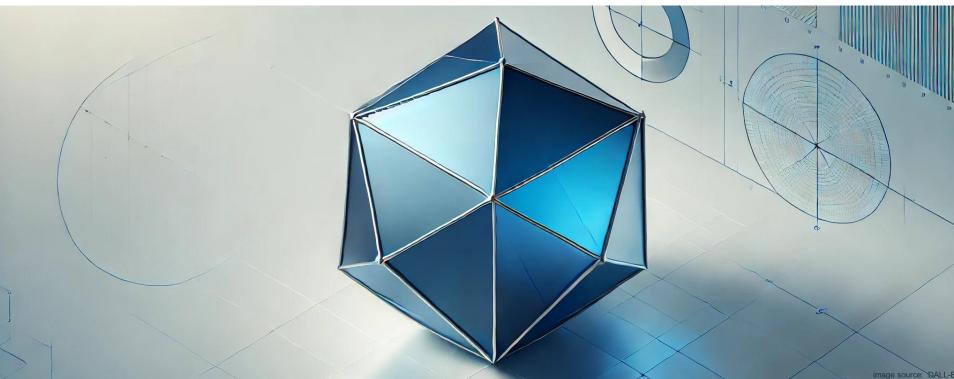


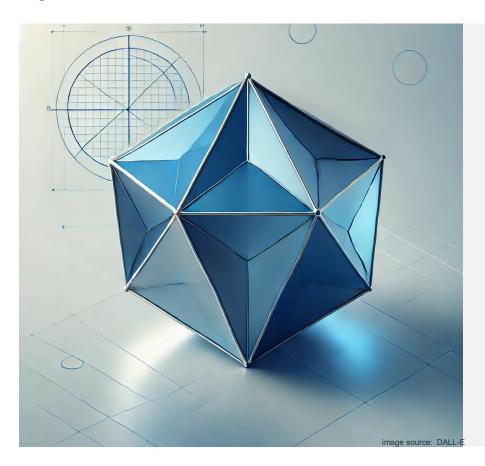
Primal Heuristics

When MIP solvers roll dice

Timo Berthold TU Berlin, FICO, MODAL



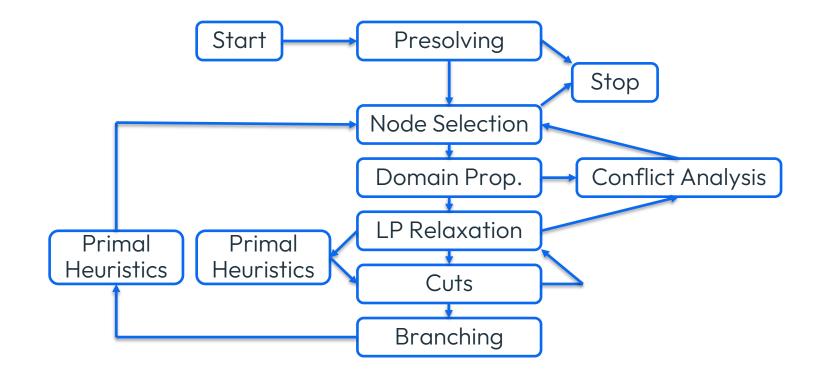
Agenda



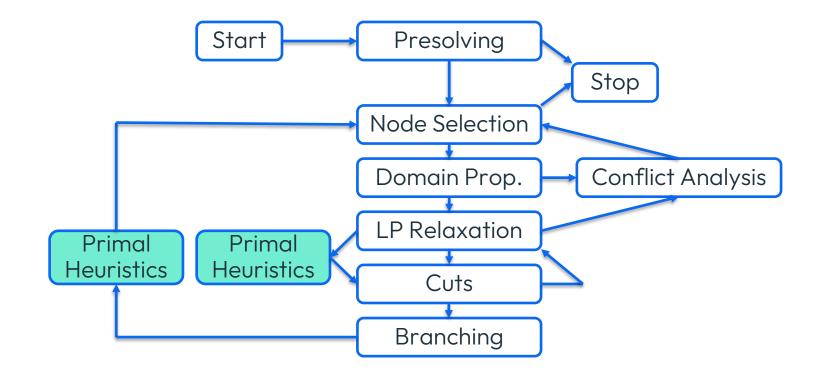
- 1. Heuristics: Idea, Information
- 2. Rounding, Diving
- 3. Feasibility Pump
- 4. LNS
- 5. Primal-Dual Integral

2

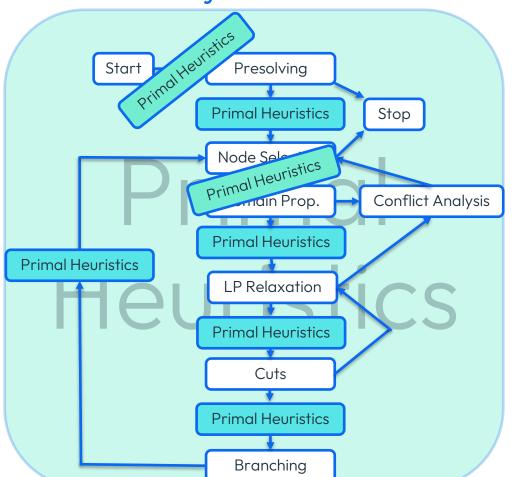
MIP Solver Flowchart



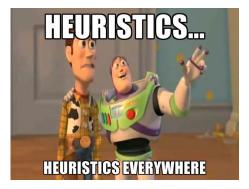
MIP Solver Flowchart



Heuristics Everywhere...

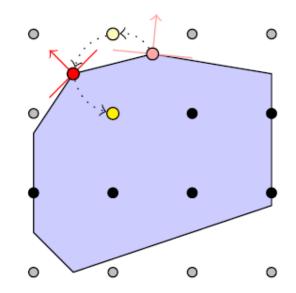


- Heuristics may typically be applied:
 - Before presolving
 - After presolving, before LP
 - After LP, before cut loop
 - During cut loop
 - After node
 - When backtracking
 - In the background!
- Heuristics may trigger other heuristics



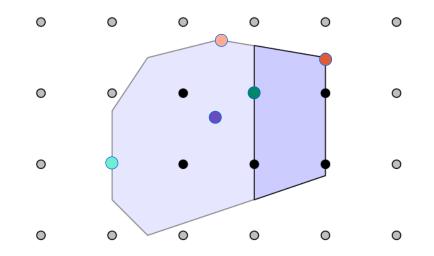
What are primal heuristics?

- Primal heuristics . . .
 - are incomplete methods which
 - often find good solutions
 - within a reasonable time
 - without any warranty!
- Why use primal heuristics inside a (complete) MIP solver?
 - to prove the feasibility of the model
 - often nearly optimal solutions suffice in practice
 - feasible solutions guide the remaining search process



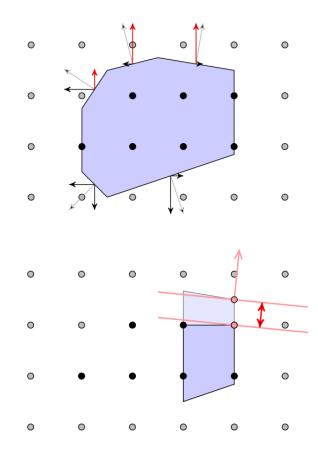
Reference points

- Current LP optimum
- Current incumbent
- Other feasible solutions
- LP optimum at root node
- Analytic center



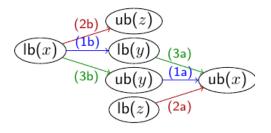
Variable statistics

- Locking numbers
 - Number of potentially violated rows
- Pseudo-costs
 - Average objective change
- Conflict Statistics
 - How often has a variable been involved in proving local infeasibility?



Global structures

- General structures that are automatically detected during presolving
 - Clique table
 - Flow structures
 - Implication graph
 - Variable bound graph
 - Symmetry information



Different types of heuristics

- Rounding: Take a (fractional) LP solution, change fractional to integral values without reoptimization
- Diving: simulate a depth-first search (DFS) in the branch-and-bound tree using some special branching rule (i.e. fix variables and reoptimize)
- FP-type: manipulate objective function in order to reduce fractionality, reoptimize
 - FP=Feasibility Pump, sometimes referred to as objective diving
- Large Neighborhood Search: fix variables, add constraints, solve resulting subproblem
- Pivoting: manipulate simplex algorithm

• ...

Start vs. Improvement heuristics

- Start heuristics
 - Applied early in the search process
 - Often at root node
 - Typically start from LP optimum
 - Ignore incumbent (if one exists)
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent
 - Quick improvement directly after incumbent
 - Heavy improvement only after long time without new incumbent

Rounding heuristics

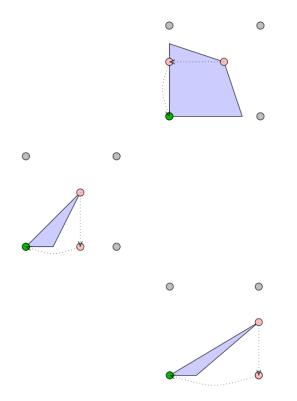
Variable locks as main guide, fast fail strategy

- Simple Rounding: always stays feasible
- Rounding may violate constraints
- Shifting: may unfix integers

Other approaches:

- Random rounding
- Analytic center rounding

For continuous variables: solve final LP



Fix-and-Propagate Heuristics

- Given an integer, but possibly infeasible, reference point.
- Applies several rounds of greedy fixings and bound propagations to improve the solution.
- Columns are typically scored using some combination of objective value and row violations.
- In one round:
 - Select an unfixed column
 - Fix the column to the value that minimizes the score.
 - Propagate bound implications from the fixing.
 - Reverse fixing if infeasible.
 - Continue until all integer variables are fixed.
- Update scoring weights, randomize parts of the solution and repeat.

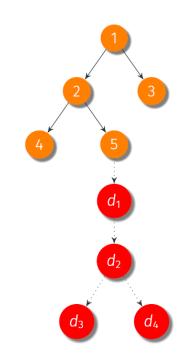
(0, 0, 0)

(2, 0, 0)

Diving heuristics

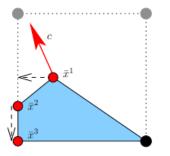
- Simulated tree search
- Pure DFS
 - At most 1-level backtracking
- "One-sided" Branching rule
- Might fix several variables per branch
- Might skip LP and only propagate at some nodes
- Often applied before MIP solver would backjump in main tree

Rule of thumb: Good branching strategies are bad diving strategies

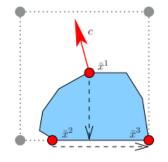


Main difference: Variable fixing strategy

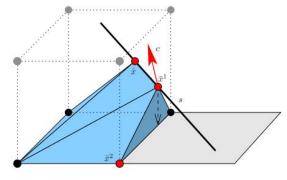
- Fractional diving: Round least fractional
- Guided diving: Round towards reference solution
- Coefficient diving: Round in direction of fewer locks
- Line search diving: Observe development since root LP
- Vector length diving: Fix variables in long constraints



Fractional Diving



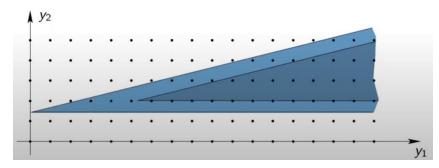
Coefficient Diving



Linesearch Diving

Working with inner parallel sets (Neumann, Stein et al 2018, 2021)

- Inner parallel set: All points in LP relaxation for which a unit box centered at them is completely inside polyhedron
 - Closest rounding(s) lie inside relaxation \rightarrow integer feasible



- Shrink, optimize, round:
 - Solve min $c^T x$ s.t. $Ax \le b \frac{\|\beta\|}{2}$, where $\|\beta\|$ is the vector of row 1-norms
- Enhanced approach: Use smaller shrinking offsets to generate promising inner points
- Can also be used as diving heuristics: Fixing variables grows inner parallel sets

- Diving heuristics
 - a) Simulate a depth-first search
 - b) Manipulate the simplex algorithm
 - c) Change the objective function
- Fix-and-propagate heuristics typically
 - a) Solve a sub-MIP
 - b) Solve a series of LPs
 - c) Do not solve LPs or auxiliary MIPs
- Primal heuristics
 - a) Typically have an approximation ratio
 - b) Always improve the primal bound
 - c) Might terminate unsuccessfully

- Diving heuristics
 - a) Simulate a depth-first search
 - b) Manipulate the simplex algorithm
 - c) Change the objective function
- Fix-and-propagate heuristics typically
 - a) Solve a sub-MIP
 - b) Solve a series of LPs
 - c) Do not solve LPs or auxiliary MIPs
- Primal heuristics
 - a) Typically have an approximation ratio
 - b) Always improve the primal bound
 - c) Might terminate unsuccessfully

- Diving heuristics
 - a) Simulate a depth-first search
 - b) Manipulate the simplex algorithm
 - c) Change the objective function
- Fix-and-propagate heuristics typically
 - a) Solve a sub-MIP
 - b) Solve a series of LPs
 - c) Do not solve LPs or auxiliary MIPs
- Primal heuristics
 - a) Typically have an approximation ratio
 - b) Always improve the primal bound
 - c) Might terminate unsuccessfully

- Diving heuristics
 - a) Simulate a depth-first search
 - b) Manipulate the simplex algorithm
 - c) Change the objective function
- Fix-and-propagate heuristics typically
 - a) Solve a sub-MIP
 - b) Solve a series of LPs
 - c) Do not solve LPs or auxiliary MIPs
- Primal heuristics
 - a) Typically have an approximation ratio
 - b) Always improve the primal bound
 - c) Might terminate unsuccessfully

Local Search

- 1. Consider reference solution
- 2. Unfix small number of variables and explicitly try alternative values
 - Efficient for 1-neighborhood
 - Runtime (naively): O(n^k) for k-neighborhood
 - Already for 2-neighborhood, only a subset of candidates can be considered
 - Exploit structures to reduce runtime
 - Example: Lin Kernighan Heuristic
 - Check <u>https://stemlounge.com/animated-algorithms-for-the-traveling-salesman-problem/</u>
- 3. Accept new solution if it improves incumbent
- 4. Stop if locally optimal
 - Might allow some suboptimal moves to break out

Large Neighborhood Search

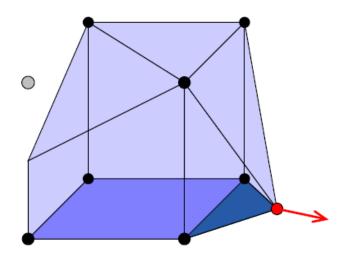
- 1. Consider one or several reference solutions
- 2. Create an auxiliary problem that is too hard to solve by enumeration ("large")
 - Feasible set is a subset of original
- 3. According to some neighborhood definition:
 - Fix variables
 - Add constraints
 - Change the objective
- 4. Perform a partial solve
 - Might use LNS inside LNS

RENS (Berthold 2014)

Idea: Search vicinity of a relaxation solution

- 1. Reference point: $\bar{x} \leftarrow LP$ optimum
- 2. Fix all integral variables: $x_i \leftarrow \bar{x}_i \quad \forall i : \bar{x}_i \in \mathbb{Z}$
- 3. Reduce domain of fractional variables: $x_i \in \{ [\bar{x}_i], [\bar{x}_i] \}$
- 4. Solve the resulting sub-MIP

Start heuristic, does not need a feasible solution!

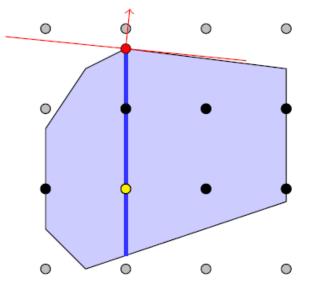


RINS (Danna et al 2005)

Idea: Search common vicinity relaxation solution and incumbent

- Close to LP optimum: high quality
- Close to incumbent: feasible
- 1. Reference points:
 - $\bar{x} \leftarrow LP \text{ optimum}$ $\tilde{x} \leftarrow \text{ incumbent}$
- 2. Fix coinciding variables: $x_i \leftarrow \bar{x}_i \quad \forall i: \bar{x}_i = \tilde{x}_i$
- 3. Solve the resulting sub-MIP

Most common sub-MIP heuristic?

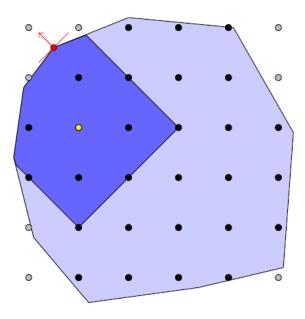


Local Branching (Fischetti&Lodi 2003)

Idea: Search vicinity, induced by 1-norm, of incumbent

- Soft rounding
- Might require auxiliary variables
- 1. Reference points: $\tilde{x} \leftarrow \text{incumbent}$
- 2. Impose Local Branching Constraint: $\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| \le k$
- 3. Solve the resulting sub-MIP

Originally suggested as a branching strategy

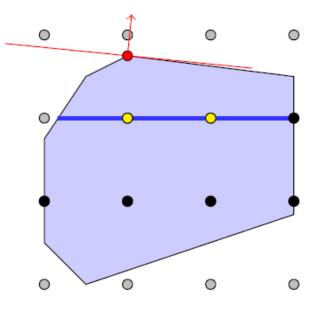


Crossover (Rothberg 2007)

Idea: Search vicinity of several feasible solutions

- Detect implicit conditions for feasibility
- Might be self-fulfilling prophecy
- 1. Reference points: $\tilde{X} \leftarrow \text{set of solutions}$
- 2. Fix all agreeing variables: $x_i \leftarrow \tilde{x}_i^1 \quad \forall i : \tilde{x}_i^j = \tilde{x}_i^k \quad \forall \tilde{x}^j , \tilde{x}^k \in \tilde{X}$
- 3. Solve the resulting sub-MIP

Originally part of a genetic algorithm, with a randomized Mutation LNS heuristic



Changing the objective

- Drop it
 - Zero Objective or Hail Mary Heuristic
 - Might allow for many additional fixings
- Inverse it
- Use Local Branching constraint as objective (Fischetti&Monaci 2016)
 - Try to optimize towards a reference point
 - Reference point can be an "almost" feasible solution
- Use Analytic Center as objective (Berthold et al 2018)
 - Indicates the direction into which a variable is likely to move toward feasibility
 - Particularly interesting for variables that are likely to be 1 in a binary problem

Graph Induced Neighborhood Search

- Fix all variables outside the "constraint neighborhoods" of one or several central variables
- Consider Variable-constraint graph:

 $G_A := (V = \{v_1, \dots, v_n\}, W = \{w_1, \dots, w_m\}, E = \{(v_i, w_j) \in V \times W : a_{ij} \neq 0\})$

• k-neighborhood of a variable s:

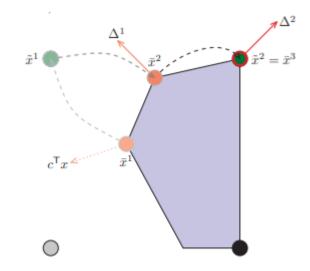
 $N_k(s) := \{t \in V : d(s,t) \le 2k\}$

- Fix all variables outside the k-neighborhood
- Choose maximum k to stay above a minimum fixing rate

- Alternatively, can be applied on top of other fixing rules to reach a target fixing rate
 - Fix all variables INSIDE k-neighborhood

Basic Feasibility Pump (Fischetti et al 2005)

- 1. Solve original LP
- 2. Round LP optimum
- 3. If feasible:
 - Stop!
- 4. If cycle:
 - Perturb
- 5. Change objective: $\Delta(x, \tilde{x}) = \sum |x_j \tilde{x}_j|$
- 6. Solve LP (project)
- 7. Goto 2



Main variants

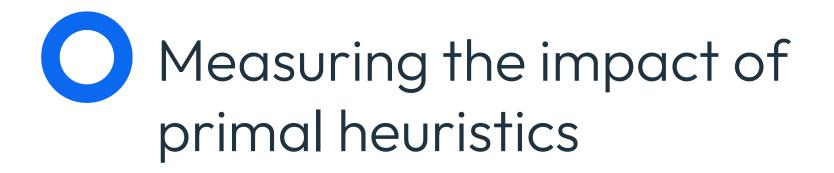
- Improved feasibility pump (Bertacco et al 2007)
 - Uses auxiliary variables to model distance function on general integers

 $\Delta(x,\tilde{x}) := \sum_{j \in \mathcal{I}: \ \tilde{x}_j = l_j} (x_j - l_j) + \sum_{j: \ \tilde{x}_j = u_j} (u_j - x_j) + \sum_{j \in \mathcal{I}: \ l_j < \tilde{x}_j < u_j} d_j \quad \text{ s.t. } d_j \ge x_j - \tilde{x}_j, \ d_j \ge \tilde{x}_j - x_j$

- Objective feasibility pump (Achterberg & Berthold 2007)
 - Convex combination of original objective and distance function

• $\widetilde{\Delta} = (1 - \alpha)\Delta(x) + \alpha c^T x$, with $\alpha \in [0,1]$, typically $\alpha \in [0.95, 0.99]$

- Algorithm can recover from cycles
- Feasibility Pump 2.0 (Fischetti & Salvagnin 2009)
 - Applies propagation after each rounding
 - Uses specific propagators for special linear constraints
 - fewer rounding steps, "more feasible"

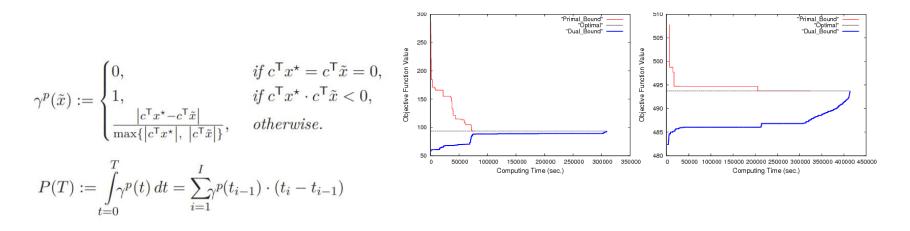


Performance measures

How to measure the added value of a primal heuristic?

- time to optimality, number of branch-and-bound nodes
 - very much depends on dual bound
- time to first solution
 - disregards solution quality
- time to best solution
 - nearly optimal solution might be found long before
- Some combination of all of those?

Primal-Dual Integral (Berthold 2013)

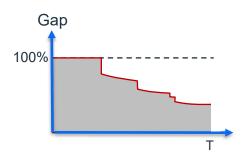


Primal-Dual Integral (PDI):

- favors finding good solutions quickly
- considers each update of incumbent (and the best bound)
- gives you expected solution quality assuming unknown termination time

Heuristic Emphasis

- Textbook: The beauty of MIP is that we can solve problems to proven optimality
- Practice: Often, this takes unbearably long
 - Still, MIP solvers provide us with a proof of quality, the gap
 - Often, solving models to a small gap is good enough
 - And the only viable option within restrictive time limits
- Heuristic Emphasis mode (HEUREMPHASIS)
 - Focus on reducing the gap in the beginning of a MIP search
 - More precisely: minimizes the Primal-Dual Integral (PDI).
 - Typically at the expense of a longer time to optimality
 - Targets problems out of scope for solving to optimality, but when finding good solutions early matters.



Heuristic Emphasis: Technology

- Many neighborhood search heuristics at the root
- Additional non-default heuristics
- More frequent heuristics in the tree
- Deactivate some techniques specifically tailored for easy problems
- Background heuristics in parallel to root-node search

Coming soon...

- Cambridge University Press
- scheduled for the first half of 2025
- Presents heuristic approaches as part of the MIP-solving process
- Tackles practical concerns by examining trade-offs
- Comprehensive overview of different classes of heuristics

Primal Heuristics in Integer Programming

Timo Berthold Andrea Lodi Domenico Salvagnin

- LNS stands for
 - a) Large neighborhood search
 - b) Local neighborhood search
 - c) Local native search
- What is the idea of Crossover?
 - a) Fix variables that coincide in incumbent and LP optimum
 - b) Add one constraint for each fractional variable
 - c) Fix variables that coincide in all integer solutions
- The primal dual integral
 - a) Considers each update of the incumbent
 - b) Depends on the number of processed nodes
 - c) Measures the time to find a first solution

- LNS stands for
 - a) Large neighborhood search
 - b) Local neighborhood search
 - c) Local native search
- What is the idea of Crossover?
 - a) Fix variables that coincide in incumbent and LP optimum
 - b) Add one constraint for each fractional variable
 - c) Fix variables that coincide in all integer solutions
- The primal dual integral
 - a) Considers each update of the incumbent
 - b) Depends on the number of processed nodes
 - c) Measures the time to find a first solution

- LNS stands for
 - a) Large neighborhood search
 - b) Local neighborhood search
 - c) Local native search
- What is the idea of Crossover?
 - a) Fix variables that coincide in incumbent and LP optimum
 - b) Add one constraint for each fractional variable
 - c) Fix variables that coincide in all integer solutions
- The primal dual integral
 - a) Considers each update of the incumbent
 - b) Depends on the number of processed nodes
 - c) Measures the time to find a first solution

- LNS stands for
 - a) Large neighborhood search
 - b) Local neighborhood search
 - c) Local native search
- What is the idea of Crossover?
 - a) Fix variables that coincide in incumbent and LP optimum
 - b) Add one constraint for each fractional variable
 - c) Fix variables that coincide in all integer solutions
- The primal dual integral
 - a) Considers each update of the incumbent
 - b) Depends on the number of processed nodes
 - c) Measures the time to find a first solution

Thank You!

Timo Berthold TU Berlin, FICO, MODAL

