

Machine Learning in MIP Solvers

Timo Berthold TU Berlin, FICO, MODAL

Agenda

- What do I mean by "Machine Learning in MIP Solvers"?
- 2. Learning to Scale
- 3. Learning the Attention Level
- 4. Learning to Use Local Cuts
- 5. Learning to Select Cuts

2

What do I mean by ML in MIP solvers?

What do I mean by MIP?

- The obvious:
 - maximizing a linear objective function over a set of linear constraints
 - Some or all variables have to take integral values, some or all are bounded
 - $\max c^T x$ $s.t. Ax \le b$ $x \in \mathbb{Z}^I \times \mathbb{R}^{N \setminus I}$ $\ell \le x \le u$
- More specifically:
 - General MIP, not specific problem classes
 - Extremely heterogeneous test sets, existing solvers highly optimized
 - single digit improvements on MIPLIB (or internal client sets) are a celebrated success

What do I mean by MIP solvers?

- The obvious:
 - A piece of software, commercial or academic, that can solve general-purpose MIPs to proven optimality
 - Does not require (or even allow) any application-specific input
- More specifically:
 - In this presentation: FICO Xpress and SCIP

What do I mean by Machine Learning?

- Most of the cases: Learning a (binary) decision on which action to take inside a MIP solver
 - Classification (but really: regression)
- Offline, supervised learning
- Trained on general, heterogeneous test sets, not individually trained for application
- Easy-to-evaluate, ideally interpretable model
- Use regression for "classification" w.r.t. a continuous measure
 - Labels are improvement factors, not "this one worked better"
 - Draws are a typical case
 - Misclassifications not too bad on instances where methods perform similar
 - But fatal when there is a huge difference

Proc. of AAAI 2021, joint work with Gregor Hendel

FICO

	Accelerating Primal Solution Findings for Mixed Integer Programs Based	
Ding et al.	on Solution Prediction	2019
Bertsimas & Stellato	Online Mixed-Integer Optimization in Milliseconds	2019
	Machine learning meets mathematical optimization to predict the	
Fischetti & Fraccaro	optimal production of offshore wind parks	2018
	Learning for constrained optimization: Identifying optimal active	
Misra et al.	constraint sets	2018
Bertsimas & Stellato	The Voice of Optimization	2018
Tang et al.	Reinforcement Learning for Integer Programming: Learning to Cut	2019
	Selecting cutting planes for quadratic semidefinite outer-approximation	
Baltean-Lugojan et al	. via trained neural networks	2018
	Reinforcement Learning for Variable Selection in a Branch and Bound	
Etheve et al.	Algorithm	2020
	Parameterizing Branch-and-Bound Search Trees to Learn Branching	
Zarpellon et al.	Policies	2020
	Learning Generalized Strong Branching for Set Covering, Set Packing,	
Yang et al.	and 0-1 Knapsack Problems	2020
Song et al.	Learning to Search via Retrospective Imitation	2019
	Exact Combinatorial Optimization with Graph Convolutional Neural	
Gasse et al.	Networks	2019
	Learning to Branch: Accelerating Resource Allocation in Wireless	
Lee et al.	Networks	2019
	Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent	
Hansknecht et al.	Traveling Salesman Problem	2018
Balcan et al.	Learning to branch	2018
Václavík et al.	Accelerating the branch-and-price algorithm using machine learning	2018
	Deep Learning Assisted Heuristic Tree Search for the Container Pre-	
Hottung et al.	marshalling Problem	2017
Lodi & Zarpellon	On learning and branching: a survey	2017
Alvarez et al.	A Machine Learning-Based Approximation of Strong Branching	2017
	Online Learning for Strong Branching Approximation in Branch-and-	
Alvarez et al.	Bound	2016
Khalil et al.	Learning to branch in mixed integer programming	2016
Khalil	Machine Learning for Integer Programming	2016
He et al.	Learning to Search in Branch and Bound Algorithms	2014
	A Supervised Machine Learning Approach to Variable Branching in	
Alvarez et al.	Branch-And-Bound	2014
Di Liberto et al.	Dynamic Approach for Switching Heuristics	2013
Sabharwal et al.	Guiding Combinatorial Optimization with UCT	2012

Khalil et al.	Learning to Run Heuristics in Tree Search	2017
Hutter et al.	Algorithm Runtime Prediction: Methods & Evaluation	2012
Hutter et al.	Automated Configuration of Mixed Integer Programming Solvers	2010
Ferber et al.	MIPaaL: Mixed Integer Program as a Layer	2019
Wilder et al.	End to end learning and optimization on graphs	2019
	SATNet: Bridging deep learning and logical reasoning using a	
Wang et al.	differentiable satisfiability solver	2019
	Melding the Data-Decisions Pipeline: Decision-Focused Learning for	
Wilder et al.	Combinatorial Optimization	2018
Elmachtoub & Grigas	Smart "Predict, then Optimize"	2017
Kool et al.	Attention, Learn to Solve Routing Problems!	2018
	Combinatorial Optimization with Graph Convolutional Networks and	
Li et al.	Guided Tree Search	2018
Dai et al.	Learning Combinatorial Optimization Algorithms over Graphs	2017
Bello et al.	Neural Combinatorial Optimization with Reinforcement Learning	2016
	Generation techniques for linear programming instances with	
Bowly et al.	controllable properties	2017
	Stress testing mixed integer programming solvers through new test	
Bowly	instance generation methods	2019
	How to Evaluate Machine Learning Approaches for Combinatorial	
François et al.	Optimization: Application to the Travelling Salesman Problem	2019
Fischetti et al.	Learning MILP Resolution Outcomes Before Reaching Time-Limit	2018
Kuhlmann	Learning to steer nonlinear interior-point methods	2019
Kruber et al.	Learning when to use a decomposition	2018
	Machine Learning for Combinatorial Optimization: a Methodological	
Bengio et al.	Tour d'Horizon	2018
Hendel	Adaptive Large Neighborhood Search for Mixed Integer Programming	2018
	Learning a Classification of Mixed-Integer Quadratic Programming	
Bonami et al.	Problems	2017
Amos & Kolter	OptNet: Differentiable Optimization as a Layer in Neural Networks	2017
Schweidtmann &	Global Deterministic Optimization with Artificial Neural Networks	
Mitsos	Embedded	2018
Sculley	Large Scale Learning To Rank	2020
	A General Large Neighborhood Search Framework for Solving Integer	
Song et al.	Programs	2020

	Accelerating Primal Solution Findings for Mixed Integer Programs Based		Khalil et al.	Learning to Run Heuristics in Tree Search	2017
Ding et al.	on Solution Prediction	2019	Hutter et al.	Algorithm Runtime Prediction: Methods & Evaluation	2012
Bertsimas & Stellato	Online Mixed	2019	Hutter et al.	Automated Configuration of Mixed Integer Programming Solvers	2010
	Mook		Ferber et al.	MIPaaL: Mixed Integer Program as a Layer	2019
Fischetti & Fraccaro	Only faw of these		Wilder et al.	End to end learning and optimization on graphs	2019
	Only rew of mese			SATNet: Bridging deep learning and logical reasoning using a	
Misra et al.	implemented in general		ang et al.	differentic	2019
Bertsimas & S	implemented in general			MeldiFocused Learning for	
Tang et al.			er et al.	C	2018
(purpose MIP solvers!		chtoub & Grigo		2017
Baltean-Lug			et al.		2018
	(and activated by	/		Vetworks and	
Etheve et al.	(and activated by		a) al.		2018
	dofault)	ni	tal.	iphs in the second s	2017
Zarpellon et al.		~e ¹ "	ello et al.	rning	2016
	Leo	ilin /		h	
Yang et al.	and 0-1	~	Bowly et al.		2017
Song et al.	Learning to Search view			w test	
0	Exact Combinatorial Optimization with Graph Convolutional Neur		Bowly		2019
Gasse et al.	Networks			rorial	0.010
I an at al	Learning to Branch: Accelerating Resource Allocation in Wireless	2010	cois et		2019
Lee et al.	Networks Cute Deine III - media and a serie at a Densel for the Time. Dense dent	2019	T TI ET	Imit	2018
Hanalynaabt at al	Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent	2010	Kunime		2019
Palaan at al		2010	Kruber et al.	addresient.	2018
Václavík ot al	Accelerating the branch, and price algorithm using machine learning	2010	Panaia at al	loaological	2010
VUCIUVIK ET UI.	Deep Lographing Assisted Houristic Tree Sograph for the Container Pro	2010	Bengio ei al.		2010
Hottung of al	marshalling Problem	2017	Hendel	Brogramming	2016
I odi & Zarpellon	On learning and branching: a survey	2017	Bonami ot al	Frogramming	2017
Alvarez et al	A Machine Learning-Based Approximation of Strong Branching	2017	Amos & Kolter	O In Neural Networks	2017
Alvarez er al.	Online Learning for Strong Branching Approximation in Branch-and-	2017	Schweidtmann &	Globo	2017
Alvarez et al	Bound	2016	Mitsos	Embeddeo	2018
Khalil et al.	Learning to branch in mixed integer programming	2016	Sculley	Large Scale Learning Lo Kank	2020
Khalil	Machine Learning for Integer Programming	2016		A General Large Neighborhood Search Framework for Solving Integer	
He et al.	Learning to Search in Branch and Bound Algorithms	2014	Sona et al.	Programs	2020
	A Supervised Machine Learning Approach to Variable Branchina in				0
Alvarez et al.	Branch-And-Bound	2014			
Di Liberto et al.	Dynamic Approach for Switching Heuristics	2013			
Sabharwal et al.	Guiding Combinatorial Optimization with UCT	2012			

	Accelerating Primal Solution Findings for Mixed Integer Programs Based		Khalil et al.	Learning to Run Hormistics in Tree	Conscia	2017
Ding et al.		2019	Hutter of		aluation	2012
Bertsimas & St		2019			nming Solvers	2010
	Huge variability		- Soph	isticated rules		2019
Fisch		2	oopn		-)	2019
	no around truth \sim	201	— alre	adv in place	using a	2010
Bortsin		201	un c		ion Ecourad Lograting for	2019
Tana et al	Learning to Cut	2019	Wild		Bioli-Focosed Ledi Hillig Tol	2018
rang or an	Selecting cuttings.	2017	Elmachtoub & Griada	s Smort		2010
Baltean-Lugojan et	al. via trained neural networks	2018	Kool et al.	Attention, Learn to Solve Routing	Problems!	2018
0,1	Reinforcement Learning for Varian Selection in a Branch and Bound			Combinatorial Optimization with C	Graph Convolutional Networks and	
Etheve et al.	Algorithm 🍾	2020	Li et al. 🛛 🔾	Guided Tree Search		2018
	Parameterizing Branch-and-Bound Search T	100	Dai et 🔿	Learning Combing	-	17
Zarpellon et al.	Policies		Bello et al.	Neural Com	erogenity	~
	Learning Generalized Strong Branch			Generation fe		
Yang et al.	and 0-1 Knapsack Problems		vly et al.	controllable p		2017
Song et al.	Learning to Search via Retrosp	-		Stress testing mixed integer	gh new rest	0.010
Carros at al	Exact Combinatorial Optimiza			Instance gene Mon methods		2019
Gasse et al.	Inetworks		t al	How WEValuate Machine Learning	g Approaches for Combinatorial	2010
l ee et al	Networks		d.	Learning MILP Resolution Outcom	as Before Reaching Time-Limit	2019
Lee er ui.	Cuts Primal Heuristics a		ui.	Learning to steer poplinear interio	r-noint methods	2010
Hansknecht et al.	Traveling Salesman Prob			Learning when to use a decomposi	tion	2018
Balcan et al.	Learning to branch			Machine Learning for Combinator	ial Optimization: a Methodological	
Václavík et al.	Accelerating the branch					
	Deep Learning Assisted			Adaptive ge	a don't avan	
Hottung et al.	marshalling Problem			Learning a Cla	e uon i even	
Lodi & Zarpellon	On learning and branching		al.	Problem	(now good	
Alvarez et al.	A Machine Learning-Base		ter	OptNet	chow good	
	Online Learning for Strong		hann &	Global De	footure	
Alvarez et al.	Bound			Embedde	reatures .	
Khalil et al.	Learning to branch in mixed in Machine Learning for Integer H			Large Scale Learnin		-20
Heatal	Learning to Search in Branch and		a ot al	A General Large Neighborhood of	arch mg Integer	2020
ne erui.	A Supervised Machine Learning Apr		ig ei ui.	r rogi anns		2020
Alvarez et al	Branch-And-Bound					
Di Liberto et al.	Dynamic Approach for Switching Heuristics					
Sabharwal et al.	Guiding Combinatorial Optimization with UCT	2012				

	Accelerating Primal Solution Findings for Mixed Integer Programs Based		Khalil et al.	Learning to Run Heuristics in Tree Search	2017
Ding et al.		2019	Hutter et al.	Algorithm Runtime Prediction: Methods & Evaluation	2012
Bertsimas & St		2019	Hutter et al.	Automated Configuration of Mixed Integer Programming Solvers	2010
	Scalinall		Ferber et al.	MIPaaL: Mixed Integer Program as a Layer	2019
Fisch		2018	Wilder et al	raphs	2019
Misra e	(definition coming soon)	2018		Either-or	2019
Bertsim		2018		sed Learning for	
Tang et al.		2019	C	decision	2018
	Selecting cutting p		Elmacmos		2017
Baltean-Lugojan et d	al. via trained neural networks	2018	Kool et al.	Attention, Learn to Solve Routing Problems!	2018
	Reinforcement Learning for Varia Selection in a Branch and Bound		0	Combinatorial Optimization with Graph Convolutional Networks and	
Etheve et al.	Algorithm 🍾	2020	Li et al.	Guided Tree Search	2018
	Parameterizing Branch-and-Bound Security	Contraction of the local division of the loc	Dai et al. 🛛 🔍	Learning Combinatori LOpti Combine to Sums over Graphs	2017
Zarpellon et al.	Policies		Bello et o l.	Neural Cement Learning	2016
	Learning Generalized Strong Bro			Gene Manager Inces with	
Yang et al.	and 0-1 Knapsack Problems		owly et al.		2017
Song et al.	Learning to Search via Retro			ough new test	
	Exact Combinatorial Optin				2019
Gasse et al.	Networks			ombinatorial	
	Learning to Branch: Acc		et al.	teatures heroblem	2019
Lee et al.	Networks		et al.	aching Time-Limit	2018
	Cuts, Primal Heuristics			ethods	2019
Hansknecht et al.	I raveling Salesman P			ning mass fion	2018
Balcan et al.	Learning to branch		00	Machine Learning for Compinatorial Optimization: a Methodological	
Václavík et al.	Accelerating the bran		ıl.	Tour d'Horizon	2018
	Deep Learning Assist	-		Adaptive Large Neighborhood Search for Mixed Integer Programming	2018
Hottung et al.	marshalling Problem			Learning a Classification of Mixed-Integer Quadratic Programming	0.017
Loai & Zarpellon	On learning and branc.		et al.	Problems	2017
Alvarez et al.	A Machine Learning-Ba		Kolter	OptNet: Differentiable Optime of s	2017
	Online Learning for Strong		dfmann & 🗨	GUIDet	0.010
Alvarez et al.	Bound		5 		2018
Khalil	Machine Learning for Integer		ley		2020
	Learning to Search in Pranch an		iong at al		2020
	A Supervised Machine Learning An		Song et al.		2020
Alvaroz ot al	A Supervised Machine Learning App	14		· mei	
Di Liberto et al	Dynamic Approach for Switching Heuristics	2013			
Sabbarwal et al	Guiding Combinatorial Optimization with LICT	2013		+ the	
Subhai wal el ul.		2012		(0'	

Numeric Stability (Somewhat Outdated Slide)

- Numeric stability of MIP solving is a crucial topic in many OR applications
 - Blog series on Numerics, visit <u>https://community.fico.com/</u>
 - Numerics I: Solid Like a Rock or Fragile Like a Flower?
 - Numerics II: Zoom Into the Unknown
 - Numerics III: Learning to Scale
 - Numerics IV: Learning to pay attention
 - I See Ambros' lecture from Thursday Numerics V: Integrality – When Being Close Enough is not Always Good Enough
- Real-life applications often complex and pum o handle:
 - More than half of client had some numeric issues
- After support request

Performance issues (e.g., simplex cycling)

Information on numeric stability

- (some) MIP solvers provide numeric analysis tools
- A priori: spread of matrix, objective, rhs coefficients

Condition Number & Attention Level

- The condition number κ of a matrix A provides a bound on how much a small change in b can affect x, when Ax = b
- For a square, invertible matrix A

 $\kappa = \|A\| \cdot \|A^{-1}\|$

• Sampling the condition number is an optional feature (MIPKAPPAFREQ=1)

0051)
0115)
9831)
0003)

- Summarized in a single attention level from 0.0 (all stable) to 1.0 (anything goes)
 - Non-default feature: Expensive

FICO

• One purpose of scaling is to reduce the condition numbers (and attention level)

#errorpropagation

What is Scaling?

- LP Scaling refers to the (iterative) multiplication of rows and columns by scalars
 - to reduce the absolute magnitude of nonzero coefficients in matrix, rhs and objective
 - to reduce the relative difference of nonzero coefficients in matrix, rhs and objective
- Scaling is a widely used preconditioning technique, used by various kinds of algorithms
 - to improve the numeric behavior of the algorithms
 - to reduce the condition number of basis matrices
 - to reduce error propagation
 - to reduce the number of iterations required to solve the problem

Scaling in Linear Programming

- Basic Linear Program (LP): max $c^T x$ s.t. $Ax \le b$
- Scaling multiplies rows and columns
 - to bring coefficients "on one scale"
 - Typically, close to 1 (normalization)

A'x' < b'

 $\max (cC)^{T}(C^{-1}x)$ s.t. $(RAC)(C^{-1}x) \le Rb$ c' = cC, A' = RAC, b' = Rb $x' = C^{-1}x$ $\max c'^{T}x'$

s.t.

R: Square diagonal matrix of row scalars*C*: Square diagonal matrix of column scalars

Two scaling methods

Equilibrium scaling (1975):

- Divide rows by largest coefficient
- Then divide columns by largest coefficient
- Potentially iterate
- Curtis-Reid (1972):
- Minimize least-squares deviation from 1:
- min $\sum_{i=1}^{m} \sum_{j=1}^{n} \left(\log R_{ii} C_{jj} |A_{ij}| \right)^2$
- Positive semidefinite, unconstrained \rightarrow conjugate gradient
- Binary logarithm, round scaling factors to powers of two

Example

- We want to set up a home business to make boxes or chess pieces
 - We want to maximize profit [\$5/box, \$10/chess piece]
 - We have a limited amount of wood [100]
 - We have to buy tools [\$30 for boxes, \$500 for chess sets]
- A mixed integer programming (MIP) problem:

$$\begin{array}{cccc} max & 5x^{box} + 10x^{chess} - 30b^{box} - 500b^{chess} \\ s.t. & x^{box} + x^{chess} \leq 100 \\ & x^{box} & \leq 100b^{box} \\ & & x^{chess} \leq 100b^{chess} \\ & & b^{box}, b^{chess} \in \{0,1\} \end{array} \\ \left[\begin{array}{cccc} 1 & 1 \\ 1 & -100 \\ & 1 & -100 \end{array} \right] \\ \end{array} \right.$$

• Coefficient matrix:

... with a potential basis matrix

Example

- One fixed method not always best
- New approach: Learn to Scale
 - Try each scaling method: Equilibrium and Curtis-Reid
 - Try to predict which method will result in the smaller attention level
 - Or rather: The factor by which the attention level differs (label)
- Features drawn from coefficient distributions
 - Coefficient spread: $\gamma \coloneqq \log \frac{\max_{i,j} |A_{ij}|}{\min_{i,j} |A_{ij}|}$
 - Use $\gamma_{Equi} \gamma_{Curtis}$ as a feature
 - Same procedure to get features for objective spread and right-hand side spread

- New approach: Learn to Scale
 - Use linear regression model to predict which method will result in the smaller attention level
 - Tried random forests, neural nets, ...
 - Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

• Validation outcome:

FICO

- New approach: Learn to Scale
 - Use linear regression model to predict which method will result in the smaller attention level
 - Tried random forests, neural nets, ...
 - Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

- New approach: Learn to Scale
 - Use linear regression model to predict which method will result in the smaller attention level
 - Tried random forests, neural nets, ...
 - Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

- New approach: Learn to Scale
 - Use linear regression model to predict which method will result in the smaller attention level
 - Tried random forests, neural nets, ...
 - Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

Computational Results

- On our set of numerically Challenging instances:
 - Tremendous improvements in all stability criteria

Dual Fails	-64%	Primal Fails	-67%	Singular Inverts	-48%
Infeasibilities	-26%	Inconsistencies	-35%	Violated Sols	-12%
Kappa Stable	+148%	Max. Condition	-979%	Attn. Level	-88%

• $\approx 10\%$ performance improvements on Xpress simplex test sets

Learning The Attention Level

Motivation

- Attention level: indicator of numeric sensitivity of a problem:
 - 0.0 (very stable) to 1.0 (anything goes)
 - Computed a posteriori 😕
 - uses condition numbers of LP bases (expensive!) 😕
 - Most comprehensive and comprehensible numerics analysis tool deactivated by default
- ML-based prediction: Might the current solve lead to a high attention level?
 - Print a warning for the user
- Learning the attention level:
 - A priori ☺: After the initial LP relaxation
 - Cheap 😊: Similar features as in "Learning to scale"
 - Additionally use conditioning of matrix w.r.t. right-hand side

Regression forests

- Supervised learning
- Ensemble learning

FICO

- No interaction between trees
- Each tree predicts a value (from discrete set)
- Overall prediction: average

Results: Confusion matrix

• Our prediction uses a regression forest

- Accuracy ~ 98%
- False negative rate $\sim 1.5\%$

Learning the Attention Level

```
Coefficient range original solved

Coefficients [min,max] : [ 2.82e-04, 6.23e+03] / [ 1.56e-02, 3.26e+01]

RHS and bounds [min,max] : [ 7.98e-01, 1.04e+05] / [ 2.73e-01, 1.43e+05]

Objective [min,max] : [ 1.00e+00, 3.12e+06] / [ 3.12e-02, 4.00e+06]

Autoscaling applied Curtis-Reid scaling

...

Final LP objective : 1.074622443761501e+08

Max primal violation (abs/rel) : 8.292e-13 / 8.292e-13

Max dual violation (abs/rel) : 4.849e-08 / 1.825e-08

Max complementarity viol. (abs/rel) : 0.0 / 0.0

High attention level predicted from matrix features
```

- Might want to abort solution process early to fix numerics
- Might want to do a run with enabled attention level computation
 - Pay more attention to other numeric statistics, unusual solver behavior, ...
- Precise prediction can be queried as attribute: PREDICTEDATTLEVEL

FICO

Learning To Use Local Cuts

2nd round of review for Mathematical Programming Comp., joint work with Matteo Francobaldi & Gregor Hendel

FICO

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

FICO

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $-x - 3y \le 0.5$ $0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $-x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
 - Branch-and-Bound
 - Cutting Plane Method
- Two meaningful combinations of those algorithms:
 - Cut & Branch
 - Branch & Cut

Local Cuts

• Global cuts

- Generated at the root node
- Hence globally valid by construction
- Local cuts
 - Generated at internal nodes
 - Either globally valid
 - When only using global information (e.g. bounds)
 - Can be re-used in other parts of the tree
 - Or locally valid
 - When using local bounds
 - Potentially stronger

53

Local Cuts

• Global cuts

- Generated at the root node
- Hence globally valid by construction
- Local cuts
 - Generated at internal nodes
 - Either globally valid
 - When only using global information (e.g. bounds)
 - Can be re-used in other parts of the tree
 - Or locally valid
 - When using local bounds
 - Potentially stronger

54

To Cut or Not to Cut?

- Crucial question: Should we generate cutting planes at tree nodes or only at the root?
 - Cuts are an essential part of branch-and-cut algorithms, many problems unsolvable without them
 - Local cuts complicate some other solver features (e.g., conflict analysis)
 - Cutting plane generation costs time and makes LPs slower to solve
 When cuts do not make a difference, they slow down the solve
- How good are local cuts?
 - 45% of instances significantly benefit from local cuts
 - 23% of instances suffer from local cuts
- Idea: Try to predict at the beginning of tree search whether local cuts will work

Flowchart

Learning to Use Local Cuts

- Train a random regression forest to predict speed-up factor from deactivating cuts
 - On more than 3000 customer instances
 - Final decision by an average and a majority vote
- Static Features: Row types, percentage binaries
 - Indicate whether this is a combinatorial problem
- Semi-static features: Density, numeric conditioning
 - Indicate whether cuts might lead to expensive LPs
- Dynamic feature: Gap closed by root cuts
 - Indicates the potential of cuts to raise the best bound

Computational results

Benchmark	#Instances	∆Solved	Time	Nodes	PDI
MIP – Benchmark	5331	+9	-2%	+2%	-1%
→ > 100 sec	2226	+3	-2%	0	-1%
\rightarrow affected	480	+9	-15%	+19%	-10%

- Opposite effect on Time and Nodes (to be expected)
- Conservative setting, failed predictions are rare

• Under review for Math. Programming Computation

Learning To Select Cuts

To appear in Proc. of CPAIOR 2023, joint work with Matthieu Besançon & Mark Turner

FICO

Cut Selection

- Cuts generated in rounds: separate, solve LP, rinse and repeat
- Most separation routines cheap (much cheaper than LP solve)
 - \Rightarrow Generate more cuts than needed, select the best ones
- Trade-off:
 - Adding more cuts?
 - Expensive LPs, numerically unstable
 - Adding less cut?
 - More nodes needed to solve
- \Rightarrow Sweet spot in between \Rightarrow How do we select promising cuts?

Cut Selection: state-of-the-art

- Efficacy Intuition: Chop as much volume of the polyhedron as possible
- Directed cutoff distance (dcd) Intuition: cut as close to the incumbent as possible

What is wrong with efficacy (and dcd)?

• Distance-based measures: How intuitive and robust are they really?

Distances to an infeasible projection

- Blue cut "better"
- But orange cut only "bad" outside polyhedron

Dual degeneracy (optimal face)

- **Blue cut** slightly "better" for solution \tilde{x}
- But does not cut off solution \hat{x}
- Arbitrary solution (similar for dcd incumbent)

How might we do better?

- Use analytic centers (AC) \approx central point
- Can be computed as LP, side-product of barrier algo

AC of the optimal face (AC-efficacy)

- Counters degeneracy
- Reduces risk to "project outside"

AC of polyhedron (AC-dcd)

- Projection always inside polyhedron
 - Expected to be central
- Constant reference point

FICO

Instance features

- Goal: Determine best selection criterion (out of eight): Given instance features, which score will produce the minimum tree size/runtime?
- Features of the transformed problem:
 - Dual degeneracy: % non-basic variables with zero-reduced cost
 - Primal degeneracy: % basic variables at bounds
 - Solution fractionality at root node
 - Thinness: % equality constraints
 - Density of the whole constraint matrix
- Test set: MIPLIB2017 Collection, solver: SCIP 8.0

Multiregression model

- Not a binary decision (but 8-fold): Classification?
- No single best for many instances:
 - no cut selected, certain cuts always selected, etc...
 - ties allowed?
- Multi-output regression: #nodesbest/#nodes
- Support vector regression with cubic kernel
 - Several attempted models: regression trees, support vectors, random forests

Results

- Boxenplots: More right = better, olive: learned model
 - Nodes: Median and all percentiles are better
 - In particular at the lower end
 - Time: On par with Analytic DCD
 - Sh. geom. mean: Better for nodes, worse for time
 - Reduced performance variability

0.6

0.8

1.0

Conclusion

Key take-aways

- Modern MIP solvers use (fast, interpretable) ML models for decision making
- Faster is not the only definition of better
 - Improving numeric stability or reducing performance variability valuable by itself
- Use regression for "classification" w.r.t. a continuous measure

Thank You!

Timo Berthold TU Berlin, FICO, MODAL

