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Motivation: The pooling problem



Haverly’s example
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Deliver mixtures of different crude oils such that demand and quality is statisfied. 



Using different notation

• Base structure: Minimum cost network flow
• Arcs (𝑖, 𝑗) have a flow 𝑓!" with cost & bounds
• Flow sources 𝑠#, 𝑠$ , 𝑠% and targets 𝑡#, 𝑡$
• Flow conservation at 𝑝#

• Complication: Flow “quality” (here: pct. sulfur)
• Each node 𝑖 has a flow quality variable 𝑤!
• Sources have fixed quality
• Sinks have an upper bound on the quality
• Quality at pool node 𝑖 = 𝑝# mixes linearily:

!
! ∈#!(%)

𝑤!𝑓!% = 𝑤% !
! ∈#"(%)

𝑓%!
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Auxiliary notes
Common generalizations
• Multiple pools that mix downstream
• Multiple quality attributes that need to be satisfied at the same time

Other formulations
• The formulation shown goes by the name ”quality formulation”
• Another popular approach: “proportion formulation”
• Or hybrid formulations of the two
• Common to all of them: Quadratic constraints due to quality-of-flow
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Consequences of quality-of-flow constraints
Without maintaining quality-of-flow in the network:

• Pure network flow problem
• Polynomial complexity
• Integer data always results in integer solutions
• Every locally optimal solution is globally optimal

But instead we have:
• Associated decision problem is NP-complete
• Multiple, locally optimal solutions may exist
• Feasible region may have holes, or may even be disconnected

Reason: Quality-of-flow constraint is nonconvex!
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What’s nonconvex here

• Quality constraint for pool 𝑝'

!
! ∈#!(%)

𝑤!𝑓!% − 𝑤% !
! ∈#"(%)

𝑓%! = 0

• The feasible set of quadratic equations 
are typically nonconvex (think of 𝑥( = 1)

• Even the sublevel sets of
!

! ∈#!(%)

𝑤!𝑓!% − 𝑤% !
! ∈#"(%)

𝑓%!

are nonconvex...
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Intermezzo: Quadratic functions and convexity
Let 𝑄 ∈ ℝ)×) a symmetric matrix, and 𝑞 ∈ ℝ), and consider the quadratic function

𝑓: ℝ) → ℝ, 𝑥 ↦ 𝑥+𝑄𝑥 + 𝑞+𝑥.
Useful properties:
• 𝑓 is convex iff 𝑄 is positive semidefinite
• 𝑓 is strongly convex iff 𝑄 is positive definite
• If Q is positive semidefinite, the sublevel sets 𝑓 𝑥 ≤ 𝑐, 𝑐 ∈ ℝ, are convex.

Homework:
• What is the matrix representation of the function 𝑓 𝑥, 𝑦 = 𝑥𝑦? Is 𝑓 convex?

A constraint of the form 𝑥𝑦 = 𝑧 is sometimes called a bilinear constraint. More about that to come!
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Nonconvex quadratic optimization with Gurobi



Mixed Integer Quadratically Constrained Programming
A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as

min 𝑐+𝑥 + x+𝑄,x
s.t. 𝑎'+𝑥 + 𝑥+𝑄'x ≤ 𝑏'

…
𝑎-+ 𝑥 + 𝑥+𝑄-x ≤ 𝑏-
𝑙 ≤ 𝑥 ≤ u

𝑥! ∈ ℤ for all 𝑗 ∈ 𝐼

• 𝑄& are symmetric matrices
• For 𝑄 = 𝑄&, any non-zero element 𝑄!" ≠ 0 gives rise to a product term 𝑄!"𝑥!𝑥" in the constraint or 

objective
• If all 𝑄& are positive semi-definite, then QCP relaxation is convex

• MIQCPs with positive semi-definite 𝑄# can be solved by Gurobi since version 5.0

• What if quadratic constraints or objective are non-convex?
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Non-Convex QP, QCP, MIQP, and MIQCP
Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex

If 𝑄 is positive semi-definite (PSD) then 𝑥+𝑄𝑥 ≤ 𝑏 is convex
• 𝑄 is PSD if and only if 𝑥'𝑄𝑥 ≥ 0 for all 𝑥

But 𝑥+𝑄𝑥 ≤ 𝑏 can also be convex in certain other cases, e.g., second order cones (SOCs)
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convex
−𝑧 + 𝑥$ ≤ 0

𝑥'𝑄𝑥 ≤ 𝑏

non-convex
−𝑧 − 𝑥$ ≤ 0

𝑥$ + 𝑦$ − 𝑧$ ≤ 0, 𝑧 ≥ 0: at level 𝑧, 𝑥, 𝑦 is a disc with radius 𝑧

SOC: 𝑥#$ +⋯+ 𝑥($ − 𝑧$ ≤ 0



Non-Convex QP, QCP, MIQP, and MIQCP
Prior Gurobi versions could deal with two types of non-convexity

• Integer variables
• SOS constraints

Gurobi 9.0 can deal with a third type of non-convexity
• Bilinear constraints

All these non-convexities are treated by
• Cutting planes
• Branching

Translation of non-convex quadratic constraints into bilinear constraints

3𝑥'( − 7𝑥'𝑥( + 2𝑥'𝑥. − 𝑥(( + 3𝑥(𝑥. − 5𝑥.( = 12 (non-convex Q constraint)

z'' ≔ 𝑥'(, z'( ≔ 𝑥'𝑥(, z'. ≔ 𝑥'𝑥., z(( ≔ 𝑥((, z(. ≔ 𝑥(𝑥., z.. ≔ 𝑥.( (6 bilinear constraints)

3z'' − 7z'( + 2z'. − z(( + 3z(. − 5z.. = 12 (linear constraint)
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Dealing With Bilinear Constraints
General form: 𝑎+𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex
−𝑧 + 𝑥$ ≤ 0

non-convex
−𝑧 − 𝑥$ ≤ 0
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Dealing With Bilinear Constraints
General form: 𝑎+𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex
−𝑧 + 𝑥$ ≤ 0

non-convex
−𝑧 − 𝑥$ ≤ 0

easy: add tangent cuts
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Dealing With Bilinear Constraints
General form: 𝑎+𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥$ ≤ 0
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Dealing With Bilinear Constraints
General form: 𝑎+𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥$ ≤ 0

Copyright © 2020, Gurobi Optimization, LLC16



Dealing With Bilinear Constraints
General form: 𝑎+𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥$ ≤ 0

branching
𝑥 ≤ 0 or 𝑥 ≥ 0

update relaxation locally
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LP Relaxation of Bilinear Constraints
Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙)𝑦 + 𝑙*𝑥 ≤ 𝑙) 𝑙*
−𝑧 + 𝑢)𝑦 + 𝑢*𝑥 ≤ 𝑢)𝑢*

−𝑧 + 𝑢)𝑦 + 𝑙*𝑥 ≥ 𝑢)𝑙*
−𝑧 + 𝑙)𝑦 + 𝑢*𝑥 ≥ 𝑙)𝑢*

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"
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LP Relaxation of Bilinear Constraints
Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙)𝑦 + 𝑙*𝑥 ≤ 𝑙) 𝑙*
−𝑧 + 𝑢)𝑦 + 𝑢*𝑥 ≤ 𝑢)𝑢*

−𝑧 + 𝑢)𝑦 + 𝑙*𝑥 ≥ 𝑢)𝑙*
−𝑧 + 𝑙)𝑦 + 𝑢*𝑥 ≥ 𝑙)𝑢*

coefficients depend
on local bounds

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"
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Adaptive Constraints in LP Relaxation
Coefficients and right hand sides of McCormick constraints depend on local bounds of variables

• Whenever local bounds change, LP coefficients and right hand sides are updated
• May lead to singular or ill-conditioned basis

• in worst case, simplex needs to start from scratch

Alternative to adaptive constraints: locally valid cuts
• Add tighter McCormick relaxation on top of weaker, more global one, to local node
• Advantages:

• old simplex basis stays valid in all cases
• more global McCormick constraints will likely become slack and basic

• should lead to fewer simplex iterations
• Disadvantages:

• basis size (number of rows) changes all the time during solve
• refactorization needed
• complicated (and potentially time and memory consuming) data management needed

• redundant more global McCormick constraints stay in LP
• LP solver performs useless calculations in linear system solves
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Spatial Branching
Branching variable selection

• What most solvers do: first branching on fractional integer variables as usual
• If no fractional integer variable exists, select continuous variable in violated bilinear constraint
• Our variable selection rule is a combination of:

• sum of absolute bilinear constraint violations
• reduce McCormick volume as much as possible

• big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution 𝑥∗
• sum of smaller volumes is smaller than big volume

• shadow costs of variable for linear constraints

Branching value selection
• We use a standard way

• a convex combination of LP value and mid point of current domain
• Avoid numerical pitfalls

• large branching values for unbounded variables
• tiny child domains if LP value is very close to bound
• very deep dives (node selection)
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𝑧!" = 𝑥! 𝑥"



Cutting Planes for Mixed Bilinear Programs
All MILP cutting planes apply

Special cuts for bilinear constraints
• RLT Cuts

• Reformulation Linearization Technique (Sherali and Adams, 1990)
• multiply linear constraints with single variable, linearize resulting product terms
• very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs

• BQP Cuts
• facets from Boolean Quadric Polytope (Padberg 1989)

• equivalent to Cut Polytope
• currently implemented: triangle inequalities (special case of Padberg's clique cuts for BQP)

• PSD Cuts
• tangents of PSD cone defined by 𝑍 = 𝑥𝑥$ relationship: 𝑍 − 𝑥𝑥$ ≽ 0 (Sherali and Fraticelli, 2002)
• not yet implemented in Gurobi
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Thank You!


