
1

© 2024 Fair Isaac Corporation. Confidential. This presentation is provided
for the recipient only and cannot be reproduced or shared without Fair
Isaac Corporation’s express consent.

© 2024 Fair Isaac Corporation. Confidential. This presentation is provided
for the recipient only and cannot be reproduced or shared without Fair
Isaac Corporation’s express consent.

Branching

Timo Berthold
TU Berlin, FICO, MODAL

The backbone of the MIP solver

image source: DALL-E

2

Computational Mixed Integer Programming

• Bob Bixby (godfather of Computational MIP):
„MIP solvers are a bag of tricks!“

• In 32 years, hardware got a million times faster

• In 32 years, MIP algorithms got 6.5 million times faster
[Bixby 2024]

• In recent years, hardware speedups have gone stale

• MIP solvers are still going strong

• Xpress: ~20% speedup per year

• Let‘s take a look into the bag...
image source: DALL-E

3

MIP Solver Flowchart

Start Presolving

Node Selection

LP Relaxation

Cuts

Branching

Domain Prop.

Stop

Conflict Analysis

Primal
Heuristics

Primal
Heuristics

4

MIP Solver Flowchart

Start Presolving

Node Selection

LP Relaxation

Cuts

Branching

Domain Prop.

Stop

Conflict Analysis

Primal
Heuristics

Primal
Heuristics

55

1. Branching

2. Strong branching, pseudo-costs,
reliability

3. Other history-based rules, hybrid
branching

4. Node selection

Agenda

image source: DALL-E

6

Refresh: Branch&Bound

7

8

• From Bill Cook‘s fantastic IFORS distinguished lecture:
https://www.youtube.com/watch?v=5VjphFYQKj8

• Alison Harcourt recently appointed
Senior Australian of the year 2019

image source: abc.net.au

https://www.youtube.com/watch?v=5VjphFYQKj8

9

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

10

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

11

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

12

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

13

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

14

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

15

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

16

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

17

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

18

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

19

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

20

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

21

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

22

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

23

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

24

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

25

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

26

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

27

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

28

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching

29

LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Variable selection

Two main decisions:

• Node selection

• Might be important to find good solutions early

• When optimum is found: just a matter of traversal order

• Variable selection

• Main goal: Improve dual bound

• Bad selection might duplicate search effort

• at every level….

30

So, what is a good branching rule?
Eeeeasy, my textbook

knows the answer!

• Branch on the most fractional variable

• „most undecided“

• Most-fractional as bad as random branching

• partially due to dual degeneracy

• you can do orders of magnitude better

All a lie…

image source: DALL-E

31

Strong branching and pseudo-costs

32

Strong branching (Applegate et al 1995)

Typical goal: Improve dual bound

• Perform an explicit look-ahead by solving all possible descendants of the current node.

image source: Gerald Gamrath

33

Strong branching (Applegate et al 1995)

• Effective w.r.t. number of nodes, expensive w.r.t. time

• Strong branching might:

• Change variable bound, when one side is infeasible

• Detect local infeasibility, when both sides are infeasible

• Find feasible solutions

Speeding strong branching up:

• Only for some candidates, stop if you do not make enough improvement

• Limit number of simplex iterations

• Special case: One iteration → Driebeek penalties (Driebeek 1966)

• Can be efficiently computed by ratio test

34

Strong branching + domain propagation (Gamrath 2014)

• Some strong branching LPs further restricted by domain propagation

• Add branching bound → perform “default” domain propagation → solve LP

• Better predictions, more fixings

• Important special case: probing

• Only domain propagation, no LP

image source: Gerald Gamrath

35

Pseudo-costs (Bénichou 1971)

• Strong branching: A-priori observation, pseudo-costs: a-posteriori

• Estimate for objective gain based on past branching observations.

• Objective gain per unit fractionality: computed from

fractionalities 𝑓𝑗
−, 𝑓𝑗

+ ≔ 1 − 𝑓𝑗
− and differences ∆↓ , ∆↑ in LP values

• downward obj. gain for var. 𝑗 at current node: 𝜑𝑗
− =

∆↓

𝑓𝑗
−

• upward obj. gain for var. 𝑗 at current node: 𝜑𝑗
+ =

∆↑

𝑓𝑗
+

• Pseudo-costs Ψ𝑗
−, Ψ𝑗

+:average unit gain taken

over all nodes that branched on same variable

• downward pseudo-cost: Ψ𝑗
− =

𝜑𝑗,1
− +⋯+𝜑𝑗,𝑘

−

𝑘

• upward pseudo-cost: Ψ𝑗
+ =

𝜑𝑗,1
+ +⋯+𝜑𝑗,𝑘

+

𝑘

36

Pseudo-cost branching

• Estimated increase of objective ∆𝑗
−= 𝑓𝑗

−Ψ𝑗
−, ∆𝑗

+= 𝑓𝑗
+Ψ𝑗

+

based on current fractionalities 𝑓𝑗
−, 𝑓𝑗

+

• Core of most state-of-the-art branching schemes

• Gets better and better during the search

Pro:

• Very cheap to compute

Cons:

• Values might show a large variance

• Attributes all change to the last branching

37

Reliability branching (Achterberg et al 2005)

• Pseudo-cost branching gets better and better during the search

• Most important branchings are made in the beginning

• Standard approach: Pseudo-cost branching with strong branching initalization

• Even better: consider variable unreliable, as long as there are less than k strong branches

• Typical values for k: 4-8

• k might depend on variance of pseudo-cost values

Open questions:

• Should a strong branch that hit the iteration limit be considered reliable?

• Should we reconsider strong branching when some subproblem behaves „differently“?

40

Quiz time

• Pseudo-costs are an

a) Underestimator of the objective change when branching

b) Overestimator of the objective change when branching

c) Heuristic estimate of the objective change when branching

• Strong Branching is very competitive w.r.t. the

a) Running time

b) Number of nodes

c) Primal-dual integral

• A main drawback of pseudo-costs ist that

a) They are uninitialized when the most important branchings are taken

b) They are expensive to compute

c) They become less reliable over time

41

Quiz time

• Pseudo-costs are an

a) Underestimator of the objective change when branching

b) Overestimator of the objective change when branching

c) Heuristic estimate of the objective change when branching

• Strong Branching is very competitive w.r.t. the

a) Running time

b) Number of nodes

c) Primal-dual integral

• A main drawback of pseudo-costs ist that

a) They are uninitialized when the most important branchings are taken

b) They are expensive to compute

c) They become less reliable over time

42

Quiz time

• Pseudo-costs are an

a) Underestimator of the objective change when branching

b) Overestimator of the objective change when branching

c) Heuristic estimate of the objective change when branching

• Strong Branching is very competitive w.r.t. the

a) Running time

b) Number of nodes

c) Primal-dual integral

• A main drawback of pseudo-costs ist that

a) They are uninitialized when the most important branchings are taken

b) They are expensive to compute

c) They become less reliable over time

43

Quiz time

• Pseudo-costs are an

a) Underestimator of the objective change when branching

b) Overestimator of the objective change when branching

c) Heuristic estimate of the objective change when branching

• Strong Branching is very competitive w.r.t. the

a) Running time

b) Number of nodes

c) Primal-dual integral

• A main drawback of pseudo-costs ist that

a) They are uninitialized when the most important branchings are taken

b) They are expensive to compute

c) They become less reliable over time

44

Finally, all good now?

45

What if pseudo-costs don‘t work?

• Many situations where pseudocosts might not work well:

• No objective → pseudo-costs all zero

• Solution symmetries: Solution is “pushed around” → objective gains almost always zero

• High dual degeneracy → objective gains often zero

• Even if none of the above applies, we might need a tie-breaker!

• Some (cheap) local rules might still work well: probing

• What other useful statistics can we collect about variables?

46

Hybrid branching and other history rules

47

Inference branching

• Inference branching:

• Average number of implied bound reductions

• History based

• Captures combinatorial structure

• Estimates tightening of subproblems

• Analogy to pseudo-cost values in MIP

• One value for upwards branch, one for downwards

• Initialization: probing (≈ strong branching)

48

VSIDS branching (Moskewicz et al 2001)

Conflict analysis:

• Learn additional constraints which trigger infeasibility

• Important for feasibility problems

• VSIDS branching:

• Variable which appears in highest number of (conflict) clauses

• Branch towards infeasibility

• Prefer “recent” conflicts: exponentially decreasing importance

• Works particularly well for feasibility problems

• State-of-the-art in SAT solving

49

Branching scores based on intersection cuts (Turner et al. 2023)

• Observation:

• Gomory Mixed Integer (GMI) cuts are split cuts
equivalent to branching on a basic variable

• Idea:

• Deep cuts correspond to important branchings

• Favor branching variables associated with “strong” GMI cuts

• Cut Distance score:

⇔

𝐶𝐷 𝑥𝑗 : = Depth of the intersection cut from the tableau row of 𝑥𝑗

50

Hybrid branching (Achterberg and Berthold 2009)

.

• Additional tie-breakers: number of pruned subproblems, variable counts in Farkas proofs, ...

• Scaling: divide each value by average over all variables

• Use a weighted sum of all criteria

• Or: Use a leveled filtering approach. First filter leaves 50% candidates, second filter 25%,...

Pseudocosts VSIDS Cut Distance Inference

Hybrid
Branching

54

Branching score

• Most branching rules yield two values: One for down-, one for up-branch

• Need to combine them to a single value

• First idea: average

• Slightly more involve: convex sum

• score(𝑥𝑗) = 𝜆max{𝑠𝑗
− , 𝑠𝑗

+} + (1 − λ) min{𝑠𝑗
− , 𝑠𝑗

+}

• includes minimum and maximum as extreme cases

• Better: multiplication

• score(𝑥𝑗) = max{𝑠𝑗
− , 𝑠𝑗

+} · min{𝑠𝑗
− , 𝑠𝑗

+}

• computational results: 10% faster

55

Branching on general disjunctions

• potentially better branching decisions

• choosing the best candidate computationally much more expensive

• no generic scheme improving the overall MIP performance

• Xpress branches on general disjunctions in some cases

56

Branching on multi-aggregated variables (Gamrath et al 2015)

• Some variables get multi-aggregated in presolving 𝑥𝑗 = 𝛽 + ෍
𝑗∈𝑆

𝛼𝑗𝑥 ሶ𝑗

• multi-aggregated variables not part of presolved problem

• not used as branching candidates

• branch on corresponding general disjunctions

• extend variable-based branching by these disjunctions

• represents decisions in original problem

• moderately enlarged candidate set

59

Quiz time

• Strong Branching + Pseudocost Branching =

a) Hybrid Branching

b) Reliability Branching

c) Inference Branching

• Which of the following are history-based branching scores?

a) VSIDS

b) Inference Scores

c) Probing

60

Quiz time

• Strong Branching + Pseudocost Branching =

a) Hybrid Branching

b) Reliability Branching

c) Inference Branching

• Which of the following are history-based branching scores?

a) VSIDS

b) Inference Scores

c) Probing

61

Quiz time

• Strong Branching + Pseudocost Branching =

a) Hybrid Branching

b) Reliability Branching

c) Inference Branching

• Which of the following are history-based branching scores?

a) VSIDS

b) Inference Scores

c) Probing

62

Node selection

63

Considerations

Goals:

• Improve primal bound to enable pruning

• Improve global dual bound

• Keep computational effort small

• Prefer children over siblings over others

• Ramp-up:

• Diversification

• For parallelization

64

Node Selection Rules

Basic rules

• Depth first search (DFS) → early feasible solutions

• Most of the time, MIP solvers do DFS

• Breadth first search (BFS) → diversification, ramp-up

• Best bound search (BBS) → improve dual bound

• Best estimate search (BES) → improve primal bound

Combinations:

• BBS or BES with plunging

• Hybrid BES/BBS / Interleaved BES/BBS

65

What do typical branching trees look like?

image source: Thorsten Koch

66

What do typical branching trees look like?

image source: Thorsten Koch

68

Quiz time

• Most of the times, a MIP solver will select as next node

a) A child or sibling of the current node

b) A node close to the root

c) A node with the best dual bound

• W.r.t. running time, node selection empirically has

a) A larger impact than the branching rule

b) A smaller impact than the branching rule

c) About the same impact as the branching rule

69

Quiz time

• Most of the times, a MIP solver will select as next node

a) A child or sibling of the current node

b) A node close to the root

c) A node with the best dual bound

• W.r.t. running time, node selection empirically has

a) A larger impact than the branching rule

b) A smaller impact than the branching rule

c) About the same impact as the branching rule

70

Quiz time

• Most of the times, a MIP solver will select as next node

a) A child or sibling of the current node

b) A node close to the root

c) A node with the best dual bound

• W.r.t. running time, node selection empirically has

a) A larger impact than the branching rule

b) A smaller impact than the branching rule

c) About the same impact as the branching rule

71

© 2024 Fair Isaac Corporation. Confidential. This presentation is provided
for the recipient only and cannot be reproduced or shared without Fair
Isaac Corporation’s express consent.

© 2024 Fair Isaac Corporation. Confidential. This presentation is provided
for the recipient only and cannot be reproduced or shared without Fair
Isaac Corporation’s express consent.

Thank You!

Timo Berthold
TU Berlin, FICO, MODAL

image source: DALL-E

	Slide 1: Branching
	Slide 2: Computational Mixed Integer Programming
	Slide 3: MIP Solver Flowchart
	Slide 4: MIP Solver Flowchart
	Slide 5
	Slide 6
	Slide 7
	Slide 8: First IFORS meeting: kickstart for LP-based Branch&Bound?
	Slide 9: LP-based Branch&Bound (colorful picture)
	Slide 10: LP-based Branch&Bound (colorful picture)
	Slide 11: LP-based Branch&Bound (colorful picture)
	Slide 12: LP-based Branch&Bound (colorful picture)
	Slide 13: LP-based Branch&Bound (colorful picture)
	Slide 14: LP-based Branch&Bound (colorful picture)
	Slide 15: LP-based Branch&Bound (colorful picture)
	Slide 16: LP-based Branch&Bound (colorful picture)
	Slide 17: LP-based Branch&Bound (colorful picture)
	Slide 18: LP-based Branch&Bound (colorful picture)
	Slide 19: LP-based Branch&Bound (colorful picture)
	Slide 20: LP-based Branch&Bound (colorful picture)
	Slide 21: LP-based Branch&Bound (colorful picture)
	Slide 22: LP-based Branch&Bound (colorful picture)
	Slide 23: LP-based Branch&Bound (colorful picture)
	Slide 24: LP-based Branch&Bound (colorful picture)
	Slide 25: LP-based Branch&Bound (colorful picture)
	Slide 26: LP-based Branch&Bound (colorful picture)
	Slide 27: LP-based Branch&Bound (colorful picture)
	Slide 28: LP-based Branch&Bound (colorful picture)
	Slide 29: LP-based Branch&Bound (colorful picture)
	Slide 30: So, what is a good branching rule?
	Slide 31
	Slide 32: Strong branching (Applegate et al 1995)
	Slide 33: Strong branching (Applegate et al 1995)
	Slide 34: Strong branching + domain propagation (Gamrath 2014)
	Slide 35: Pseudo-costs (Bénichou 1971)
	Slide 36: Pseudo-cost branching
	Slide 37: Reliability branching (Achterberg et al 2005)
	Slide 40: Quiz time
	Slide 41: Quiz time
	Slide 42: Quiz time
	Slide 43: Quiz time
	Slide 44: Finally, all good now?
	Slide 45: What if pseudo-costs don‘t work?
	Slide 46
	Slide 47: Inference branching
	Slide 48: VSIDS branching (Moskewicz et al 2001)
	Slide 49: Branching scores based on intersection cuts (Turner et al. 2023)
	Slide 50: Hybrid branching (Achterberg and Berthold 2009)
	Slide 54: Branching score
	Slide 55: Branching on general disjunctions
	Slide 56: Branching on multi-aggregated variables (Gamrath et al 2015)
	Slide 59: Quiz time
	Slide 60: Quiz time
	Slide 61: Quiz time
	Slide 62
	Slide 63: Considerations
	Slide 64: Node Selection Rules
	Slide 65: What do typical branching trees look like?
	Slide 66: What do typical branching trees look like?
	Slide 68: Quiz time
	Slide 69: Quiz time
	Slide 70: Quiz time
	Slide 71: Thank You!

