

#### Convex Optimization via Cones and MOSEK 9

CO@Work September 2020, online event

Sven Wiese

www.mosek.com

# Motivation: $x_1^2 + 2x_1x_2 + x_2^2 = (x_1 + x_2)^2$



Let  $Q = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$  and suppose we have the constraint

$$t \ge x^t Q x = x_1^2 + 2x_1 x_2 + x_2^2. (1)$$

Now Q is p.s.d., and  $Q = F^t F$  with  $F = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ .

Thus, (1) is equivalent to

made complicated.

$$t \ge \langle Fx, Fx \rangle = \|Fx\|_2^2 = \|x_1 + x_2\|_2^2 \qquad \dots = (x_1 + x_2)^2.$$

 $t \ge \|x_1 + x_2\|_2^2$  can be cast as a conic constraint intersected with linear (in-)equalities!

In Convex Optimization, representation can affect both theory and practice (i.e., computational aspects).

# (Mixed-Integer) Conic Optimization



We consider problems of the form

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$ ,

where K is a convex cone.

- Typically,  $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots \times \mathcal{K}_K$  is a product of lower-dimensional cones.
- How can these so-called conic building blocks look like?

### Symmetric cones



the nonnegative orthant

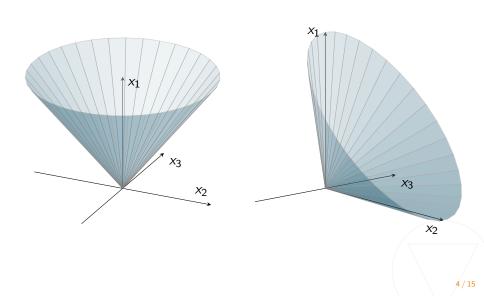
$$\mathbb{R}^n_+ := \{ x \in \mathbb{R}^n \mid x_i \ge 0, j = 1, \dots, n \},$$

• the quadratic cone

$$Q^n = \{x \in \mathbb{R}^n \mid x_1 \ge (x_2^2 + \dots + x_n^2)^{1/2} = ||x_{2:n}||_2\},\$$

• the rotated quadratic cone

$$Q_r^n = \{x \in \mathbb{R}^n \mid 2x_1x_2 \ge x_3^2 + \dots + x_n^2 = ||x_{3:n}||_2^2, x_1, x_2 \ge 0\}.$$


• the semidefinite matrix cone

$$S^n = \{x \in \mathbb{R}^{n(n+1)/2} \mid z^T \mathbf{mat}(x)z \ge 0, \ \forall z\},\$$

with 
$$\mathbf{mat}(x) := \begin{bmatrix} x_1 & x_2/\sqrt{2} & \dots & x_n/\sqrt{2} \\ x_2/\sqrt{2} & x_{n+1} & \dots & x_{2n-1}/\sqrt{2} \\ \vdots & \vdots & & \vdots \\ x_n/\sqrt{2} & x_{2n-1}/\sqrt{2} & \dots & x_{n(n+1)/2} \end{bmatrix}.$$

# Quadratic cones in dimension 3





#### Quadratic-cone use cases



• Simple quadratics:

$$t \ge (x+y)^2 \iff (0.5, t, x+y) \in \mathcal{Q}_r^3$$

Every convex (MI)QCP can be reformulated as a (MI)SOCP:

$$t \ge x^T Q x$$
 with  $Q$  p.s.d.  $\iff (0.5, t, F x) \in \mathcal{Q}_r^{n+2}$  with with  $Q = F^T F$ .

 In some applications, like least-squares regression, a SOC-formulation is more direct than a QP-formulation.

### Non-symmetric cones



Symmetric cones are self-dual and homogeneous by definition, and the two cones below lack at least one of these properties.

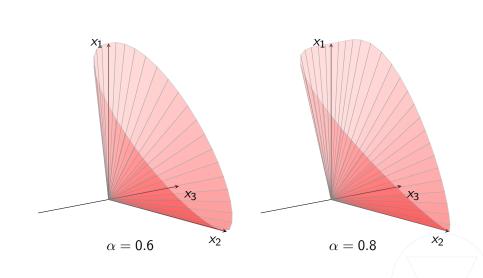
• the three-dimensional exponential cone

$$\mathcal{K}_{exp} = \operatorname{cl}\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), \ x_2 > 0\}.$$


the three-dimensional power cone

$$\mathcal{P}^{\alpha} = \{ x \in \mathbb{R}^3 \mid x_1^{\alpha} x_2^{(1-\alpha)} \ge |x_3|, \ x_1, x_2 \ge 0 \},$$

for  $0 < \alpha < 1$ .


# The exponential cone





# The power cone





### Exponential-cone use cases



Many constraints involving exponentials or logarithms can be formulated using the exponential cone.

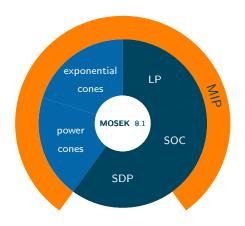
• Expontial:

$$e^x \leq t \iff (t,1,x) \in \mathcal{K}_{exp}.$$

• Entropy:

$$-x \log x \ge t \iff (1, x, t) \in \mathcal{K}_{exp}.$$

Softplus function:


$$\log(1+e^x) \le t \iff (u,1,x-t), (v,1,-t) \in \mathcal{K}_{exp}, u+v \le 1.$$

• . . .

#### What can you do with **MOSEK**?



The software package **MOSEK** supports the following conic building blocks:



### How general is the **MOSEK** framework?



The 5 cones - linear, quadratic, exponential, power and semidefinite - together are highly versatile for modeling.

#### Continuous Optimization Folklore

"Almost all convex constraints which arise in practice are representable using these cones."

We call modeling with the aforementioned 5 cones **Extremely Disciplined Convex Programming**.

(Check the link to CVX in the video description!)

#### Other conic solvers



- The leading MIP solvers support SOC modeling these days.
- SCS and ECOS can handle power and/or exponential cones.
- Several software packages for SDP have been around for many years.
- Pajarito is designed for Mixed-Integer Conic Optimization and supports all of the above but the power cone.
- There are recent efforts to building software supporting ever more cones: Coey, Kapelevich, Vielma: Towards Practical Generic Conic Optimization (2020).

Check the links in the video description!

### The beauty of Conic Optimization



In continuous optimization, conic (re-)formulations have been advocated for quite some time:

- Separation of data and structure:
  - Data: c, A and b Structure: K.
- Structural convexity.
- No issues with smoothness and differentiability.
- Duality (almost...).quit()

#### Further reading:

- Ben-Tal, Nemirovski: Lectures on modern convex optimization (2001)
- Boyd, Vandenberghe: Convex Optimization (2004)
- Nemirovski: Advances in Convex Optimization: Conic Programming (2007)

Check the links in the video description!

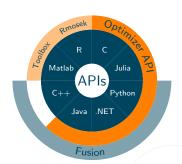
### Cones in Mixed-Integer Optimization



All convex instances (333) from minlplib.org can be converted to conic form:

 Lubin et al.: Extended Formulations in Mixed-integer Convex Programming (2016)

Exploiting conic structures in the mixed-integer case is an active research area:


- Coey et al.: Outer approximation with conic certificates for mixed-integer convex problems (2020)
- Lodi et al.: Disjunctive cuts for Mixed-Integer Conic Optimization (2019)
- MISOCP:
  - Andersen, Jensen: Intersection cuts for mixed integer conic quadratic sets (2013)
  - Vielma et al.: Extended Formulations in Mixed Integer Conic Quadratic Programming (2017)
  - Çay et al.: The first heuristic specifically for mixed-integer second-order cone optimization (2018)

Check the links in the video description for more references!

#### Further information on MOSEK



- Documentation at mosek.com/documentation/
  - Modeling cook book / cheat sheet.
  - White papers.
  - Manuals for interfaces.
  - Notebook collection.
- Tutorials and more at github.com/MOSEK/



