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Motivation: ML for Mathematical Optimization
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Huge Activity in Machine Learning for Mathematical Optimization

Ding et al.
Bertsimas & Stellato
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Accelerating Primal Solution Findings for Mixed Integer Programs Based
on Solution Prediction

Online Mixed-Integer Optimization in Milliseconds

Machine learning meets mathematical optimization to predict the optimal
production of offshore wind parks

Learning for constrained optimization: Identifying optimal active
constraint sets

The Voice of Optimization

Reinforcement Learning for Integer Programming: Learning to Cut
Selecting cutting planes for quadratic semidefinite outer-approximation
via trained neural networks

Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm

Parameterizing Branch-and-Bound Search Trees to Learn Branching
Policies

Learning Generalized Strong Branching for Set Covering, Set Packing, and
0-1 Knapsack Problems

Learning to Search via Retrospective Imitation

Exact Combinatorial Optimization with Graph Convolutional Neural
Networks

Learning to Branch: Accelerating Resource Allocation in Wireless
Networks

Cuts, Primal Heuristics, and Learning to Branch for the Time-Dependent
Traveling Salesman Problem

Learning to branch

Accelerating the branch-and-price algorithm using machine learning
Deep Learning Assisted Heuristic Tree Search for the Container Pre-
marshalling Problem

On learning and branching: a survey

A Machine Learning-Based Approximation of Strong Branching

Online Learning for Strong Branching Approximation in Branch-and-Bound
Learning to branch in mixed integer programming

Machine Learning for Integer Programming

Learning to Search in Branch and Bound Algorithms

A Supervised Machine Learning Approach to Variable Branching in
Branch-And-Bound

Dynamic Approach for Switching Heuristics

Guiding Combinatorial Optimization with UCT
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Amos & Kolter
Schweidtmann &
Mitsos

Sculley
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Learning to Run Heuristics in Tree Search

Algorithm Runtime Prediction: Methods & Evaluation

Automated Configuration of Mixed Integer Programming Solvers
MIPaal: Mixed Integer Program as a Layer

End to end learning and optimization on graphs

SATNet: Bridging deep learning and logical reasoning using a
differentiable satisfiability solver

Melding the Data-Decisions Pipeline: Decision-Focused Learning for
Combinatorial Optimization

Smart "Predict, then Optimize"

Attention, Learn to Solve Routing Problems!

Combinatorial Optimization with Graph Convolutional Networks and
Guided Tree Search

Learning Combinatorial Optimization Algorithms over Graphs

Neural Combinatorial Optimization with Reinforcement Learning
Generation techniques for linear programming instances with controllable
properties

Stress testing mixed integer programming solvers through new test
instance generation methods

How to Evaluate Machine Learning Approaches for Combinatorial
Optimization: Application to the Travelling Salesman Problem
Learning MILP Resolution Outcomes Before Reaching Time-Limit
Learning to steer nonlinear interior-point methods

Learning when to use a decomposition

Machine Learning for Combinatorial Optimization: a Methodological Tour
d'Horizon

Adaptive Large Neighborhood Search for Mixed Integer Programming
Learning a Classification of Mixed-Integer Quadratic Programming
Problems

OptNet: Differentiable Optimization as a Layer in Neural Networks
Global Deterministic Optimization with Artificial Neural Networks
Embedded

Large Scale Learning To Rank

A General Large Neighborhood Search Framework for Solving Integer
Programs
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Only very few of these
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Numerical Stability
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Numerical Stability

« Numerical stability is a crucial topic in many applications

* Recent blog series on Numerics, visit https://community.fico.com/
Numerics I: Solid Like a Rock or Fragile Like a Flower?

Numerics Il: Zoom Into the Unknown
Numerics IlI: Learning to Scale
the...

 Real-life applications often complex and numerically challenging to handle:

» More than half of client problems seen in the past year had some mild numeric issues.

 After performance, numeric failures are the most common support request.
» Unexpected solution status
* Inconsistent results
» Performance issues (e.g. simplex cycling)


https://community.fico.com/

Information on numeric stability

» Since Xpress 8.6, we provide numeric analysis tools

* A priori: distribution of matrix, objective, rhs coefficients

Coefficient range original solved
Coefficients [min,max] : [ 2.00e-06, 2.34e+02] / [ 1.25e-01, 1.67e+00]
RHS and bounds [min,max] : [ 1.67e-01, 9.23e+03] / [ 1.67e-01, 8.21le+02]
Objective [min,max] : [ 2.00e-06, 2.34e+02] / [ 2.00e-06, 2.34e+02]

comprises effects of presolving AND scaling

« A posteriori: report on numerical failures that the solver encountered

Numerical issues encountered:

Dual failures i 78 out of 2194 (ratio: 0.0356)
Primal failures : 5 out of 247 (ratio: 0.0202)
Singular bases : 5 out of 11180 (ratio: 0.0004)
Nodes w/LP fails : 9 out of 70 (ratio: 0.1286)
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Condition Number

The condition number k of a matrix A provides a bound on how much a small change in b
can affect x.

For a square, invertible matrix B
k=Bl 1B~

One purpose of scaling is to reduce the condition number.

Sampling the condition number is an optional feature (MIPKAPPAFREQ=1)

Nodes kappa stable - 3757 (ratio: 0.0051)
Nodes kappa suspicious : 8476 (ratio: 0.0115)
Nodes kappa unstable - 723171 (ratio: 0.9831)
Nodes kappa ill-posed 193 (ratio: 0.0003)
Largest kappa seen : 4.959805e+14

Kappa attention lewvel : 0.2953

Summarized in a single attention level from 0.0 (all stable) to 1.0 (anything goes).
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Condition Number

* The condition number k of a matrix A provides a bound ¢
can affect x.

» For a square, invertible matrix B

« Summarized in a si 6m 0.0 (all stable) to 1.0 (anything goes).

FICO



Scaling
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What is Scaling?

» Scaling is a widely used preconditioning technique, used by various kinds of algorithms
* to reduce the condition number of the constraint matrix
* to reduce error propagation
* to improve the numerical behavior of the algorithms
* to reduce the number of iterations required to solve the problem

« More precisely, LP scaling refers to the (iterative) multiplication of rows and columns by scalars
* to reduce the absolute magnitude of nonzero coefficients in matrix, rhs and objective
* to reduce the relative difference of nonzero coefficients in matrix, rhs and objective
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Scaling in Linear Programming

« Basic Linear Program (LP):

max cx

s.t. Ax<b

* Scaling multiplies rows and columns to bring coefficients “on one scale”.

 Typically, close to 1

« Two scaling methods:

- Standard: Divide rows by largest coefficient and then

 Curtis-Reid: Minimize least-squares deviation from 1

FICO

divide columns by largest coefficient. Repeat.

(logarithmically).

max (cDC)(DC 'x)
s.t.  (DRAD)(D€ 'x) < DRb
¥
¢' =cD¢ A" = DRADC, b’ = DRb
x'=DCx
o

max c¢'x’
s.t. A'x' <b




Example

« We want to set up our home business to make boxes or chess pieces

- We want to maximize profit [S5/box, S10/chess piece]

« We have a limited amount of wood [100]
- We have to buy tools [$30 for boxes, $500 for chess sets]

« A mixed integer programming
(MIP) problem:

« Coefficient matrix:
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max 5xP% + 10x¢"ess — 30pPox — 500pchess
s.t. xbox 4+ xchess < 100
xbox < 100bbo*
xchess < 100bchess

bbox’ bchess = {0,1}

1 —100
1 —100




Example - Continued

« Unscaled: xPox 4 ychess < 100 11 1
5 Dox < 100pPox 100 _1?0 1(1)0 K =~ 245
1

xchess < 100bchess
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Example - Continued

« Unscaled:

 Standard scaling:

xbox + xchess < 100
xbox < 100bb0x
xchess < 100bchess

xbox + xchess < 100
ixbox < pbox
1 ..chess < bchess
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Example - Continued

« Unscaled:

 Standard scaling:

« “Best” scaling
x=fraction of all material
to use

FICQ & e

xbox + xchess < 100
xbox < 100bb0x
xchess < 100bchess

xbox + xchess < 100
< bbox

1 ..chess chess
TooX <b

xbox + xchess < 1
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Learning to Scale

* New approach: Learn to Scale

 Try each scaling method: Standard and Curtis-Reid. | ,,”
* One fixed method not always best. | .,';},.{ ;, “,
* Use an ML model based on linear regression to predict * ,6/223*’¢ “‘,
which method will result in the smallest attention level. - :ﬁ';’:j{,,;.*. I
+ Features drawn from coefficient distributions. ,'w

* Trained on more than 1000 MIP instances

« Validation outcome:

0.06 0.08 0.10 0.12
I ] ] I L Attention level

Standard
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Learning to Scale

* New approach: Learn to Scale
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Computational Results

« On our set of Numerically Challenging instances:
* Tremendous improvements in all stability criteria

Dual Fails -64% Primal Fails -67% Singular Inverts
Infeasibilities -26% Inconsistencies -35% Violated Sols
Kappa Stable  +148% Kappa Max -979% Attn. Level

-48%
-12%
-88%

« =10% performance improvements on our simplex test sets.
« On our MIP Performance set: performance-neutral

* New control: AUTOSCALE
 Setting SCALING control will override AUTOSCALE.



Conclusion

Machine Learning a
for general MIP

O Works best:

o : -
* For categorical decisions,

« With suitable features,
- With established label that connects to the features,

» When you are not competing against a rule that has
been finetuned over decades.

Learning to scale:

* ML module to predict scaling method for MIP and LP solving

» Drastically improves numerical stability

* Does not deteriorate performance

» One of many recent components in Xpress that address numeric stability



Sneak peek: Learning the Attention Level

A-priori prediction: Will the current solve lead to a high attention level?
* Called after initial LP relaxation
* Prints a warning for the user

Similar features as in “Learning to scale”
 Additionally use conditioning of matrix w.r.t. right-hand side

Uses random forest
« Accuracy > 95%
 False negative rate < 2%
» Threshold biased towards false positives

To be released with the next major Xpress version
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Thank You!

Timo Berthold




