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Motivation: The pooling problem
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Haverly’s example GUROE

Deliver mixtures of different crude oils such that demand and quality is statisfied.

We define a straight forward example as follows:
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Using different notation GUROE

« Base structure: Minimum cost network flow
* Arcs (i,j) have a flow f;; with cost & bounds
 Flow sources sy, s,,s3; and targets t, t,
 Flow conservation at p;

3% S. °
Cost: 6

Max 2.5% S,

° Price: 9, » Complication: Flow “quality” (here: pct. sulfur)
@' Demand: 100 - Each node i has a flow quality variable w;
1% . « Sources have fixed quality
Cost: 16 @ s 1 « Sinks have an upper bound on the quality
Q P 15 « Quality at pool node i = p; mixes linearily:

Demand: 200

2% S, 6
Cost: 10 —
: S e 3
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Auxiliary notes SUR9E

Common generalizations
« Multiple pools that mix downstream
« Multiple quality attributes that need to be satisfied at the same time

Other formulations

The formulation shown goes by the name "quality formulation”

Another popular approach: “proportion formulation”

Or hybrid formulations of the two

Common to all of them: Quadratic constraints due to quality-of-flow

Copyright © 2020, Gurobi Optimization, LLC




: : BI
Consequences of quality-of-flow constraints GUROB

Without maintaining quality-of-flow in the network:
* Pure network flow problem
» Polynomial complexity
» Integer data always results in integer solutions
« Every locally optimal solution is globally optimal

But instead we have:
» Associated decision problem is NP-complete
« Multiple, locally optimal solutions may exist
» Feasible region may have holes, or may even be disconnected

Reason: Quality-of-flow constraint is nonconvex!
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What’s nonconvex here

3% S.

Cost: 6 Max 2.5% S,
Price: 9,
Demand: 100

1% S,

Cost: 16
Max 1.5% S,
Price: 15,
Demand: 200

2% S,

Cost: 10

GUROBI

OPTIMIZATION

Quiality constraint for pool p;

Z wifji = wi 2 fij =0

JEN~(D) JENT(D)

The feasible set of quadratic equations
are typically nonconvex (think of x? = 1)

Even the sublevel sets of
> wii-m Y
jEN(I) jENT(D)
are nonconvex...
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Intermezzo: Quadratic functions and convexity GUROB!

Let Q € R™™" a symmetric matrix, and g € R™, and consider the quadratic function

fiR*"> R, x » xTQx + q"x.
Useful properties:
« fis convex iff Q is positive semidefinite
« fis strongly convex iff Q is positive definite
« If Qis positive semidefinite, the sublevel sets f(x) < ¢,c € R, are convex.

Homework:
« What is the matrix representation of the function f(x,y) = xy? Is f convex?

A constraint of the form xy = z is sometimes called a bilinear constraint. More about that to come!
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Nonconvex quadratic optimization with Gurobi
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Mixed Integer Quadratically Constrained Programming GUROE

A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as
min ¢’x + xTQyx

st. alx + xTQix < b
alx + xTQ,x < by
[ < X < u

X; € Z foralljel

Q, are symmetric matrices

For Q = Qy, any non-zero element Q;; # 0 gives rise to a product term Q;;x;x; in the constraint or
objective

If all Q; are positive semi-definite, then QCP relaxation is convex
«  MIQCPs with positive semi-definite Q, can be solved by Gurobi since version 5.0

What if quadratic constraints or objective are non-convex?
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Non-Convex QP, QCP, MIQP, and MIQCP GUROB

Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex

xTQx <b

convex non-convex
—z+x°<0 —z—x%2<0

If Q is positive semi-definite (PSD) then xTQx < b is convex
« Qis PSD if and only if xTQx > 0 for all x

But xTQx < b can also be convex in certain other cases, e.g., second order cones (SOCs)

SOC: x% 4+ +x2—22<0

x?+y%—22<0,z = 0:atlevel z, (x,y) is a disc with radius z
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Non-Convex QP, QCP, MIQP, and MIQCP GUROB

Prior Gurobi versions could deal with two types of non-convexity
* Integer variables
« SOS constraints

Gurobi 9.0 can deal with a third type of non-convexity
« Bilinear constraints

All these non-convexities are treated by
« Cutting planes
« Branching

Translation of non-convex quadratic constraints into bilinear constraints
3x% — 7x1Xp + 2x1X3 — X5 + 3x,x3 — 5x5 = 12 (non-convex Q constraint)
$ Zq1 = X%,21p = X1Xp,Z13 = X1X3,Zpp = X3,Z53 = XX3,Z33 = x5 (6 bilinear constraints)

3211 — 7219 + 2713 — Zy5 + 3253 — 5233 = 12 (linear constraint)
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Dealing With Bilinear Constraints SUR9E

General form: a’z +dxy = b  (linear sum plus single product term, inequality or equation)

Consider square case (x = y):

convex non-convex
—z4+x%2<0 —z7—x%2<0
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Dealing With Bilinear Constraints SUR9E

General form: a’z +dxy = b  (linear sum plus single product term, inequality or equation)

Consider square case (x = y):

convex non-convex
—z4+x%2<0 —z7—x%2<0

easy: add tangent cuts
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Dealing With Bilinear Constraints SUR9E

General form: a’z +dxy = b  (linear sum plus single product term, inequality or equation)
Consider square case (x = y):

non-convex
—z7—x%2<0
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Dealing With Bilinear Constraints SUR9E

General form: a’z +dxy = b  (linear sum plus single product term, inequality or equation)
Consider square case (x = y):

non-convex
—z7—x%2<0
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Dealing With Bilinear Constraints SUR9E

General form: a’z +dxy = b  (linear sum plus single product term, inequality or equation)

Consider square case (x = y):

non-convex
—z—x%2<0
O
branching
x<0orx=>=0
® update relaxation locally ®
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LP Relaxation of Bilinear Constraints GUROB

Mixed product case: —z + xy = 0

I A I

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"

McCormick lower and upper envelopes:

—z+ Ly+ Lx
—Z+ Uy + Uyx

L L,
Uy Uy

IA IA

—Z+u,y + lyx
—z+ Ly +uyx

Uyl
Ly,

IV IV
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LP Relaxation of Bilinear Constraints GUROB

Mixed product case: —z + xy = 0

I A I

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"

McCormick lower and upper envelopes:

—z+ Ly+ Lx
—Z+ Uy + Uyx

L L,
Uy Uy

IA IA

—Z+u,y + lyx = u,l,

IV IV
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Adaptive Constraints in LP Relaxation GUROE

Coefficients and right hand sides of McCormick constraints depend on local bounds of variables
« Whenever local bounds change, LP coefficients and right hand sides are updated

« May lead to singular or ill-conditioned basis
* in worst case, simplex needs to start from scratch

Alternative to adaptive constraints: locally valid cuts
« Add tighter McCormick relaxation on top of weaker, more global one, to local node
« Advantages:
« old simplex basis stays valid in all cases
« more global McCormick constraints will likely become slack and basic
« should lead to fewer simplex iterations
« Disadvantages:
« basis size (number of rows) changes all the time during solve
 refactorization needed
» complicated (and potentially time and memory consuming) data management needed
« redundant more global McCormick constraints stay in LP
« LP solver performs useless calculations in linear system solves
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Spatial Branching GUROB!

Branching variable selection
« What most solvers do: first branching on fractional integer variables as usual
+ If no fractional integer variable exists, select continuous variable in violated bilinear constraint
» Our variable selection rule is a combination of:
« sum of absolute bilinear constraint violations
» reduce McCormick volume as much as possible

* big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution x*
« sum of smaller volumes is smaller than big volume

 shadow costs of variable for linear constraints

Branching value selection
 We use a standard way
« aconvex combination of LP value and mid point of current domain
» Avoid numerical pitfalls
 large branching values for unbounded variables
« tiny child domains if LP value is very close to bound
« very deep dives (node selection)
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Cutting Planes for Mixed Bilinear Programs GUROB!

All MILP cutting planes apply

Special cuts for bilinear constraints

 RLT Cuts

« Reformulation Linearization Technique (Sherali and Adams, 1990)

« multiply linear constraints with single variable, linearize resulting product terms

« very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs
« BQP Cuts

« facets from Boolean Quadric Polytope (Padberg 1989)

* equivalent to Cut Polytope

« currently implemented: triangle inequalities (special case of Padberg's clique cuts for BQP)
« PSD Cuts

- tangents of PSD cone defined by Z = xxT relationship: Z — xxT > 0 (Sherali and Fraticelli, 2002)

* not yet implemented in Gurobi
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Thank You!
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