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The backbone of the MIP solver
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Computational Mixed Integer Programming

• Bob Bixby (godfather of Computational MIP): 
„MIP solvers are a bag of tricks!“

• In 32 years, hardware got a million times faster

• In 32 years, MIP algorithms got 6.5 million times faster
[Bixby 2024]

• In recent years, hardware speedups have gone stale

• MIP solvers are still going strong 

• Xpress: ~20% speedup per year

• Let‘s take a look into the bag...
image source:  DALL-E
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1. Branching

2. Strong branching, pseudo-costs, 
reliability

3. Other history-based rules, hybrid 
branching

4. Node selection

Agenda
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Refresh: Branch&Bound
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• From Bill Cook‘s fantastic IFORS distinguished lecture: 
https://www.youtube.com/watch?v=5VjphFYQKj8

• Alison Harcourt recently appointed 
Senior Australian of the year 2019

image source: abc.net.au

https://www.youtube.com/watch?v=5VjphFYQKj8
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LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Branching
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LP-based Branch&Bound (colorful picture)

1. Abort Criterion

2. Node selection

3. Solve relaxation

4. Bounding

5. Feasibility Check

6. Variable selection

Two main decisions:

• Node selection

• Might be important to find good solutions early

• When optimum is found: just a matter of traversal order

• Variable selection

• Main goal: Improve dual bound

• Bad selection might duplicate search effort

• at every level….
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So, what is a good branching rule?
Eeeeasy, my textbook

knows the answer!

• Branch on the most fractional variable

• „most undecided“

• Most-fractional as bad as random branching

• partially due to dual degeneracy

• you can do orders of magnitude better

All a lie…

image source:  DALL-E
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Strong branching and pseudo-costs
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Strong branching (Applegate et al 1995)

Typical goal: Improve dual bound

• Perform an explicit look-ahead by solving all possible descendants of the current node.

image source: Gerald  Gamrath
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Strong branching (Applegate et al 1995)

• Effective w.r.t. number of nodes, expensive w.r.t. time

• Strong branching might:

• Change variable bound, when one side is infeasible

• Detect local infeasibility, when both sides are infeasible

• Find feasible solutions

Speeding strong branching up:

• Only for some candidates, stop if you do not make enough improvement

• Limit number of simplex iterations

• Special case: One iteration → Driebeek penalties (Driebeek 1966)

• Can be efficiently computed by ratio test
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Strong branching + domain propagation (Gamrath 2014)

• Some strong branching LPs further restricted by domain propagation

• Add branching bound → perform “default” domain propagation → solve LP

• Better predictions, more fixings

• Important special case: probing

• Only domain propagation, no LP

image source: Gerald  Gamrath
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Pseudo-costs (Bénichou 1971)

• Strong branching: A-priori observation, pseudo-costs: a-posteriori

• Estimate for objective gain based on past branching observations.

• Objective gain per unit fractionality: computed from

fractionalities 𝑓𝑗
−, 𝑓𝑗

+ ≔ 1 − 𝑓𝑗
− and differences ∆↓ , ∆↑ in LP values

• downward obj. gain for var. 𝑗 at current node: 𝜑𝑗
− =

∆↓

𝑓𝑗
−

• upward obj. gain for var. 𝑗 at current node: 𝜑𝑗
+ =

∆↑

𝑓𝑗
+

• Pseudo-costs Ψ𝑗
−, Ψ𝑗

+:average unit gain taken 

over all nodes that branched on same variable

• downward pseudo-cost: Ψ𝑗
− =

𝜑𝑗,1
− +⋯+𝜑𝑗,𝑘

−

𝑘

• upward pseudo-cost: Ψ𝑗
+ =

𝜑𝑗,1
+ +⋯+𝜑𝑗,𝑘

+

𝑘
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Pseudo-cost branching

• Estimated increase of objective ∆𝑗
−= 𝑓𝑗

−Ψ𝑗
−, ∆𝑗

+= 𝑓𝑗
+Ψ𝑗

+

based on current fractionalities 𝑓𝑗
−, 𝑓𝑗

+

• Core of most state-of-the-art branching schemes

• Gets better and better during the search

Pro:

• Very cheap to compute

Cons:

• Values might show a large variance

• Attributes all change to the last branching
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Reliability branching (Achterberg et al 2005)

• Pseudo-cost branching gets better and better during the search

• Most important branchings are made in the beginning

• Standard approach: Pseudo-cost branching with strong branching initalization

• Even better: consider variable unreliable, as long as there are less than k strong branches

• Typical values for k: 4-8

• k might depend on variance of pseudo-cost values

Open questions:

• Should a strong branch that hit the iteration limit be considered reliable?

• Should we reconsider strong branching when some subproblem behaves „differently“?
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Quiz time

• Pseudo-costs are an

a) Underestimator of the objective change when branching

b) Overestimator of the objective change when branching

c) Heuristic estimate of the objective change when branching

• Strong Branching is very competitive w.r.t. the

a) Running time

b) Number of nodes

c) Primal-dual integral

• A main drawback of pseudo-costs ist that

a) They are uninitialized when the most important branchings are taken

b) They are expensive to compute

c) They become less reliable over time
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Finally, all good now?
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What if pseudo-costs don‘t work?

• Many situations where pseudocosts might not work well:

• No objective → pseudo-costs all zero

• Solution symmetries: Solution is “pushed around” → objective gains almost always zero

• High dual degeneracy → objective gains often zero

• Even if none of the above applies, we might need a tie-breaker!

• Some (cheap) local rules might still work well: probing

• What other useful statistics can we collect about variables?
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Hybrid branching and other history rules
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Inference branching

• Inference branching:

• Average number of implied bound reductions

• History based

• Captures combinatorial structure

• Estimates tightening of subproblems

• Analogy to pseudo-cost values in MIP

• One value for upwards branch, one for downwards

• Initialization: probing (≈ strong branching)
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VSIDS branching (Moskewicz et al 2001)

Conflict analysis:

• Learn additional constraints which trigger infeasibility

• Important for feasibility problems

• VSIDS branching:

• Variable which appears in highest number of (conflict) clauses

• Branch towards infeasibility

• Prefer “recent” conflicts: exponentially decreasing importance

• Works particularly well for feasibility problems

• State-of-the-art in SAT solving
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Branching scores based on intersection cuts (Turner et al. 2023)

• Observation:

• Gomory Mixed Integer (GMI) cuts are split cuts 
equivalent to branching on a basic variable

• Idea:

• Deep cuts correspond to important branchings

• Favor branching variables associated with “strong” GMI cuts

• Cut Distance score:

⇔

𝐶𝐷 𝑥𝑗 : = Depth of the intersection cut from the tableau row of 𝑥𝑗
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Hybrid branching (Achterberg and Berthold 2009)

. 

• Additional tie-breakers: number of pruned subproblems, variable counts in Farkas proofs, ...

• Scaling: divide each value by average over all variables

• Use a weighted sum of all criteria

• Or: Use a leveled filtering approach. First filter leaves 50% candidates, second filter 25%,...

Pseudocosts VSIDS Cut Distance Inference

Hybrid 
Branching
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Branching score

• Most branching rules yield two values: One for down-, one for up-branch

• Need to combine them to a single value

• First idea: average

• Slightly more involve: convex sum

• score(𝑥𝑗 ) = 𝜆max{𝑠𝑗
− , 𝑠𝑗

+} + (1 − λ) min{𝑠𝑗
− , 𝑠𝑗

+}

• includes minimum and maximum as extreme cases

• Better: multiplication

• score(𝑥𝑗 ) = max{𝑠𝑗
− , 𝑠𝑗

+} · min{𝑠𝑗
− , 𝑠𝑗

+}

• computational results: 10% faster
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Branching on general disjunctions

• potentially better branching decisions

• choosing the best candidate computationally much more expensive

• no generic scheme improving the overall MIP performance

• Xpress branches on general disjunctions in some cases
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Branching on multi-aggregated variables (Gamrath et al 2015)

• Some variables get multi-aggregated in presolving 𝑥𝑗 = 𝛽 + ෍
𝑗∈𝑆

𝛼𝑗𝑥 ሶ𝑗

• multi-aggregated variables not part of presolved problem

• not used as branching candidates

• branch on corresponding general disjunctions

• extend variable-based branching by these disjunctions

• represents decisions in original problem

• moderately enlarged candidate set
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Quiz time

• Strong Branching + Pseudocost Branching =

a) Hybrid Branching

b) Reliability Branching

c) Inference Branching

• Which of the following are history-based branching scores?

a) VSIDS

b) Inference Scores

c) Probing
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Node selection
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Considerations

Goals:

• Improve primal bound to enable pruning

• Improve global dual bound

• Keep computational effort small

• Prefer children over siblings over others

• Ramp-up:

• Diversification

• For parallelization
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Node Selection Rules

Basic rules

• Depth first search (DFS) → early feasible solutions

• Most of the time, MIP solvers do DFS

• Breadth first search (BFS) → diversification, ramp-up

• Best bound search (BBS) → improve dual bound

• Best estimate search (BES) → improve primal bound

Combinations:

• BBS or BES with plunging

• Hybrid BES/BBS / Interleaved BES/BBS



65

What do typical branching trees look like?

image source: Thorsten Koch
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What do typical branching trees look like?

image source: Thorsten Koch
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Quiz time

• Most of the times, a MIP solver will select as next node

a) A child or sibling of the current node

b) A node close to the root

c) A node with the best dual bound

• W.r.t. running time, node selection empirically has

a) A larger impact than the branching rule

b) A smaller impact than the branching rule

c) About the same impact as the branching rule
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Thank You!

Timo Berthold
TU Berlin, FICO, MODAL
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