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1. What do I mean by
„Machine Learning in MIP Solvers”?

2. Learning to Scale

3. Learning the Attention Level

4. Learning to Use Local Cuts

5. Learning to Select Cuts

Agenda
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What do I mean by ML in MIP solvers?

MAY CONTAIN
TRACES OF

DATA



4

• The obvious:

• maximizing a linear objective function over a set of linear constraints

• Some or all variables have to take integral values, some or all are bounded

• max 𝑐𝑇𝑥
𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ ℤ𝐼 × ℝ𝑁∖𝐼

ℓ ≤ 𝑥 ≤ 𝑢

• More specifically:

• General MIP, not specific problem classes

• Extremely heterogeneous test sets, existing solvers highly optimized

• single digit improvements on MIPLIB (or internal client sets) are a celebrated success

What do I mean by MIP?
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• The obvious:

• A piece of software, commercial or academic, that can solve general-purpose MIPs to proven 
optimality

• Does not require (or even allow) any application-specific input

• More specifically:

• In this presentation: FICO Xpress and SCIP

What do I mean by MIP solvers?

Presolving Scaling

Node Selection

Relaxation

Cuts

Branching

Domain Prop.

Stop

Conflict Analysis

HeuristicsHeuristics

Start
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• Most of the cases: Learning a (binary) decision on which action to take inside a MIP solver

• Classification (but really: regression)

• Offline, supervised learning

• Trained on general, heterogeneous test sets, not individually trained for application

• Easy-to-evaluate, ideally interpretable model

• Use regression for „classification“ w.r.t. a continuous measure

• Labels are improvement factors, not „this one worked better“

• Draws are a typical case

• Misclassifications not too bad on instances 
where methods perform similar

• But fatal when there is a huge difference

What do I mean by Machine Learning?

ti
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Learning To Scale

Proc. of AAAI 2021, joint work with Gregor Hendel 

Hendel



8

Ding et al.
Accelerating Primal Solution Findings for Mixed Integer Programs Based 
on Solution Prediction 2019

Bertsimas & Stellato Online Mixed-Integer Optimization in Milliseconds 2019

Fischetti & Fraccaro
Machine learning meets mathematical optimization to predict the 
optimal production of offshore wind parks 2018

Misra et al.
Learning for constrained optimization: Identifying optimal active 
constraint sets 2018

Bertsimas & Stellato The Voice of Optimization 2018
Tang et al. Reinforcement Learning for Integer Programming: Learning to Cut 2019

Baltean-Lugojan et al.
Selecting cutting planes for quadratic semidefinite outer-approximation 
via trained neural networks 2018

Etheve et al.
Reinforcement Learning for Variable Selection in a Branch and Bound 
Algorithm 2020

Zarpellon et al.
Parameterizing Branch-and-Bound Search Trees to Learn Branching 
Policies 2020

Yang et al.
Learning Generalized Strong Branching for Set Covering, Set Packing, 
and 0-1 Knapsack Problems 2020

Song et al. Learning to Search via Retrospective Imitation 2019

Gasse et al.
Exact Combinatorial Optimization with Graph Convolutional Neural 
Networks 2019

Lee et al.
Learning to Branch: Accelerating Resource Allocation in Wireless 
Networks 2019

Hansknecht et al.
Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent 
Traveling Salesman Problem 2018

Balcan et al. Learning to branch 2018
Václavík et al. Accelerating the branch-and-price algorithm using machine learning 2018

Hottung et al.
Deep Learning Assisted Heuristic Tree Search for the Container Pre-
marshalling Problem 2017

Lodi & Zarpellon On learning and branching: a survey 2017
Alvarez et al. A Machine Learning-Based Approximation of Strong Branching 2017

Alvarez et al.
Online Learning for Strong Branching Approximation in Branch-and-
Bound 2016

Khalil  et al. Learning to branch in mixed integer programming 2016
Khalil Machine Learning for Integer Programming 2016
He  et al. Learning to Search in Branch and Bound Algorithms 2014

Alvarez et al.
A Supervised Machine Learning Approach to Variable Branching in 
Branch-And-Bound 2014

Di Liberto et al. Dynamic Approach for Switching Heuristics 2013
Sabharwal et al. Guiding Combinatorial Optimization with UCT 2012

Khalil et al. Learning to Run Heuristics in Tree Search 2017
Hutter et al. Algorithm Runtime Prediction: Methods & Evaluation 2012
Hutter et al. Automated Configuration of Mixed Integer Programming Solvers 2010
Ferber et al. MIPaaL: Mixed Integer Program as a Layer 2019
Wilder et al. End to end learning and optimization on graphs 2019

Wang et al.
SATNet: Bridging deep learning and logical reasoning using a 
differentiable satisfiability solver 2019

Wilder et al.
Melding the Data-Decisions Pipeline: Decision-Focused Learning for 
Combinatorial Optimization 2018

Elmachtoub & Grigas Smart "Predict, then Optimize" 2017
Kool  et al. Attention, Learn to Solve Routing Problems! 2018

Li et al.
Combinatorial Optimization with Graph Convolutional Networks and 
Guided Tree Search 2018

Dai  et al. Learning Combinatorial Optimization Algorithms over Graphs 2017
Bello et al. Neural Combinatorial Optimization with Reinforcement Learning 2016

Bowly et al.
Generation techniques for linear programming instances with 
controllable properties 2017

Bowly
Stress testing mixed integer programming solvers through new test 
instance generation methods 2019

François et al.
How to Evaluate Machine Learning Approaches for Combinatorial 
Optimization: Application to the Travelling Salesman Problem 2019

Fischetti et al. Learning MILP Resolution Outcomes Before Reaching Time-Limit 2018
Kuhlmann Learning to steer nonlinear interior-point methods 2019
Kruber et al. Learning when to use a decomposition 2018

Bengio et al.
Machine Learning for Combinatorial Optimization: a Methodological 
Tour d'Horizon 2018

Hendel Adaptive Large Neighborhood Search for Mixed Integer Programming 2018

Bonami  et al.
Learning a Classification of Mixed-Integer Quadratic Programming 
Problems 2017

Amos & Kolter OptNet: Differentiable Optimization as a Layer in Neural Networks 2017
Schweidtmann &  
Mitsos

Global Deterministic Optimization with Artificial Neural Networks 
Embedded 2018

Sculley Large Scale Learning To Rank 2020

Song et al.
A General Large Neighborhood Search Framework for Solving Integer 
Programs 2020
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How to Evaluate Machine Learning Approaches for Combinatorial 
Optimization: Application to the Travelling Salesman Problem 2019

Fischetti et al. Learning MILP Resolution Outcomes Before Reaching Time-Limit 2018
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Global Deterministic Optimization with Artificial Neural Networks 
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Song et al.
A General Large Neighborhood Search Framework for Solving Integer 
Programs 2020

Only few of these 
implemented in general 

purpose MIP solvers!  
(and activated by 

default)
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Generation techniques for linear programming instances with 
controllable properties 2017

Bowly
Stress testing mixed integer programming solvers through new test 
instance generation methods 2019

François et al.
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Bonami  et al.
Learning a Classification of Mixed-Integer Quadratic Programming 
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Global Deterministic Optimization with Artificial Neural Networks 
Embedded 2018

Sculley Large Scale Learning To Rank 2020

Song et al.
A General Large Neighborhood Search Framework for Solving Integer 
Programs 2020

Huge variability, 
no ground truth

Sophisticated rules 
already in place

We don‘t even 
know good 

features

Heterogenity...



11

Ding et al.
Accelerating Primal Solution Findings for Mixed Integer Programs Based 
on Solution Prediction 2019

Bertsimas & Stellato Online Mixed-Integer Optimization in Milliseconds 2019

Fischetti & Fraccaro
Machine learning meets mathematical optimization to predict the 
optimal production of offshore wind parks 2018

Misra et al.
Learning for constrained optimization: Identifying optimal active 
constraint sets 2018

Bertsimas & Stellato The Voice of Optimization 2018
Tang et al. Reinforcement Learning for Integer Programming: Learning to Cut 2019

Baltean-Lugojan et al.
Selecting cutting planes for quadratic semidefinite outer-approximation 
via trained neural networks 2018

Etheve et al.
Reinforcement Learning for Variable Selection in a Branch and Bound 
Algorithm 2020

Zarpellon et al.
Parameterizing Branch-and-Bound Search Trees to Learn Branching 
Policies 2020

Yang et al.
Learning Generalized Strong Branching for Set Covering, Set Packing, 
and 0-1 Knapsack Problems 2020

Song et al. Learning to Search via Retrospective Imitation 2019

Gasse et al.
Exact Combinatorial Optimization with Graph Convolutional Neural 
Networks 2019

Lee et al.
Learning to Branch: Accelerating Resource Allocation in Wireless 
Networks 2019

Hansknecht et al.
Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent 
Traveling Salesman Problem 2018

Balcan et al. Learning to branch 2018
Václavík et al. Accelerating the branch-and-price algorithm using machine learning 2018

Hottung et al.
Deep Learning Assisted Heuristic Tree Search for the Container Pre-
marshalling Problem 2017

Lodi & Zarpellon On learning and branching: a survey 2017
Alvarez et al. A Machine Learning-Based Approximation of Strong Branching 2017

Alvarez et al.
Online Learning for Strong Branching Approximation in Branch-and-
Bound 2016

Khalil  et al. Learning to branch in mixed integer programming 2016
Khalil Machine Learning for Integer Programming 2016
He  et al. Learning to Search in Branch and Bound Algorithms 2014

Alvarez et al.
A Supervised Machine Learning Approach to Variable Branching in 
Branch-And-Bound 2014

Di Liberto et al. Dynamic Approach for Switching Heuristics 2013
Sabharwal et al. Guiding Combinatorial Optimization with UCT 2012

Khalil et al. Learning to Run Heuristics in Tree Search 2017
Hutter et al. Algorithm Runtime Prediction: Methods & Evaluation 2012
Hutter et al. Automated Configuration of Mixed Integer Programming Solvers 2010
Ferber et al. MIPaaL: Mixed Integer Program as a Layer 2019
Wilder et al. End to end learning and optimization on graphs 2019

Wang et al.
SATNet: Bridging deep learning and logical reasoning using a 
differentiable satisfiability solver 2019

Wilder et al.
Melding the Data-Decisions Pipeline: Decision-Focused Learning for 
Combinatorial Optimization 2018

Elmachtoub & Grigas Smart "Predict, then Optimize" 2017
Kool  et al. Attention, Learn to Solve Routing Problems! 2018

Li et al.
Combinatorial Optimization with Graph Convolutional Networks and 
Guided Tree Search 2018

Dai  et al. Learning Combinatorial Optimization Algorithms over Graphs 2017
Bello et al. Neural Combinatorial Optimization with Reinforcement Learning 2016

Bowly et al.
Generation techniques for linear programming instances with 
controllable properties 2017

Bowly
Stress testing mixed integer programming solvers through new test 
instance generation methods 2019

François et al.
How to Evaluate Machine Learning Approaches for Combinatorial 
Optimization: Application to the Travelling Salesman Problem 2019

Fischetti et al. Learning MILP Resolution Outcomes Before Reaching Time-Limit 2018
Kuhlmann Learning to steer nonlinear interior-point methods 2019
Kruber et al. Learning when to use a decomposition 2018

Bengio et al.
Machine Learning for Combinatorial Optimization: a Methodological 
Tour d'Horizon 2018

Hendel Adaptive Large Neighborhood Search for Mixed Integer Programming 2018

Bonami  et al.
Learning a Classification of Mixed-Integer Quadratic Programming 
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A General Large Neighborhood Search Framework for Solving Integer 
Programs 2020

Scaling!!!
(definition coming soon) Either-or 

decision

We know 
meaningful 

features

No good rule
in place
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• Numeric stability of MIP solving is a crucial topic in many OR applications

• Blog series on Numerics, visit https://community.fico.com/
• Numerics I: Solid Like a Rock or Fragile Like a Flower?

• Numerics II: Zoom Into the Unknown

• Numerics III: Learning to Scale

• Numerics IV: Learning to pay attention

• Numerics V: Integrality – When Being Close Enough is not Always Good Enough

• Real-life applications often complex and numerically challenging to handle:

• More than half of client problems seen in the past year (2019) had some numeric issues

• After performance, numeric failures are the most common support request

• Unexpected solution status

• Inconsistent results

• Performance issues (e.g., simplex cycling)

https://community.fico.com/
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• (some) MIP solvers provide numeric analysis tools

• A priori: spread of matrix, objective, rhs coefficients

comprises effects of presolving AND scaling

• A posteriori: report on numeric issues that the solver encountered
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• The condition number 𝜅 of a matrix 𝐴 provides a bound 
on how much a small change in 𝑏 can affect 𝑥, when 𝐴𝑥 = 𝑏

• For a square, invertible matrix 𝐴
𝜅 = 𝐴 ⋅ 𝐴−1

• Sampling the condition number is an optional feature (MIPKAPPAFREQ=1)

• Summarized in a single attention level from 0.0 (all stable) to 1.0 (anything goes)

• Non-default feature: Expensive

• One purpose of scaling is to reduce the condition numbers (and attention level)
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• LP Scaling refers to the (iterative) multiplication of rows and columns by scalars

• to reduce the absolute magnitude of nonzero coefficients in matrix, rhs and objective

• to reduce the relative difference of nonzero coefficients in matrix, rhs and objective

• Scaling is a widely used preconditioning technique, used by various kinds of algorithms

• to improve the numeric behavior of the algorithms

• to reduce the condition number of basis matrices

• to reduce error propagation

• to reduce the number of iterations required to solve the problem
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• Basic Linear Program (LP):
max 𝑐𝑇𝑥 
s. t. 𝐴𝑥 ≤ 𝑏

• Scaling multiplies rows and columns 

• to bring coefficients “on one scale”

• Typically, close to 1 (normalization)

max (𝑐𝐶)𝑇(𝐶−1𝑥) 

s. t. (𝑅𝐴𝐶)(𝐶−1𝑥) ≤ 𝑅𝑏

𝑐′ = 𝑐𝐶, 𝐴′ = 𝑅𝐴𝐶, 𝑏′ = 𝑅𝑏
𝑥′ = 𝐶−1𝑥

max 𝑐′𝑇𝑥′ 
s. t. 𝐴′𝑥′ ≤ 𝑏′

⇒

𝑅: Square diagonal matrix of row scalars
𝐶: Square diagonal matrix of column scalars
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Equilibrium scaling (1975):

• Divide rows by largest coefficient

• Then divide columns by largest coefficient

• Potentially iterate

Curtis-Reid (1972):

• Minimize least-squares deviation from 1:

• min σ𝑖=1
𝑚 σ𝑗=1

𝑛 log 𝑅𝑖𝑖𝐶𝑗𝑗 |𝐴𝑖𝑗|
2

• Positive semidefinite, unconstrained → conjugate gradient

• Binary logarithm, round scaling factors to powers of two
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• We want to set up a home business to make boxes or chess pieces

• We want to maximize profit [$5/box, $10/chess piece]

• We have a limited amount of wood [100]

• We have to buy tools [$30 for boxes, $500 for chess sets]

1 1
1 −100

1 −100

𝑚𝑎𝑥 5𝑥𝑏𝑜𝑥 + 10𝑥𝑐ℎ𝑒𝑠𝑠 − 30𝑏𝑏𝑜𝑥 − 500𝑏𝑐ℎ𝑒𝑠𝑠

𝑠. 𝑡. 𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100
 𝑥𝑏𝑜𝑥  ≤ 100𝑏𝑏𝑜𝑥

 𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100𝑏𝑐ℎ𝑒𝑠𝑠

𝑏𝑏𝑜𝑥 , 𝑏𝑐ℎ𝑒𝑠𝑠 ∈ 0,1

• A mixed integer programming 
(MIP) problem:

• Coefficient matrix:

… with a potential basis matrix
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• Unscaled:
−

1

100
−

1

100

1

100
−1 1
1

𝜅 ≈ 245

• Equilibrium scaling:
−1 −1

1

100
−100 1
100

𝜅 ≈ 245

Same!

• Curtis-Reid scaling; −1 −1 1
−1 1
1

𝜅 ≈ 25

Best!

𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 100𝑏𝑏𝑜𝑥 − 100𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 100
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 100𝑏𝑏𝑜𝑥 − 100𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 100𝑏𝑏𝑜𝑥 − 100𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0

100
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 −𝑏𝑏𝑜𝑥 −𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 100

1
100

𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 −𝑏𝑏𝑜𝑥 −𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0

𝑥𝑏𝑜𝑥 + 1
100

𝑥𝑐ℎ𝑒𝑠𝑠 −𝑏𝑏𝑜𝑥 −𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0

𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 𝑏𝑏𝑜𝑥 − 𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 1
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 𝑏𝑏𝑜𝑥 − 𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 − 𝑏𝑏𝑜𝑥 − 𝑏𝑐ℎ𝑒𝑠𝑠 ≤ 0

Basis inverse
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• One fixed method not always best

• New approach: Learn to Scale

• Try each scaling method: Equilibrium and Curtis-Reid

• Try to predict which method will result in the smaller attention level 

• Or rather: The factor by which the attention level differs (label)

• Features drawn from coefficient distributions

• Coefficient spread: 𝛾 ≔ log
max

𝐢,𝐣
|𝐴𝑖𝑗|

min
𝐢,𝐣

|𝐴𝑖𝑗|

• Use 𝛾𝐸𝑞𝑢𝑖 − 𝛾𝐶𝑢𝑟𝑡𝑖𝑠 as a feature

• Same procedure to get features for objective spread and right-hand side spread
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• New approach: Learn to Scale

• Use linear regression model to predict which 
method will result in the smaller attention level

• Tried random forests, neural nets, …

• Use matrix spread, objective spread, rhs spread as features

• Trained on thousands of customer MIP instances

0.06 0.08 0.10 0.12

Equilibrium

Attention level

• Validation outcome:
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• New approach: Learn to Scale

• Use linear regression model to predict which 
method will result in the smaller attention level

• Tried random forests, neural nets, …

• Use matrix spread, objective spread, rhs spread as features

• Trained on thousands of customer MIP instances

0.06 0.08 0.10 0.12

EquilibriumCurtis-Reid

Attention level

• Validation outcome:
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• New approach: Learn to Scale
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• On our set of numerically Challenging instances:

• Tremendous improvements in all stability criteria

• ≈10% performance improvements on Xpress simplex test sets

Dual Fails -64% Primal Fails -67% Singular Inverts -48%

Infeasibilities -26% Inconsistencies -35% Violated Sols -12%

Kappa Stable +148% Max. Condition -979% Attn. Level -88%
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• Attention level: indicator of numeric sensitivity of a problem:

• 0.0 (very stable) to 1.0 (anything goes)

• Computed a posteriori 

• uses condition numbers of LP bases (expensive!) 

• Most comprehensive and comprehensible numerics analysis tool deactivated by default

• ML-based prediction: Might the current solve lead to a high attention level?

• Print a warning for the user

• Learning the attention level:

• A priori ☺: After the initial LP relaxation

• Cheap ☺: Similar features as in “Learning to scale”

• Additionally use conditioning of matrix w.r.t. right-hand side
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• Supervised learning

• Ensemble learning

• No interaction between trees

• Each tree predicts a value (from discrete set)

• Overall prediction: average
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• Our prediction uses a regression forest

• Accuracy ~ 98%

• False negative rate ~ 1.5%

Is low Is high

Predicted low 1393 2

Predicted high 35 128

Everything okay

This is why we do 
this: warn user!

This is critical,
warning missed!

This is not great,
unneccesary warning
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• Might want to abort solution process early to fix numerics

• Might want to do a run with enabled attention level computation

• Pay more attention to other numeric statistics, unusual solver behavior, ...

• Precise prediction can be queried as attribute: PREDICTEDATTLEVEL

Coefficient range                    original                 solved        

  Coefficients   [min,max] : [ 2.82e-04,  6.23e+03] / [ 1.56e-02,  3.26e+01]

  RHS and bounds [min,max] : [ 7.98e-01,  1.04e+05] / [ 2.73e-01,  1.43e+05]

  Objective      [min,max] : [ 1.00e+00,  3.12e+06] / [ 3.12e-02,  4.00e+06]

Autoscaling applied Curtis-Reid scaling

…

Final LP objective                    : 1.074622443761501e+08

  Max primal violation      (abs/rel) : 8.292e-13 / 8.292e-13

  Max dual violation        (abs/rel) : 4.849e-08 / 1.825e-08

  Max complementarity viol. (abs/rel) :       0.0 /       0.0

High attention level predicted from matrix features
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2nd round of review for Mathematical Programming Comp.,

joint work with Matteo Francobaldi & Gregor Hendel 
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Solving Integer Optimization Problems

• Example MIP:
max 𝑥 + 5𝑦
−2𝑥 − 3𝑦 ≤ 3.6 −𝑥 − 3𝑦 ≤ −7.2
−2𝑥 − 3𝑦 ≤ 0.5 0 ≤ 𝑥 ≤ 3
−2𝑥 + 3𝑦 ≤ 0.8 𝑥, 𝑦 ∈ ℤ
−2𝑥 + 3𝑦 ≤ 4.2

• Two principal algorithms to solve such problems:

• Branch-and-Bound
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Solving Integer Optimization Problems

• Example MIP:
max 𝑥 + 5𝑦
−2𝑥 − 3𝑦 ≤ 3.6 −𝑥 − 3𝑦 ≤ −7.2
−2𝑥 − 3𝑦 ≤ 0.5 0 ≤ 𝑥 ≤ 3
−2𝑥 + 3𝑦 ≤ 0.8 𝑥, 𝑦 ∈ ℤ
−2𝑥 + 3𝑦 ≤ 4.2

• Two principal algorithms to solve such problems:

• Branch-and-Bound

• Cutting Plane Method

• Two meaningful combinations of those algorithms:

• Cut & Branch

• Branch & Cut
Which one 
is better?
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Local Cuts 

• Global cuts 

• Generated at the root node

• Hence globally valid by construction

• Local cuts 

• Generated at internal nodes

• Either globally valid

• When only using global information (e.g. bounds)

• Can be re-used in other parts of the tree

• Or locally valid

• When using local bounds

• Potentially stronger

global cut

local cut,
locally valid 

local cut,
globally valid 
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To Cut or Not to Cut?

55

• Crucial question: Should we generate cutting planes at tree nodes or only at the root?

• Cuts are an essential part of branch-and-cut algorithms,
many problems unsolvable without them

• Local cuts complicate some other solver features (e.g., conflict analysis)

• Cutting plane generation costs time and makes LPs slower to solve

• When cuts do not make a difference, they slow down the solve 

• How good are local cuts?

• 45% of instances significantly benefit from local cuts

• 23% of instances suffer from local cuts

• Idea: Try to predict at the beginning of tree search whether
local cuts will work
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Flowchart
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Learning to Use Local Cuts

57

• Train a random regression forest to predict speed-up factor from deactivating cuts

• On more than 3000 customer instances

• Final decision by an average and a majority vote

• Static Features: Row types, percentage binaries

• Indicate whether this is a combinatorial problem

• Semi-static features: Density, numeric conditioning

• Indicate whether cuts might lead to expensive LPs

• Dynamic feature: Gap closed by root cuts

• Indicates the potential of cuts to raise the best bound
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Benchmark #Instances ΔSolved Time Nodes PDI

MIP –
Benchmark

5331 +9 -2% +2% -1%

→ > 100 sec 2226 +3 -2% 0 -1%

→ affected 480 +9 -15% +19% -10%

• Opposite effect on Time and Nodes (to be expected)

• Conservative setting, failed predictions are rare

• Under review for Math. Programming Computation
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To appear in Proc. of CPAIOR 2023,

joint work with Matthieu Besançon & Mark Turner
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Cut Selection

• Cuts generated in rounds: separate, solve LP, rinse and repeat

• Most separation routines cheap (much cheaper than LP solve)

• ⇒ Generate more cuts than needed, select the best ones

• Trade-off:

• Adding more cuts?

• Expensive LPs, numerically unstable

• Adding less cut?

• More nodes needed to solve

• ⇒ Sweet spot in between ⇒ How do we select promising cuts?
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Cut Selection: state-of-the-art

• Efficacy – Intuition: Chop as much volume of the polyhedron as possible 

• Directed cutoff distance (dcd) – Intuition: cut as close to the incumbent as possible
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What is wrong with efficacy (and dcd)?

• Distance-based measures: How intuitive and robust are they really?

Distances to an infeasible projection

• Blue cut “better”

• But orange cut only “bad” outside 
polyhedron

Dual degeneracy (optimal face)

• Blue cut slightly “better” for solution 𝑥

• But does not cut off solution ො𝑥

• Arbitrary solution (similar for dcd – incumbent)

𝑥

ො𝑥
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How might we do better?
• Use analytic centers (AC) ≈ central point

• Can be computed as LP, side-product of barrier algo 

AC of the optimal face (AC-efficacy)

• Counters degeneracy

• Reduces risk to „project outside“

AC of polyhedron (AC-dcd)

• Projection always inside polyhedron

• Expected to be central

• Constant reference point
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Instance features

64

• Goal: Determine best selection criterion (out of eight): 
Given instance features, which score will produce the minimum tree size/runtime?

• Features of the transformed problem:

• Dual degeneracy: % non-basic variables with zero-reduced cost

• Primal degeneracy: % basic variables at bounds

• Solution fractionality at root node

• Thinness: % equality constraints

• Density of the whole constraint matrix

• Test set: MIPLIB2017 Collection, solver: SCIP 8.0



65

Multiregression model

• Not a binary decision (but 8-fold): Classification?

• No single best for many instances:

• no cut selected, certain cuts always selected, etc...

• ties allowed?

• Multi-output regression: ൗ#nodesbest
#nodes

• Support vector regression with cubic kernel

• Several attempted models: regression trees, support vectors, random forests
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Results

• Boxenplots: More right = better, olive: learned model

• Nodes: Median and all percentiles are better

• In particular at the lower end

• Time: On par with Analytic DCD

• Sh. geom. mean: Better for nodes, worse for time

• Reduced performance variability
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Key take-aways

• Modern MIP solvers use (fast, interpretable) ML models for decision making

• Faster is not the only definition of better

• Improving numeric stability or reducing performance variability valuable by itself

• Use regression for „classification“ w.r.t. a continuous measure

ti
m

e

inst.
#1

inst.
#2

inst.
#3

⇒
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