

Strengthening model formulations a priori

Timo Berthold

TU Berlin, FICO, MODAL

Agenda

- 1. Presolving
- 2. Conflict Analysis
- 3. Restarts

MIP Solver Flowchart

Linear presolving

Goals:

- Reduce problem size
 - Speed up linear algebra during the solution process
 - And virtually every loop over rows and columns
- Improve the numerics of the problem (e.g., by scaling)
- Keep the ability to postsolve primal & dual solutions and optimal basis
 - Preserve duality
 - Primal Reductions:
 - based on feasibility reasoning
 - no feasible solution is cut off

- Dual Reductions:
 - consider objective function
 - at least one optimal solution remains

MIP presolving

Additional techniques:

- Exploit integrality
 - To strengthen the LP relaxation
 - To reduce search space size
- Identify problem sub-structures
 - Cliques, implied bounds, networks, connected components, ...
- No need to preserve duality
 - We only need to be able to postsolve primal solutions

Trivial stuff

- Remove empty rows, columns
 - E.g., $0^T x \le b_i < 0 \Rightarrow$ infeasible
- Tighten fractional bounds of integer variables

- Substitute fixed variables $x_j = c$ and aggregated variables $x_j = ax_k + \overline{c}$
- Boundshifting of general integers: Replace $x_i \in \{N, N + 1\}$ by binary variable
- Replace singleton rows
 - E.g., $ax_j \le b_i$, $a < 0 \Rightarrow x_j \ge \frac{b_i}{a} \Rightarrow$ new lower bound on x_j
- Normalize constraints
 - E.g., if all coefficients are integral, divide by greatest common divisor
- Classify constraints

Important!

- Problem instances are often automatically generated and contain many artifacts
- Often, the first modeling attempt is trivially infeasible or unbounded
 - Want to recognize this quickly
- Software that cannot recognize trivial things does not look trustworthy
- Trivial reductions often result from prior, non-trivial reductions

Our working example for the next four slides

 $1 \le 2x_1 + 2x_2 \le 3$ $x_1 \in \{0,1\}$ $x_2 \in \mathbb{Z}_{\ge 0}, x_2 \le 2$

FICO ,

Linear presolving

- Important concept: minimal and maximal activities (Brearly et al 1975)
- Let a linear constraint $a^T x \leq b$ and bounds $l \leq x \leq u$ be given.
 - $\alpha_{min} \coloneqq \min\{a^T x : l \le x \le u\} = \sum_{j,a_j>0} a_j l_j + \sum_{j,a_j<0} a_j u_j$ is called minimal activity
 - $\alpha_{max} \coloneqq \max\{a^T x : l \le x \le u\} = \sum_{j,a_j > 0} a_j u_j + \sum_{j,a_j < 0} a_j l_j$ is called maximal activity
 - Example: $1 \le 2x_1 + 2x_2 \le 3, x_1 \in \{0,1\}, x_2 \in \{0,1,2\}$

- First observation:
 - $\alpha_{max} \leq b \Rightarrow$ constraint is redundant, example: $2x_1 + 2x_2 \leq 7, x_1 \in \{0,1\}, x_2 \in \{0,1,2\}$
 - $\alpha_{min} > b \Rightarrow$ problem is infeasible, example: $2x_1 + 2x_2 \le -1, x_1 \in \{0,1\}, x_2 \in \{0,1,2\}$

Bound strengthening

- Important concept: minimal and maximal activities
- Let a linear constraint $a^T x \leq b$ and bounds $l \leq x \leq u$ be given.
 - $\alpha_{min} \coloneqq \min\{a^T x : l \le x \le u\} = \sum_{j,a_j>0} a_j l_j + \sum_{j,a_j<0} a_j u_j$ is called minimal activity
 - $\alpha_{max} \coloneqq \max\{a^T x : l \le x \le u\} = \sum_{j,a_j > 0} a_j u_j + \sum_{j,a_j < 0} a_j l_j$ is called maximal activity
- Second observation:
 - Let $a_i > 0$

.

$$a^{T}x - a_{i}x_{i} + a_{i}x_{i} \le b \iff x_{i} \le \frac{b - (a^{T}x - a_{i}x_{i})}{a_{i}} \implies x_{i} \le \frac{b - \alpha_{min} + a_{i}l_{i}}{a_{i}}$$

- For integer variables: $x_i \leq \left\lfloor \frac{b \alpha_{min} + a_i l_i}{a_i} \right\rfloor$
- Analogous for lower bound and max activity

 $x_2 \le \left| \frac{3 - 0 + 2 \cdot 0}{2} \right| = 1$

Example: $1 \le 2x_1 + 2x_2 \le 3$, $x_1 \in \{0,1\}$, $x_2 \in \{0,1,2\}$

Coefficient tightening

- Important concept: minimal and maximal activities
- Let a linear constraint $a^T x \leq b$ and bounds $l \leq x \leq u$ be given.
 - $\alpha_{min} \coloneqq \min\{a^T x : l \le x \le u\} = \sum_{j,a_j>0} a_j l_j + \sum_{j,a_j<0} a_j u_j$ is called minimal activity
 - $\alpha_{max} \coloneqq \max\{a^T x : l \le x \le u\} = \sum_{j,a_j>0} a_j u_j + \sum_{j,a_j<0} a_j l_j$ is called maximal activity
- Third observation:
 - Let $a_i > 0$, $x_i \in \{0,1\}$ and $a_{max} a_i < b$
 - Then $a_i x_i + \sum_{j \neq i} a_j x_j \le b$ can be reformulated as

$$(\alpha_{max} - b)x_i + \sum_{j \neq i} a_j x_j \le (\alpha_{max} - a_i)$$

• Proof: Check for 0 and 1. Again, other cases analogous

Coefficient tightening

• Let $a_i > 0$, $x_i \in \{0,1\}$ and $a_{max} - a_i < b$

• Then $a_i x_i + \sum_{j \neq i} a_j x_j \le b$ can be reformulated as

$$(\alpha_{max} - b)x_i + \sum_{j \neq i} a_j x_j \le (\alpha_{max} - a_i)$$

Example: $1 \le 2x_1 + 2x_2 \le 3, x_1, x_2 \in \{0,1\}, a_{max} = 4$ $2x_1 + 2x_2 \le 3$ $(4 - 3)x_1 + 2x_2 \le (4 - 2)$ $x_1 + 2x_2 \le 2, a_{max} = 3$ $x_1 + (3 - 2)x_2 \le (3 - 2)$ $x_1 + x_2 \le 1$ Same argument for left-hand side to get $x_1 + x_2 = 1$ Hence $x_1 = 1 - x_2$. Eliminate variable and constraint

Dual reductions

- Ensure that you keep at least one optimal solution
- Most trivial example: Fixing variables that appear in no constraint
- Dual fixing: If variable x_j appears in no equation, only with nonnegative coefficients in ≤-constraints, with nonpositive coefficients in ≥-constraints and has a nonnegative objective, then x_j can be fixed to its lower bound
- Dual aggregation: Assume there is exactly one constraint violating the above, say x_j appears only in \leq -constraints, $c_i > 0$ and a_{ij} is its only negative coefficient. We can use $x_j = \frac{b_i}{a_{ij}} - \frac{1}{a_{ij}} \sum a_k x_k$
- Dual bound reduction: Strengthen bounds of variables to the tightest value for which all its constraints are redundant

Probing (Savelsbergh 1995)

- "Strong branching without LP", only applying bound strengthening
- Usually only for binary variables, various working limits apply
 - Sequence-dependent
- If $x_1 = 0 \Rightarrow$ infeasible and $x_1 = 1 \Rightarrow$ infeasible, then the problem is infeasible
- If $x_1 = 0 \Rightarrow$ infeasible, then fix $x_1 = 1$
- If $x_1 = 0 \Rightarrow x_2 = a$ and $x_1 = 1 \Rightarrow x_2 = b > a$, aggregate $x_2 = a + (b a)x_1$
- If $x_1 = 0 \Rightarrow x_2 \le a$ and $x_1 = 1 \Rightarrow x_2 \le b$, then apply $x_2 \le \max(a, b)$
- If $x_1 = 0 \Rightarrow x_2 \le a$, store information in implication graph, use for heuristics, lifting, ...

Multi-Row/Column reductions

- Parallel rows/columns
 - Search for pairs of rows such that coefficient vectors are parallel to each other
 - Hashing plus sorting algorithm
 - Discard the dominated row, or merge two inequalities into an equation
- Dominated rows/columns
 - Pairwise comparison, heuristic selection of pairs
- Sparsification
 - Add equations to other rows in order to cancel non-zeros
- Clique merging:
 - Merge multiple cliques into one larger clique:
 - $x_1 + x_2 \le 1, x_2 + x_3 \le 1, x_1 + x_3 \le 1 \Rightarrow x_1 + x_2 + x_3 \le 1$

Many more... (e.g., Achterberg et al. 2016)

- Implied integer detection
 - $\sum a_j x_j + y = b$, x_j integer variables $a_j \in \mathbb{Z} \forall j$ and $b \in \mathbb{Z}$, then y integer
- GCD reduction
 - Let gcd be the GCD of all coefficients a_j in a row
 - $\sum \frac{a_j}{gcd} x_j \le \left\lfloor \frac{b}{gcd} \right\rfloor$
- Disconnected component detection
 - DFS on matrix A
 - If there is an independent component $\tilde{A}\tilde{x} \leq \tilde{b}$ that is not connected to the rest of $Ax \leq b$, solve it as auxiliary MIP (if it is small enough)
- Analytic center presolving (Berthold et al 2017)
 - Fix variables that are at one of their bounds in the analytic center

Involved stuff: Configuration Presolving

• Consider a binary row with only few different coefficients:

 $7 x_1 + 7 x_2 + 7 x_3 + 7 x_4 + 13 x_5 + 13 x_6 + 13 x_7 \le 21, x_1, \dots, x_7 \in \{0, 1\}$

- Every feasible solution can have
 - 1. At most three variables out of x_1, x_2, x_3, x_4 set to 1 OR
 - 2. One of x_5, x_6, x_7 set to 1 and at most 1 of the others
- We can introduce new 0-1 variables z_1 , z_2 that describe the two *configurations* above:

$$z_1 + z_2 = 1$$

$$x_1 + x_2 + x_3 + x_4 \le 3 z_1 + 1 z_2$$

$$x_5 + x_6 + x_7 \le 0 z_1 + 1 z_2$$

- This reformulation renders the original row redundant.
- Can be considered an implicit enumeration of the feasible region (modulo symmetry)

Reduced cost fixing

- Not yet a cut, not presolving anymore
- Reduced costs: $\mathbf{r} \coloneqq c A^T y$ for optimal dual solution y

- Underestimator of the amount by which LP value would change, if we shifted solution towards other bound
- Zero for basic variables, nonnegative for nonbasic variables at lower bound, nonpositive for nonbasic variables at upper bound
- Reduced costs can be used to tighten variable bounds of nonbasic variables
 - For binary x_i (at 0 in LP optimum) and LB the dual bound, UB the primal bound of an optimization problem, fix $x_i = 0$, if $r_i \ge UB LB$.
- Apply locally with current LP solution
- Globally, store best reduced cost per variable from any global LP optimum (cut loop!)
 - Reconsider every time when UB changes

- Presolving
 - a) Must not cut off any feasible solution
 - b) May cut off feasible, but must not cut off optimal solutions
 - c) May cut off optimal solutions
- The maximum activity of $x_1 x_2 + 2x_3 \le 5$, $x_1, x_2, x_3 \in \{1, 2\}$ is
 - a) 2
 - b) 5
 - c) 6
- Which of the following is not a goal of presolving?
 - a) Shrink the problem size
 - b) Find an initial solution
 - c) Strenghten the LP relaxation

- Presolving
 - a) Must not cut off any feasible solution
 - b) May cut off feasible, but must not cut off optimal solutions
 - c) May cut off optimal solutions
- The maximum activity of $x_1 x_2 + 2x_3 \le 5$, $x_1, x_2, x_3 \in \{1, 2\}$ is
 - a) 2
 - b) 5
 - c) 6
- Which of the following is not a goal of presolving?
 - a) Shrink the problem size
 - b) Find an initial solution
 - c) Strenghten the LP relaxation

- Presolving
 - a) Must not cut off any feasible solution
 - b) May cut off feasible, but must not cut off optimal solutions
 - c) May cut off optimal solutions
- The maximum activity of $x_1 x_2 + 2x_3 \le 5$, $x_1, x_2, x_3 \in \{1, 2\}$ is
 - a) 2
 - b) <mark>5</mark>
 - c) 6
- Which of the following is not a goal of presolving?
 - a) Shrink the problem size
 - b) Find an initial solution
 - c) Strenghten the LP relaxation

- Presolving
 - a) Must not cut off any feasible solution
 - b) May cut off feasible, but must not cut off optimal solutions
 - c) May cut off optimal solutions
- The maximum activity of $x_1 x_2 + 2x_3 \le 5$, $x_1, x_2, x_3 \in \{1, 2\}$ is
 - a) 2
 - b) <mark>5</mark>
 - c) 6
- Which of the following is not a goal of presolving?
 - a) Shrink the problem size
 - b) Find an initial solution
 - c) Strenghten the LP relaxation

Conflict analysis: Motivation

- Half of the nodes in a binary B&B tree are pruned
 - Infeasibility, Bound-exceeding, solution
- Try to learn what led to infeasibility
 - Generate valid constraints
 - Cut off other parts of the tree
 - Use for propagation
- Sources of infeasibility:
 - Propagation (node presolve)
 - Infeasible LP

Idea comes from SAT solving (Moskewicz et al 2001)

- Boolean variables $x_1, \dots, x_n \in \{0, 1\}$
- Clauses $C_i: l_{i1} \vee \cdots \vee l_{ik}$ with literals $l_{ij} = x_j$ or $l_{ij} = \bar{x}_j = 1 x_j$
- Find assignment that SATisifies all clauses or prove that no such assignment exists
 - THE NP-complete problem
 - Trivial to reformulate as binary MIP without objective
- Working horse unit propagation:
 - All but one literal fixed \Rightarrow last literal
 - E.g., clause: $x_6 \vee \bar{x}_7 \vee x_9 \vee x_{10}$ $(x_6 x_7 + x_9 + x_{10} \ge 0)$
 - Fixings: $x_6 = 0, x_7 = 1, x_9 = 0$
 - Deduction: $\bar{x}_6 \wedge x_7 \wedge \bar{x}_9 \Rightarrow x_{10}$

The conflict graph

- Graph capturing the ensemble of logic deductions that led to the current state (infeasible)
 - Nodes represent variable fixings, ingoing arcs represent a reason for a deduction
 - Green nodes (top): branching decisions, blue nodes: deduced fixings, red λ -node: infeasibility

Cuts lead to cuts

- Every cut that separates branching decisions from conflict vertex gives rise to a conflict constraint
 - $x_6 \vee \bar{x}_7 \vee x_8 \vee x_{12}$
- Trivial cuts:
 - λ -cut: $x_{13} \vee \bar{x}_{14} \vee \bar{x}_{15}$
 - We already knew that...
 - No-good-cut/decision-cut: $x_1 \lor \bar{x}_4 \lor x_6 \lor x_8$
 - Good, if we start from scratch
 - Otherwise, we will never use it

First unique implication points

- Unique implication point: Lies on all paths from the last decision vertex to the conflict vertex
- First-UIP: the UIP closest to the conflict vertex (here: *x*₁₁)
- First-UIP-Cut: everything fixed after First UIP on conflict side. Here: $x_3 \vee \bar{x}_{11}$
- SAT-solver typically use 1-FUIP cuts, MIP solvers All-FUIP

Conflict Analysis in MIP (Achterberg 2007)

- Non-binary variables
 - Use bound changes instead of fixings
 - Relax literals with continuous variables by including equality
- Infeasibility often detected by LP
 - All local bound changes lead to Infeasibility???
 - Try to find subset that still proves infeasibility
 - Non-zeros in dual ray
 - Greedily sparsify dual ray
 - Start conflict analysis from those bound changes

Conflict Analysis: Implementation details

- Create conflict cuts from:
 - Propagation conflicts
 - Infeasible LPs
 - Bound-exceeding LPs
 - Diving heuristic LPs
 - Strong branching LPs
 - Integer feasible LPs
- Use conflict constraints only for propagation
- Use aging or pooling mechanism to maintain short list of conflicts

Rapid Learning (Berthold et al 2010)

- MIP solvers spend a lot of time in root node processing
 - Exhaustive presolving algorithms (probing, dominated columns)
 - Initial LP solve often takes 100-1000x simplex iterations
 - Cutting plane generation
 - LNS heuristics (sub-MIPs)
 - Strong branching
- Idea: SAT-style search (propagation&conflicts, no LP)
 - Will take a fraction of the root time
 - Provides heaps of global information
 - Conflicts, global bound changes
 - Branching statistics
 - Feasible solutions, might even solve the problem

Restarts

- Common practice in SAT solving
 - Periodically (with exponential increase) restart solve
 - Use learnt conflicts to steer search into better direction
 - Tailored towards feasibility problems
 - Need to get lucky once
- Motivation in MIP: presolving
 - Many procedures that are only applied in presolving
 - Global fixings found later might lead to further reductions
 - Tighter presolved problem leads to better cuts, primal solutions, ...
- Question: How can we detect a good point to restart?

Restart reasoning

- Restart at root node
 - When many variables have been fixed
 - When variables with high impact have been fixed
 - When optimization problem turned into feasibility problem
- Restart during tree (Anderson et al 2018)
 - Can be used to change branching (and cutting, heuristic,...) strategy
 - Tailored towards easy instance before, towards hard instances after
 - Challenge: Need to predict if the search will last longer anyway or is about to finish
 - Which information should we reuse after a restart?

- A conflict constraint is a set of variable bounds from which
 - a) At least one has to hold in any feasible solution
 - b) At most one can hold in any feasible solution
 - c) All but one have to hold in any feasible solution
- Conflict analysis for infeasible LPs uses
 - a) A primal solution
 - b) A dual ray
 - c) The reduced costs
- Where do MIP solvers NOT restart?
 - a) During the initial LP solve
 - b) During the cut loop
 - c) During the tree search

- A conflict constraint is a set of variable bounds from which
 - a) At least one has to hold in any feasible solution
 - b) At most one can hold in any feasible solution
 - c) All but one have to hold in any feasible solution
- Conflict analysis for infeasible LPs uses
 - a) A primal solution
 - b) A dual ray
 - c) The reduced costs
- Where do MIP solvers NOT restart?
 - a) During the initial LP solve
 - b) During the cut loop
 - c) During the tree search

- A conflict constraint is a set of variable bounds from which
 - a) At least one has to hold in any feasible solution
 - b) At most one can hold in any feasible solution
 - c) All but one have to hold in any feasible solution
- Conflict analysis for infeasible LPs uses
 - a) A primal solution
 - b) A dual ray
 - c) The reduced costs
- Where do MIP solvers NOT restart?
 - a) During the initial LP solve
 - b) During the cut loop
 - c) During the tree search

- A conflict constraint is a set of variable bounds from which
 - a) At least one has to hold in any feasible solution
 - b) At most one can hold in any feasible solution
 - c) All but one have to hold in any feasible solution
- Conflict analysis for infeasible LPs uses
 - a) A primal solution
 - b) A dual ray
 - c) The reduced costs
- Where do MIP solvers NOT restart?
 - a) During the initial LP solve
 - b) During the cut loop
 - c) During the tree search

Thank You!

Timo Berthold TU Berlin, FICO, MODAL

Bound strenghtening: little exercise

- Consider the linear inequality $3x_1 + 8x_2 + 5x_3 \le 12$ with integer variables $x_1 \ge 1, x_2 \ge 0, x_3 \ge -1, x \in \mathbb{Z}^3$
 - Compute the minimum activity of the constraint.
 - Use bound strengthening to compute upper bounds on all variables.

Bound strenghtening: little exercise

- Consider the linear inequality $3x_1 + 8x_2 + 5x_3 \le 12$ with integer variables $x_1 \ge 1, x_2 \ge 0, x_3 \ge -1, x \in \mathbb{Z}^3$
 - Compute the minimum activity of the constraint.
 - Use bound strengthening to compute upper bounds on all variables.
 - The minimum activity is $\alpha_{min} = 3 \cdot 1 + 0 + 5 \cdot (-1) = -2$.

•
$$x_1 \le \left\lfloor \frac{12 - (-2) + 3}{3} \right\rfloor = 5$$
, $x_2 \le \left\lfloor \frac{12 - (-2) + 0}{8} \right\rfloor = 1$, $x_3 \le \left\lfloor \frac{12 - (-2) - 5}{5} \right\rfloor = 1$

Bound strenghtening: little exercise

- Consider the linear inequality $3x_1 + 8x_2 + 5x_3 \le 12$ with integer variables $x_1 \ge 1, x_2 \ge 0, x_3 \ge -1, x \in \mathbb{Z}^3$
 - Compute the minimum activity of the constraint.
 - Use bound strengthening to compute upper bounds on all variables.
 - The minimum activity is $\alpha_{min} = 3 \cdot 1 + 0 + 5 \cdot (-1) = -2$.

•
$$x_1 \le \left\lfloor \frac{12 - (-2) + 3}{3} \right\rfloor = 5$$
, $x_2 \le \left\lfloor \frac{12 - (-2) + 0}{8} \right\rfloor = 1$, $x_3 \le \left\lfloor \frac{12 - (-2) - 5}{5} \right\rfloor = 1$