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Motivation: x2
1 + 2x1x2 + x2

2 = (x1 + x2)
2

... made complicated.

Let Q =
(
1 1
1 1

)
and suppose we have the constraint

t ≥ x tQx = x21 + 2x1x2 + x22 . (1)

Now Q is p.s.d., and Q = F tF with F =
(
1 1
0 0

)
.

Thus, (1) is equivalent to

t ≥ 〈Fx ,Fx〉 = ‖Fx‖22 = ‖x1 + x2‖22 . . . = (x1 + x2)2.

t ≥ ‖x1 + x2‖22 can be cast as a conic constraint intersected with
linear (in-)equalities!

In Convex Optimization, representation can affect both theory and
practice (i.e., computational aspects).
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(Mixed-Integer) Conic Optimization

We consider problems of the form

minimize cT x
subject to Ax = b

x ∈ K ∩
(
Zp × Rn−p

)
,

where K is a convex cone.

• Typically, K = K1 ×K2 × · · · × KK is a product of
lower-dimensional cones.

• How can these so-called conic building blocks look like?
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Symmetric cones

• the nonnegative orthant

Rn
+ := {x ∈ Rn | xj ≥ 0, j = 1, . . . , n},

• the quadratic cone

Qn = {x ∈ Rn | x1 ≥
(
x22 + · · ·+ x2n

)1/2
= ‖x2:n‖2},

• the rotated quadratic cone

Qn
r = {x ∈ Rn | 2x1x2 ≥ x23 + · · ·+ x2n = ‖x3:n‖22, x1, x2 ≥ 0}.

• the semidefinite matrix cone

Sn = {x ∈ Rn(n+1)/2 | zTmat(x)z ≥ 0, ∀z},

with mat(x) :=


x1 x2/

√
2 . . . xn/

√
2

x2/
√

2 xn+1 . . . x2n−1/
√

2
...

...
...

xn/
√

2 x2n−1/
√

2 . . . xn(n+1)/2

 .
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Quadratic cones in dimension 3
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Quadratic-cone use cases

• Simple quadratics:

t ≥ (x + y)2 ⇐⇒ (0.5, t, x + y) ∈ Q3
r .

• Every convex (MI)QCP can be reformulated as a (MI)SOCP:

t ≥ xTQx with Q p.s.d. ⇐⇒ (0.5, t,Fx) ∈ Qn+2
r

with with Q = FTF .

• In some applications, like least-squares regression, a
SOC-formulation is more direct than a QP-formulation.
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Non-symmetric cones

Symmetric cones are self-dual and homogeneous by definition, and
the two cones below lack at least one of these properties.

• the three-dimensional exponential cone

Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0}.

• the three-dimensional power cone

Pα = {x ∈ R3 | xα1 x
(1−α)
2 ≥ |x3|, x1, x2 ≥ 0},

for 0 < α < 1.

6 / 15



The exponential cone
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The power cone
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Exponential-cone use cases

Many constraints involving exponentials or logarithms can be
formulated using the exponential cone.

• Expontial:

ex ≤ t ⇐⇒ (t, 1, x) ∈ Kexp.

• Entropy:

−x log x ≥ t ⇐⇒ (1, x , t) ∈ Kexp.

• Softplus function:

log(1+ex) ≤ t ⇐⇒ (u, 1, x−t), (v , 1,−t) ∈ Kexp, u+v ≤ 1.

• . . .
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What can you do with MOSEK ?

The software package MOSEK supports the following conic
building blocks:

MOSEK 8.1MOSEK 9

MOSEK 9.0 released January 2019, 9.2 released February 2020

LP

SOC

SDP

M
IP

LP

SOC

SDP

power

cones

exponential

cones
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How general is the MOSEK framework?

The 5 cones - linear, quadratic, exponential, power and
semidefinite - together are highly versatile for modeling.

Continuous Optimization Folklore

“Almost all convex constraints which arise in practice are
representable using these cones.”

We call modeling with the aforementioned 5 cones Extremely
Disciplined Convex Programming.

(Check the link to CVX in the video description!)
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Other conic solvers

• The leading MIP solvers support SOC modeling these days.

• SCS and ECOS can handle power and/or exponential cones.

• Several software packages for SDP have been around for many
years.

• Pajarito is designed for Mixed-Integer Conic Optimization and
supports all of the above but the power cone.

• There are recent efforts to building software supporting ever
more cones: Coey, Kapelevich, Vielma: Towards Practical
Generic Conic Optimization (2020).

Check the links in the video description!
12 / 15



The beauty of Conic Optimization

In continuous optimization, conic (re-)formulations have been
advocated for quite some time:
• Separation of data and structure:

• Data: c , A and b - Structure: K.

• Structural convexity.

• No issues with smoothness and differentiability.

• Duality (almost...).quit()

Further reading:
• Ben-Tal, Nemirovski: Lectures on modern convex optimization (2001)

• Boyd, Vandenberghe: Convex Optimization (2004)

• Nemirovski: Advances in Convex Optimization: Conic Programming
(2007)

Check the links in the video description!
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Cones in Mixed-Integer Optimization

All convex instances (333) from minlplib.org can be converted to
conic form:

• Lubin et al.: Extended Formulations in Mixed-integer Convex
Programming (2016)

Exploiting conic structures in the mixed-integer case is an active research
area:

• Coey et al.: Outer approximation with conic certificates for mixed-integer
convex problems (2020)

• Lodi et al.: Disjunctive cuts for Mixed-Integer Conic Optimization (2019)

• MISOCP:

• Andersen, Jensen: Intersection cuts for mixed integer conic
quadratic sets (2013)

• Vielma et al.: Extended Formulations in Mixed Integer Conic
Quadratic Programming (2017)

• Çay et al.: The first heuristic specifically for mixed-integer
second-order cone optimization (2018)

Check the links in the video description for more references! 14 / 15
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Further information on MOSEK

APIs

C

Julia

Python

.NETJava

C++

Matlab

R

Optim
izer

A
P
IT

oo
lb
ox

Rm
osek

Fusion

• Documentation at mosek.com/documentation/
• Modeling cook book / cheat sheet.
• White papers.
• Manuals for interfaces.
• Notebook collection.

• Tutorials and more at
github.com/MOSEK/
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