

Machine Learning in MIP Solvers

Timo Berthold TU Berlin, FICO, MODAL

Agenda

- 1. What do I mean by "Machine Learning in MIP Solvers"?
- 2. Learning to Scale
- 3. Learning the Attention Level
- 4. Learning to Use Local Cuts
- 5. Learning to Select Cuts

 $\overline{2}$

What do I mean by ML in MIP solvers?

What do I mean by MIP?

- The obvious:
	- maximizing a linear objective function over a set of linear constraints
	- Some or all variables have to take integral values, some or all are bounded
	- max $c^T x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^I \times \mathbb{R}^{N \setminus I}$ $\ell \leq x \leq u$
- More specifically:
	- General MIP, not specific problem classes
	- Extremely heterogeneous test sets, existing solvers highly optimized
		- single digit improvements on MIPLIB (or internal client sets) are a celebrated success

What do I mean by MIP solvers?

- The obvious:
	- A piece of software, commercial or academic, that can solve general-purpose MIPs to proven optimality
	- Does not require (or even allow) any application-specific input
- More specifically:
	- In this presentation: FICO Xpress and SCIP

What do I mean by Machine Learning?

- Most of the cases: Learning a (binary) decision on which action to take inside a MIP solver
	- Classification (but really: regression)
- Offline, supervised learning
- Trained on general, heterogeneous test sets, not individually trained for application
- Easy-to-evaluate, ideally interpretable model
- Use regression for "classification" w.r.t. a continuous measure
	- Labels are improvement factors, not "this one worked better"
	- Draws are a typical case
	- Misclassifications not too bad on instances where methods perform similar
	- But fatal when there is a huge difference

Proc. of AAAI 2021, joint work with Gregor Hendel

FICO

Numeric Stability (Somewhat Outdated Slide)

- Numeric stability of MIP solving is a crucial topic in many OR applications
	- Blog series on Numerics, visit <https://community.fico.com/>
• Numerics I: Solid Like a Rock or Fragile Like a Flower?
• Numerics II: Zoom Into the Unknown
• From Thursday
		- Numerics I: Solid Like a Rock or Fragile Like a Flower?
		- Numerics II: Zoom Into the Unknown
		- Numerics III: Learning to Scale
		- Numerics IV: Learning to pay attention
		- Numerics V: Integrality When Being Close Enough is not Always Good Enough
- Real-life applications often complex and numerically challenging to handle:
	- More than half of client problems seen in the past year (2019) had some numeric issues
	- After performance, numeric failures are the red the moon support request • Unbrighted solution status \cdot Inconsistent results

Performance issues (e.g., simplex cycling)

Information on numeric stability

- (some) MIP solvers provide numeric analysis tools
- A priori: spread of matrix, objective, rhs coefficients

Condition Number & Attention Level

- The condition number κ of a matrix A provides a bound on how much a small change in *b* can affect *x*, when $Ax = b$
For a square, invertible matrix *A*
- For a square, invertible matrix \vec{A}

 $\kappa = ||A|| \cdot ||A^{-1}$

• Sampling the condition number is an optional feature (MIPKAPPAFREQ=1)

- Summarized in a single attention level from 0.0 (all stable) to 1.0 (anything goes)
	- Non-default feature: Expensive
- One purpose of scaling is to reduce the condition numbers (and attention level)

What is Scaling?

- LP Scaling refers to the (iterative) multiplication of rows and columns by scalars
	- to reduce the absolute magnitude of nonzero coefficients in matrix, rhs and objective
	- to reduce the relative difference of nonzero coefficients in matrix, rhs and objective
- Scaling is a widely used preconditioning technique, used by various kinds of algorithms
	- to improve the numeric behavior of the algorithms
	- to reduce the condition number of basis matrices
		- to reduce error propagation
	- to reduce the number of iterations required to solve the problem

Scaling in Linear Programming

- Basic Linear Program (LP): max $c^T x$ s.t. $Ax \leq b$
- Scaling multiplies rows and columns
	- to bring coefficients "on one scale"
	- Typically, close to 1 (normalization)

max $(cC)^T(C^{-1}x)$ s.t. $(RAC)(C^{-1}x) \le Rb$ $c' = cC$, $A' = RAC$, $b' = Rb$ $x' = C^{-1}x$ max $^{\prime}T\chi'$ s.t. $A'x' \leq b'$

: Square diagonal matrix of row scalars : Square diagonal matrix of column scalars

⇒

Two scaling methods

Equilibrium scaling (1975):

- Divide rows by largest coefficient
- Then divide columns by largest coefficient
- Potentially iterate
- Curtis-Reid (1972):
- Minimize least-squares deviation from 1:
- min $\sum_{i=1}^{m} \sum_{j=1}^{n} (\log R_{ii} C_{jj} |A_{ij}|)^2$
- Positive semidefinite, unconstrained \rightarrow conjugate gradient
- Binary logarithm, round scaling factors to powers of two

Example

- We want to set up a home business to make boxes or chess pieces
	- We want to maximize profit (\$5/box, \$10/chess piece)
	- We have a limited amount of wood [100]
	- We have to buy tools (\$30 for boxes, \$500 for chess sets)
- A mixed integer programming (MIP) problem:

$$
max \quad 5x^{box} + 10x^{chess} - 30b^{box} - 500b^{chess}
$$
\n
$$
s.t. \quad x^{box} + x^{chess} \le 100
$$
\n
$$
x^{box} \le 100b^{box}
$$
\n
$$
b^{box}, b^{chess} \le 100b^{chess}
$$
\n
$$
b^{box}, b^{chess} \in \{0,1\}
$$
\n
$$
\begin{bmatrix} 1 & 1 \\ 1 & -100 \\ 1 & 1 \end{bmatrix} - 100
$$

• Coefficient matrix:

… with a potential basis matrix

Example

• Unscaled:
\n
$$
\begin{array}{rcl}\nx^{box} + x^{chess} & & \leq 100 \\
x^{box} & & \leq 0 \\
x^{chess} & & & \leq 0\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Equilibrium scaling:} & & x^{box} + x^{chess} \\
\frac{1}{100}x^{box} + x^{chess} & & \leq 0 \\
\frac{1}{100}x^{box} + x^{chess} & & \leq 100 \\
\frac{1}{100}x^{box} & & -b^{box} \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
x^{box} & & & \leq 0\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Equilibrium scaling:} & & x^{box} + x^{chess} \\
\frac{1}{100}x^{chess} & & & \leq 100 \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
x^{chess} & & & -b^{bc} \\
\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Equilibrium (a) } & \text{Equation (b) } & \text{Equation (c) } & \text{Equation (d) } \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
x^{chess} & & & \leq 0\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Equation (a) } & & \text{Equation (b) } & \text{Equation (c) } & \text{Equation (d) } \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Equation (a) } & & \text{Equation (b) } & \text{Equation (a) } & \text{Equation (b) } \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\frac{1}{100}x^{chess} & & & \leq 0 \\
\frac{1}{1
$$

- One fixed method not always best
- New approach: Learn to Scale
	- Try each scaling method: Equilibrium and Curtis-Reid
	- Try to predict which method will result in the smaller attention level
	- Or rather: The factor by which the attention level differs (label)
- Features drawn from coefficient distributions
	- Coefficient spread: $\gamma := \log$ $\max_{i,j} |A_{ij}|$ $\min_{\mathbf{i},\mathbf{j}} |A_{ij}|$
	- Use $\gamma_{Equi} \gamma_{curtis}$ as a feature
	- Same procedure to get features for objective spread and right-hand side spread

- New approach: Learn to Scale
	- Use linear regression model to predict which method will result in the smaller attention level
	- Tried random forests, neural nets, …
	- Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

• Validation outcome:

- New approach: Learn to Scale
	- Use linear regression model to predict which method will result in the smaller attention level
	- Tried random forests, neural nets, …
	- Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

- New approach: Learn to Scale
	- Use linear regression model to predict which method will result in the smaller attention level
	- Tried random forests, neural nets, …
	- Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

FICO

- New approach: Learn to Scale
	- Use linear regression model to predict which method will result in the smaller attention level
	- Tried random forests, neural nets, …
	- Use matrix spread, objective spread, rhs spread as features
- Trained on thousands of customer MIP instances

FICO

Computational Results

- On our set of numerically Challenging instances:
	- Tremendous improvements in all stability criteria

• ≈10% performance improvements on Xpress simplex test sets

Learning The Attention Level

Motivation

- Attention level: indicator of numeric sensitivity of a problem:
	- 0.0 (very stable) to 1.0 (anything goes)
	- Computed a posteriori ⁸
	- uses condition numbers of LP bases (expensive!) ⁸
		- Most comprehensive and comprehensible numerics analysis tool deactivated by default
- ML-based prediction: Might the current solve lead to a high attention level?
	- Print a warning for the user
- Learning the attention level:
	- A priori ☺: After the initial LP relaxation
	- Cheap \odot : Similar features as in "Learning to scale"
		- Additionally use conditioning of matrix w.r.t. right-hand side

Regression forests

• Supervised learning

• Ensemble learning

FICO

• Overall prediction: average

Results: Confusion matrix

• Our prediction uses a regression forest

- Accuracy \sim 98%
- False negative rate $\sim 1.5\%$

Learning the Attention Level

```
Coefficient range and the contract original solved solved
  Coefficients [min,max] : [ 2.82e-04, 6.23e+03] / [ 1.56e-02, 3.26e+01]
  RHS and bounds [min,max] : [ 7.98e-01, 1.04e+05] / [ 2.73e-01, 1.43e+05]
  Objective [min,max] : [ 1.00e+00, 3.12e+06] / [ 3.12e-02, 4.00e+06]
Autoscaling applied Curtis-Reid scaling
…
Final LP objective : 1.074622443761501e+08
 Max primal violation (abs/rel) : 8.292e-13 / 8.292e-13
  Max dual violation (abs/rel) : 4.849e-08 / 1.825e-08
 Max complementarity viol. (abs/rel) : 0.0 / 0.0
High attention level predicted from matrix features
```
- Might want to abort solution process early to fix numerics
- Might want to do a run with enabled attention level computation
	- Pay more attention to other numeric statistics, unusual solver behavior, ...
- Precise prediction can be queried as attribute: PREDICTEDATTLEVEL

FICO

Learning To Use Local Cuts

2nd round of review for Mathematical Programming Comp., joint work with Matteo Francobaldi & Gregor Hendel

FICO

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method

- Example MIP: $\max x + 5y$ $x - 3y \le 3.6$ $-x - 3y \le -7.2$ $- x - 3y \le 0.5 \quad 0 \le x \le 3$ $-2x + 3y \le 0.8$ $x, y \in \mathbb{Z}$ $- x + 3y \le 4.2$
- Two principal algorithms to solve such problems:
	- Branch-and-Bound
	- Cutting Plane Method
- Two meaningful combinations of those algorithms:
	- Cut & Branch
	- Branch & Cut

Local Cuts

• Global cuts

- Generated at the root node
- Hence globally valid by construction
- Local cuts
	- Generated at internal nodes
	- Either globally valid
		- When only using global information (e.g. bounds)
		- Can be re-used in other parts of the tree
	- Or locally valid
		- When using local bounds
		- Potentially stronger

Local Cuts

• Global cuts

- Generated at the root node
- Hence globally valid by construction
- Local cuts
	- Generated at internal nodes
	- Either globally valid
		- When only using global information (e.g. bounds)
		- Can be re-used in other parts of the tree
	- Or locally valid
		- When using local bounds
		- Potentially stronger

To Cut or Not to Cut?

- Crucial question: Should we generate cutting planes at tree nodes or only at the root?
	- Cuts are an essential part of branch-and-cut algorithms, many problems unsolvable without them
	- Local cuts complicate some other solver features (e.g., conflict analysis)
	- Cutting plane generation costs time and makes LPs slower to solve • When cuts do not make a difference, they slow down the solve
- How good are local cuts?
	- 45% of instances significantly benefit from local cuts
	- 23% of instances suffer from local cuts
- Idea: Try to predict at the beginning of tree search whether local cuts will work

Flowchart

Learning to Use Local Cuts

- Train a random regression forest to predict speed-up factor from deactivating cuts
	- On more than 3000 customer instances
	- Final decision by an average and a majority vote
- Static Features: Row types, percentage binaries
	- Indicate whether this is a combinatorial problem
- Semi-static features: Density, numeric conditioning
	- Indicate whether cuts might lead to expensive LPs
- Dynamic feature: Gap closed by root cuts
	- Indicates the potential of cuts to raise the best bound

Computational results

- Opposite effect on Time and Nodes (to be expected)
- Conservative setting, failed predictions are rare

• Under review for Math. Programming Computation

- Random Forest - Perfect Oracle - Always Cut - Never Cut

Learning To Select Cuts

To appear in Proc. of CPAIOR 2023, joint work with Matthieu Besançon & Mark Turner

FICO

Cut Selection

- Cuts generated in rounds: separate, solve LP, rinse and repeat
- Most separation routines cheap (much cheaper than LP solve)
	- ⇒ Generate more cuts than needed, select the best ones
- Trade-off:
	- Adding more cuts?
		- Expensive LPs, numerically unstable
	- Adding less cut?
		- More nodes needed to solve
- \Rightarrow Sweet spot in between \Rightarrow How do we select promising cuts?

Cut Selection: state-of-the-art

- Efficacy Intuition: Chop as much volume of the polyhedron as possible
- Directed cutoff distance (dcd) Intuition: cut as close to the incumbent as possible

What is wrong with efficacy (and dcd)?

• Distance-based measures: How intuitive and robust are they really?

Distances to an infeasible projection

- Blue cut "better"
- But orange cut only "bad" outside polyhedron

Dual degeneracy (optimal face)

- Blue cut slightly "better" for solution \tilde{x}
- But does not cut off solution \hat{x}
- Arbitrary solution (similar for dcd incumbent)

How might we do better?

- Use analytic centers $(AC) \approx$ central point
- Can be computed as LP, side-product of barrier algo

AC of the optimal face (AC-efficacy)

- Counters degeneracy
- Reduces risk to "project outside"

AC of polyhedron (AC-dcd)

- Projection always inside polyhedron
	- Expected to be central
- Constant reference point

FICO

Instance features

- Goal: Determine best selection criterion (out of eight): Given instance features, which score will produce the minimum tree size/runtime?
- Features of the transformed problem:
	- Dual degeneracy: % non-basic variables with zero-reduced cost
	- Primal degeneracy: % basic variables at bounds
	- Solution fractionality at root node
	- Thinness: % equality constraints
	- Density of the whole constraint matrix
- Test set: MIPLIB2017 Collection, solver: SCIP 8.0

Multiregression model

- Not a binary decision (but 8-fold): Classification?
- No single best for many instances:
	- no cut selected, certain cuts always selected, etc...
	- ties allowed?
- Multi-output regression: #nodesbest/ #nodes
- Support vector regression with cubic kernel
	- Several attempted models: regression trees, support vectors, random forests

Results

- Boxenplots: More right = better, olive: learned model
	- Nodes: Median and all percentiles are better
		- In particular at the lower end
	- Time: On par with Analytic DCD
	- Sh. geom. mean: Better for nodes, worse for time
	- Reduced performance variability

 0.8

Conclusion

Key take-aways

- Modern MIP solvers use (fast, interpretable) ML models for decision making
- Faster is not the only definition of better
	- Improving numeric stability or reducing performance variability valuable by itself
- Use regression for "classification" w.r.t. a continuous measure

Thank You!

Timo Berthold TU Berlin, FICO, MODAL

