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Only very few of these 
implemented in general 

purpose MIP solvers!  
(and activated by default)



© 2020 Fair Isaac Corporation. Confidential. This presentation is provided for the recipient 
only and cannot be reproduced or shared without Fair Isaac Corporation’s express consent. 7

Ding et al.
Accelerating Primal Solution Findings for Mixed Integer Programs Based 
on Solution Prediction 2019

Bertsimas & Stellato Online Mixed-Integer Optimization in Milliseconds 2019

Fischetti & Fraccaro
Machine learning meets mathematical optimization to predict the optimal 
production of offshore wind parks 2018

Misra et al.
Learning for constrained optimization: Identifying optimal active 
constraint sets 2018

Bertsimas & Stellato The Voice of Optimization 2018
Tang et al. Reinforcement Learning for Integer Programming: Learning to Cut 2019

Baltean-Lugojan et al.
Selecting cutting planes for quadratic semidefinite outer-approximation 
via trained neural networks 2018

Etheve et al.
Reinforcement Learning for Variable Selection in a Branch and Bound 
Algorithm 2020

Zarpellon et al.
Parameterizing Branch-and-Bound Search Trees to Learn Branching 
Policies 2020

Yang et al.
Learning Generalized Strong Branching for Set Covering, Set Packing, and 
0-1 Knapsack Problems 2020

Song et al. Learning to Search via Retrospective Imitation 2019

Gasse et al.
Exact Combinatorial Optimization with Graph Convolutional Neural 
Networks 2019

Lee et al.
Learning to Branch: Accelerating Resource Allocation in Wireless 
Networks 2019

Hansknecht et al.
Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent 
Traveling Salesman Problem 2018

Balcan et al. Learning to branch 2018
Václavík et al. Accelerating the branch-and-price algorithm using machine learning 2018

Hottung et al.
Deep Learning Assisted Heuristic Tree Search for the Container Pre-
marshalling Problem 2017

Lodi & Zarpellon On learning and branching: a survey 2017
Alvarez et al. A Machine Learning-Based Approximation of Strong Branching 2017
Alvarez et al. Online Learning for Strong Branching Approximation in Branch-and-Bound 2016
Khalil  et al. Learning to branch in mixed integer programming 2016
Khalil Machine Learning for Integer Programming 2016
He  et al. Learning to Search in Branch and Bound Algorithms 2014

Alvarez et al.
A Supervised Machine Learning Approach to Variable Branching in 
Branch-And-Bound 2014

Di Liberto et al. Dynamic Approach for Switching Heuristics 2013
Sabharwal et al. Guiding Combinatorial Optimization with UCT 2012

Khalil et al. Learning to Run Heuristics in Tree Search 2017
Hutter et al. Algorithm Runtime Prediction: Methods & Evaluation 2012
Hutter et al. Automated Configuration of Mixed Integer Programming Solvers 2010
Ferber et al. MIPaaL: Mixed Integer Program as a Layer 2019
Wilder et al. End to end learning and optimization on graphs 2019

Wang et al.
SATNet: Bridging deep learning and logical reasoning using a 
differentiable satisfiability solver 2019

Wilder et al.
Melding the Data-Decisions Pipeline: Decision-Focused Learning for 
Combinatorial Optimization 2018

Elmachtoub & Grigas Smart "Predict, then Optimize" 2017
Kool  et al. Attention, Learn to Solve Routing Problems! 2018

Li et al.
Combinatorial Optimization with Graph Convolutional Networks and 
Guided Tree Search 2018

Dai  et al. Learning Combinatorial Optimization Algorithms over Graphs 2017
Bello et al. Neural Combinatorial Optimization with Reinforcement Learning 2016

Bowly et al.
Generation techniques for linear programming instances with controllable 
properties 2017

Bowly
Stress testing mixed integer programming solvers through new test 
instance generation methods 2019

François et al.
How to Evaluate Machine Learning Approaches for Combinatorial 
Optimization: Application to the Travelling Salesman Problem 2019

Fischetti et al. Learning MILP Resolution Outcomes Before Reaching Time-Limit 2018
Kuhlmann Learning to steer nonlinear interior-point methods 2019
Kruber et al. Learning when to use a decomposition 2018

Bengio et al.
Machine Learning for Combinatorial Optimization: a Methodological Tour 
d'Horizon 2018

Hendel Adaptive Large Neighborhood Search for Mixed Integer Programming 2018

Bonami  et al.
Learning a Classification of Mixed-Integer Quadratic Programming 
Problems 2017

Amos & Kolter OptNet: Differentiable Optimization as a Layer in Neural Networks 2017
Schweidtmann &  
Mitsos

Global Deterministic Optimization with Artificial Neural Networks 
Embedded 2018

Sculley Large Scale Learning To Rank 2020

Song et al.
A General Large Neighborhood Search Framework for Solving Integer 
Programs 2020

Complex decisions, 
no easy answers

Sophisticated rules 
already in place

We don‘t even 
know good features
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Scaling!!!
Either-or decision

We know 
meaningful 

features

Currently no rule
in place
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• Numerical stability is a crucial topic in many applications

• Recent blog series on Numerics, visit https://community.fico.com/
• Numerics I: Solid Like a Rock or Fragile Like a Flower?

• Numerics II: Zoom Into the Unknown

• Numerics III: Learning to Scale

• tbc...

• Real-life applications often complex and numerically challenging to handle:

• More than half of client problems seen in the past year had some mild numeric issues.

• After performance, numeric failures are the most common support request.

• Unexpected solution status

• Inconsistent results

• Performance issues (e.g. simplex cycling)

https://community.fico.com/
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• Since Xpress 8.6, we provide numeric analysis tools

• A priori: distribution of matrix, objective, rhs coefficients

comprises effects of presolving AND scaling

• A posteriori: report on numerical failures that the solver encountered
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• The condition number 𝜅 of a matrix 𝐴 provides a bound on how much a small change in 𝑏
can affect 𝑥.

• For a square, invertible matrix 𝐵
𝜅 = 𝐵 ⋅ 𝐵−1

• One purpose of scaling is to reduce the condition number.

• Sampling the condition number is an optional feature (MIPKAPPAFREQ=1)

• Summarized in a single attention level from 0.0 (all stable) to 1.0 (anything goes).
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• Scaling is a widely used preconditioning technique, used by various kinds of algorithms

• to reduce the condition number of the constraint matrix

• to reduce error propagation

• to improve the numerical behavior of the algorithms 

• to reduce the number of iterations required to solve the problem

• More precisely, LP scaling refers to the (iterative) multiplication of rows and columns by scalars

• to reduce the absolute magnitude of nonzero coefficients in matrix, rhs and objective

• to reduce the relative difference of nonzero coefficients in matrix, rhs and objective
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• Basic Linear Program (LP):
𝑚𝑎𝑥 𝑐𝑥
𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏

• Scaling multiplies rows and columns to bring coefficients “on one scale”.

• Typically, close to 1

𝑚𝑎𝑥 (𝑐𝐷𝐶)(𝐷𝐶−1𝑥)

𝑠. 𝑡. (𝐷𝑅𝐴𝐷𝐶)(𝐷𝐶−1𝑥) ≤ 𝐷𝑅𝑏

𝑐′ = 𝑐𝐷𝐶 , 𝐴′ = 𝐷𝑅𝐴𝐷𝐶 , 𝑏′ = 𝐷𝑅𝑏

𝑥′ = 𝐷𝐶−1𝑥

𝑚𝑎𝑥 𝑐′𝑥′

𝑠. 𝑡. 𝐴′𝑥′ ≤ 𝑏′

• Two scaling methods:

• Standard: Divide rows by largest coefficient and then 
divide columns by largest coefficient. Repeat.

• Curtis-Reid: Minimize least-squares deviation from 1 
(logarithmically).
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• We want to set up our home business to make boxes or chess pieces

• We want to maximize profit [$5/box, $10/chess piece]

• We have a limited amount of wood [100]

• We have to buy tools [$30 for boxes, $500 for chess sets]

1 1
1 −100

1 −100

𝑚𝑎𝑥 5𝑥𝑏𝑜𝑥 + 10𝑥𝑐ℎ𝑒𝑠𝑠 − 30𝑏𝑏𝑜𝑥 − 500𝑏𝑐ℎ𝑒𝑠𝑠

𝑠. 𝑡. 𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100
𝑥𝑏𝑜𝑥 ≤ 100𝑏𝑏𝑜𝑥

𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100𝑏𝑐ℎ𝑒𝑠𝑠

𝑏𝑏𝑜𝑥 , 𝑏𝑐ℎ𝑒𝑠𝑠 ∈ 0,1

• A mixed integer programming 
(MIP) problem:

• Coefficient matrix:

… with a potential basis matrix
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• Unscaled:
−

1

100
−

1

100

1

100
−1 1
1

𝜅 ≈ 245
𝑥𝑏𝑜𝑥 + 𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100
𝑥𝑏𝑜𝑥 ≤ 100𝑏𝑏𝑜𝑥

𝑥𝑐ℎ𝑒𝑠𝑠 ≤ 100𝑏𝑐ℎ𝑒𝑠𝑠
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1
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• New approach: Learn to Scale

• Try each scaling method: Standard and Curtis-Reid.

• One fixed method not always best.

• Use an ML model based on linear regression to predict 
which method will result in the smallest attention level.

• Features drawn from coefficient distributions.

• Trained on more than 1000 MIP instances

0.06 0.08 0.10 0.12

Standard

Attention level

• Validation outcome:
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• New approach: Learn to Scale

• Try each scaling method: Standard and Curtis-Reid.

• One fixed method not always best.

• Use an ML model based on linear regression to predict 
which method will result in the smallest attention level.

• Features drawn from coefficient distributions.

• Trained on more than 1000 numerically challenging instances.
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• New approach: Learn to Scale

• Try each scaling method: Standard and Curtis-Reid.

• One fixed method not always best.

• Use an ML model based on linear regression to predict 
which method will result in the smallest attention level.

• Features drawn from coefficient distributions.

• Trained on more than 1000 numerically challenging instances.
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• On our set of Numerically Challenging instances:

• Tremendous improvements in all stability criteria

• ≈10% performance improvements on our simplex test sets.

• On our MIP Performance set: performance-neutral

• New control: AUTOSCALE

• Setting SCALING control will override AUTOSCALE.

Dual Fails -64% Primal Fails -67% Singular Inverts -48%

Infeasibilities -26% Inconsistencies -35% Violated Sols -12%

Kappa Stable +148% Kappa Max -979% Attn. Level -88%
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Machine Learning 
for general MIP  

Works best:

• For categorical decisions,

• With suitable features,

• With established label that connects to the features,

• When you are not competing against a rule that has 
been finetuned over decades.

Learning to scale:
• ML module to predict scaling method for MIP and LP solving
• Drastically improves numerical stability
• Does not deteriorate performance
• One of many recent components in Xpress that address numeric stability 
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• A-priori prediction: Will the current solve lead to a high attention level?

• Called after initial LP relaxation

• Prints a warning for the user

• Similar features as in “Learning to scale”

• Additionally use conditioning of matrix w.r.t. right-hand side

• Uses random forest

• Accuracy > 95%

• False negative rate < 2%

• Threshold biased towards false positives

• To be released with the next major Xpress version
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