 $\log(x)^2 + 2\log(x)y + y^2$

Reformulation (During Presolve)

Goal: **reformulate constraints** such that only **elementary cases** (convex, concave, odd power, quadratic) remain. Implements the **auxiliary variable method**.

Example:

Introduces **new variables and new constraints**.

Reformulation (During Presolve)

Goal: **reformulate constraints** such that only **elementary cases** (convex, concave, odd power, quadratic) remain. Implements the **auxiliary variable method**.

Example:

$$
g(x) = \sqrt{\exp(x_1^2) \ln(x_2)}
$$

Reformulation:

 $g = \sqrt{y_1}$ *y*¹ = *y*2*y*³ $y_2 = \exp(y_4)$ $y_3 = \ln(x_2)$ $y_4 = x_1^2$

Introduces **new variables and new constraints**.

Problem with classic approach

Explicit reformulation of constraints ...

- ... **loses the connection to the original problem**.
- ... **loses distinction between original and auxiliary variables**. Thus, we may branch on auxiliary variables.
- ... **prevents simultaneous exploitation of overlapping structures**.

SCIP's Handling of Reformulations

- Avoid explicit split-up of constraints
- Introduce **extended formulation** as **annotation to the original** formulation
- Use extended formulation for **relaxation**
- Use original formulation for **feasibility checking**
- To resolve infeasibility in original constraints, tighten relaxation of extended formulation
- The original formulation is kept
- This avoids wrong feasibility checks

Practical Topics

Impact of Modeling

The choice of formulation makes a difference.

Example: *x* and *y* contained in circle of radius *c* if $z = 1$ and are both zero if $z = 0$.

One could model this as:

$$
x2 + y2 \le cz
$$

$$
x, y \in \mathbb{R}, z \in \{0, 1\}
$$

Or as:

$$
x2 + y2 \le cz2
$$

x, y \in \mathbb{R}, z \in \{0, 1\}

These describe the same feasible set $(z^2 = z$ if $z \in \{0,1\})$. But the second formulation leads to a tighter **continuous relaxation** $(z^2 < z$ if $z \in (0,1)$).

How to Experiment

• Performance variability

- **Significant changes in performance** caused by **small changes in model/algorithm**
- Occurs in MILP, but tends to be even more pronounced in MINLP
- Obtaining more reliable results
	- If possible and makes sense, use **large** and **heterogeneous** testsets
	- Take advantage of performance variability: model permutations (reordering variables and constraints) can help against random effects (for example, in SCIP this is controlled by a parameter)
- Using solver statistics
	- Information on tree **nodes**, primal and dual **bounds**, effects of solver **components**
	- Helpful for finding bottlenecks
- Isolating feature effects
	- **Turn off some components** to get rid of some random effects...
	- or to analyse interaction: some component might make the feature redundant, etc.

Recap

- MINLPs combine integrality and nonlinearity
- Algorithms are based on finding and improving primal and dual bounds
- Primal bounds are found by heuristics; there are many extensions of MILP techniques
- Dual bounds are found via relaxations (usually convex or linear)
- Spatial branch and bound solves nonconvex MINLPs globally by also branching on continuous variables

Questions?