# Non-Convex Quadratic Optimization with Gurobi



The World's Fastest Solver



**Robert Luce** 



#### **Motivation: The pooling problem**

Copyright © 2020, Gurobi Optimization, LLC

#### Haverly's example



Deliver mixtures of different crude oils such that demand and quality is statisfied.

We define a straight forward example as follows:



### **Using different notation**





- Base structure: Minimum cost network flow
  - Arcs (i, j) have a flow  $f_{ij}$  with cost & bounds
  - Flow sources  $s_1, s_2, s_3$  and targets  $t_1, t_2$
  - Flow conservation at  $p_1$
- Complication: Flow "quality" (here: pct. sulfur)
  - Each node *i* has a flow quality variable  $w_i$
  - Sources have fixed quality
  - Sinks have an upper bound on the quality
  - Quality at pool node  $i = p_1$  mixes linearily:

$$\sum_{j \in N^-(i)} w_j f_{ji} = w_i \sum_{j \in N^+(i)} f_{ij}$$

#### **Auxiliary notes**



#### Common generalizations

- Multiple pools that mix downstream
- Multiple quality attributes that need to be satisfied at the same time

Other formulations

- The formulation shown goes by the name "quality formulation"
- Another popular approach: "proportion formulation"
- Or hybrid formulations of the two
- Common to all of them: Quadratic constraints due to quality-of-flow

### **Consequences of quality-of-flow constraints**



#### Without maintaining quality-of-flow in the network:

- Pure network flow problem
- Polynomial complexity
- Integer data always results in integer solutions
- Every locally optimal solution is globally optimal

#### But instead we have:

- Associated decision problem is NP-complete
- Multiple, locally optimal solutions may exist
- Feasible region may have holes, or may even be disconnected

Reason: Quality-of-flow constraint is nonconvex!

### What's nonconvex here



• Quality constraint for pool  $p_1$ 

$$\sum_{j \in N^{-}(i)} w_j f_{ji} - w_i \sum_{j \in N^{+}(i)} f_{ij} = 0$$

• The feasible set of quadratic equations are typically nonconvex (think of  $x^2 = 1$ )

Even the sublevel sets of  

$$\sum_{j \in N^{-}(i)} w_j f_{ji} - w_i \sum_{j \in N^{+}(i)} f_{ij}$$

are nonconvex...



### Intermezzo: Quadratic functions and convexity



Let  $Q \in \mathbb{R}^{n \times n}$  a symmetric matrix, and  $q \in \mathbb{R}^n$ , and consider the quadratic function

$$f: \mathbb{R}^n \to \mathbb{R}, x \mapsto x^T Q x + q^T x.$$

Useful properties:

- *f* is convex iff *Q* is positive semidefinite
- *f* is strongly convex iff *Q* is positive definite
- If Q is positive semidefinite, the sublevel sets  $f(x) \le c, c \in \mathbb{R}$ , are convex.

Homework:

• What is the matrix representation of the function f(x, y) = xy? Is f convex?

A constraint of the form xy = z is sometimes called a *bilinear constraint*. More about that to come!



#### Nonconvex quadratic optimization with Gurobi

### **Mixed Integer Quadratically Constrained Programming**



A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as

$$\begin{array}{rclrcl} \min & c^T x & + & x^T Q_0 x \\ \text{s.t.} & a_1^T x & + & x^T Q_1 x & \leq & b_1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

- $Q_k$  are symmetric matrices
- For  $Q = Q_k$ , any non-zero element  $Q_{ij} \neq 0$  gives rise to a product term  $Q_{ij}x_ix_j$  in the constraint or objective
- If all  $Q_k$  are positive semi-definite, then QCP relaxation is convex
  - MIQCPs with positive semi-definite  $Q_k$  can be solved by Gurobi since version 5.0
- What if quadratic constraints or objective are non-convex?

### Non-Convex QP, QCP, MIQP, and MIQCP



Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex



If *Q* is positive semi-definite (PSD) then  $x^T Q x \le b$  is convex

• *Q* is PSD if and only if  $x^T Q x \ge 0$  for all *x* 

But  $x^T Qx \le b$  can also be convex in certain other cases, e.g., second order cones (SOCs)

SOC: 
$$x_1^2 + \dots + x_n^2 - z^2 \le 0$$

 $x^2 + y^2 - z^2 \le 0, z \ge 0$ : at level z, (x, y) is a disc with radius z

### Non-Convex QP, QCP, MIQP, and MIQCP



Prior Gurobi versions could deal with two types of non-convexity

- Integer variables
- SOS constraints

Gurobi 9.0 can deal with a third type of non-convexity

• Bilinear constraints

#### All these non-convexities are treated by

- Cutting planes
- Branching

Translation of non-convex quadratic constraints into bilinear constraints

$$3x_{1}^{2} - 7x_{1}x_{2} + 2x_{1}x_{3} - x_{2}^{2} + 3x_{2}x_{3} - 5x_{3}^{2} = 12$$
 (non-convex Q constraint)  

$$z_{11} \coloneqq x_{1}^{2}, z_{12} \coloneqq x_{1}x_{2}, z_{13} \coloneqq x_{1}x_{3}, z_{22} \coloneqq x_{2}^{2}, z_{23} \coloneqq x_{2}x_{3}, z_{33} \coloneqq x_{3}^{2}$$
 (6 bilinear constraints)  

$$3z_{11} - 7z_{12} + 2z_{13} - z_{22} + 3z_{23} - 5z_{33} = 12$$
 (linear constraint)



General form:  $a^T z + dxy \leq b$  (linear sum plus single product term, inequality or equation)





General form:  $a^T z + dxy \leq b$  (linear sum plus single product term, inequality or equation)

Consider square case (x = y):





non-convex  $-z - x^2 \le 0$ 

easy: add tangent cuts



General form:  $a^T z + dxy \leq b$  (linear sum plus single product term, inequality or equation)





General form:  $a^T z + dxy \leq b$  (linear sum plus single product term, inequality or equation)





General form:  $a^T z + dxy \leq b$  (linear sum plus single product term, inequality or equation)



### **LP Relaxation of Bilinear Constraints**





### **LP Relaxation of Bilinear Constraints**





Copyright © 2020, Gurobi Optimization, LLC

#### **Adaptive Constraints in LP Relaxation**



Coefficients and right hand sides of McCormick constraints depend on local bounds of variables

- Whenever local bounds change, LP coefficients and right hand sides are updated
- May lead to singular or ill-conditioned basis
  - in worst case, simplex needs to start from scratch

#### Alternative to adaptive constraints: locally valid cuts

- Add tighter McCormick relaxation on top of weaker, more global one, to local node
- Advantages:
  - old simplex basis stays valid in all cases
    - more global McCormick constraints will likely become slack and basic
  - should lead to fewer simplex iterations
- Disadvantages:
  - basis size (number of rows) changes all the time during solve
    - refactorization needed
    - complicated (and potentially time and memory consuming) data management needed
  - redundant more global McCormick constraints stay in LP
    - LP solver performs useless calculations in linear system solves

### **Spatial Branching**



#### Branching variable selection

- What most solvers do: first branching on fractional integer variables as usual
- If no fractional integer variable exists, select continuous variable in violated bilinear constraint
- Our variable selection rule is a combination of:
  - sum of absolute bilinear constraint violations
  - reduce McCormick volume as much as possible
    - big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution x\*
    - sum of smaller volumes is smaller than big volume
  - shadow costs of variable for linear constraints

#### Branching value selection

- We use a standard way
  - a convex combination of LP value and mid point of current domain
- Avoid numerical pitfalls
  - large branching values for unbounded variables
  - tiny child domains if LP value is very close to bound
  - very deep dives (node selection)



### **Cutting Planes for Mixed Bilinear Programs**



All MILP cutting planes apply

Special cuts for bilinear constraints

- RLT Cuts
  - Reformulation Linearization Technique (Sherali and Adams, 1990)
  - multiply linear constraints with single variable, linearize resulting product terms
  - very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs
- BQP Cuts
  - facets from Boolean Quadric Polytope (Padberg 1989)
    - equivalent to Cut Polytope
  - currently implemented: triangle inequalities (special case of Padberg's clique cuts for BQP)
- PSD Cuts
  - tangents of PSD cone defined by  $Z = xx^T$  relationship:  $Z xx^T \ge 0$  (Sherali and Fraticelli, 2002)
  - not yet implemented in Gurobi

## **Thank You!**



The World's Fastest Solver