Theory and Basics

A glimpse of the big three

Timo Berthold




Agenda for this lecture

Simplex algorithm

Ellipsoid method, Barrier

Gomory cuts

Branch&Bound
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Simplex Algorithm
Click to add text
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Simplex idea

Start at a random vertex

Among neighboring vertices, choose one which improves
the objective, if none: optimal

« Special case: A ray along which the objective improves
* Then, the LP is unbounded

move along edges towards an optimal vertex
Animation: https://www.youtube.com/watch?v=54bIxYi5JF8

Why doeS th|S Work? image source: Wikipedia

1. Show that objective function is optimized at the boundary of the
polyhedron (convexity)

2. Narrow down further that it is optimized in a vertex (linearity)
3. Local optimality is global optimality (convexity)
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https://www.youtube.com/watch?v=54blxYi5JF8

Basic solution

W.l.o.g., let rank(A) = m < n.
For every vertex X of the LP's polyhedron
T

min c¢'Xx
s.t. Ax=05b A=| B N
x € RZ,

there is a non-singular (m, m)-submatrix Ag (called basis) of A
representing the vertex X (basic solution) as follows:

g = Ag'h, Xy =0
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Standard form

« LPs max {cTx | Ax = b,x = 0} are called LPs in standard form
* Add slack variables

« Nonempty LPs in standard form always have vertices
* Intersection of a simplicial cone and an affine subspace

A a

Yy

« Further, simplex algo assumes rank(A)=m<n, {x | Ax = b} nonempty
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Simplex idea (reloaded)

» LP optimal & there is an optimal vertex solution < there is an optimal basic solution

« LPis a discrete optimization task, (:1) possible bases

« Idea: Find some feasible basis, exchange one of the columns in the basis (,pivoting”), s.t.
feasibility is maintained, objective is improved

/'

* x; = b; — A;xy with nonzero element 4;;, solve for x;. Multiply by identity matrix E with jth

jo
-1 - .. 1
column: —A4; and (ij)-th element —
Aij Aij
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Which columns to choose for pivoting?

« Choose j among all columns for which ¢ = ¢y — cgAg Ay is positive
» Reduced costs, in this direction we can improve
* If no such j: Done, optimal

» Then, among all i with A;; > 0 have to choose one with minimal positive ;—" to stay feasible

)

» If no such (4; < 0): Done, LP is unbounded

Z A A

Y /

» Main choice: entering nonbasic column. % ,oottleneck” by how much it can be increased
]
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One step of the Simplex algorithm (Dantzig 1947)

1. Check optimality: ¢ < 07
2. Choose pivot column with ¢; > 0

3. Check unboundedness: 4; < 0?

4. Pick pivot row with minimal %
tj

5. Pivoting: Exchangeijin N and B, multiply Az by eta matrix
6. Update all data structures (4, b, ¢)
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Correctness of simplex algorihm

If all vertices non-degenerate, simplex algorithm finds solution in finite time
 Each step new, strictly improving basis

Issue: Cycling (resolve by lexicographic rules or by slight pertubation)

Initial feasible solution found by auxiliary LP (phase I), which itself has a trivial initial feasible
solution

b - : L
(A1) (y) = b has trivial solution x = 0,y = b, now minimize Xy

+ Phase | LP is bounded, rank(A)=m<n
* Final step: Pivot all auxiliary columns out of the basis
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Dual simplex

 Dual solution can be computed from primal and vice versa

* Hence, we can solve the dual problem instead
* Primal simplex on dual LP

* Meaning: Instead of staying feasible and getting more optimal, we stay ,optimal” and get
more feasible

« Approach optimum via infeasible basic solutions
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Changing your LP after optimization

Change the objective
- Basis stays feasible, simplex can get warm-started

Add a column
- Basis stays feasible (add to nonbasis), warm-start

Add a row
- Basis stays dual feasible (add slack to basis), warm-start dual simplex

Change right hand side / variable bound
- Stays dual feasible, warm-start dual simplex
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Ellipsoid Method & Barrier
Click to add text
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Khachiyan‘s algorithm - the first polynomial time LP solver
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KHACHIYAN’S ALGORITHM FOR LINEAR PROGRAMMING*

Peter GACS and Laszlo LOVASZ
Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.

Received 10 October 1979

L.G. Khachiyan's algorithm to check the solvability of a system of linear inequalities with integral
coefficients is described. The running time of the algorithm is polynomial in the number of digits

of the coefficients. [t can be applied to solve linear programs in polynomial time.

Key Words: Linear Programming, Inequalities, Complexity, Polynomial Algorithms.

0. Introduction

L.G. Khachiyan [1, cf. also 2, 3] published a polynomial-bounded algorithm to
solve linear programming. These are some notes on this paper. We have ignored
his considerations which concern the precision of real computations in order to
make the underlying idea clearer; on the other hand, proofs which are missing
from his paper are given in Section 2. Let

ax < b (i=1,....m.a,EZ".b.~EZ) 1)

be a system of strict linear inequalities with integral coefficients. We present an
algorithm which decides whether or not (1) is solvable, and yields a solution if it
is. Define

L= log(lay| + 1)+ X log(|b,| + 1) +log nm +1.
[¥] i

L is a lower bound on the space nceded to state the problem.



Ellipsoid method

* |dea: From coefficients in A and b, we can determine largest possible solution value for x
and minimum size of polyhedron

 Find large ball, which must contain a feasible solution, if one exist
+ Check whether center point is feasible . '

« Cut ball/ellipsoid in (less than) half, determine smallest ellipsoid

that contains half ellipsoid

» Repeat until ellipsoid is so small that polytope must be contained
in ellipsoid (or is empty)

» Good online lecture:
https://www.coursera.org/lecture/advanced-algorithms-and-
complexity/optional-the-ellipsoid-algorithm-N9rzA

image source: Wikipedia
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Karmarkar‘s algorithm, poly-time with practical impact

[11] Patent Number:
[45] Date of Patent:

[541
73]
(73]

[21]
[22]

(51

[52]
(58]

[56]
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Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets

crisscross the U.S,, Mexico, Canada and
the Caribbean, stopping in 110 cities and bear-
ing over 80,000 passengers. More than 4 000
pilots, copilots, flight personnel, mainienance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bolts,
altimeters, landing gears and the ike must be
checked at each destination. And while per-
forming these scheduling gymnastics, the
company musi keep a close eye on costs, pro-
Jected revenue and profits,

Like American Airlines, thousands of com-
panies must routinely untangle the myriad
vaniables that complicate the efficient distribu-
tion of their resources. Solving such monstrous
problems requires the use of an abstruse
branch of mathematics known as linsar pro-
gramming. It is the kind of math that has
frustrated theoreticians for years, and even the
fastest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born  mathematician at  Bell
Laboratories in Murray Hill, N.J., after only
ayears' work has cracked the puzzle of linear
programming by devising a new algorithim, &
step-by-step mathematical formula, He has
translated the procedure into a program that
should allow computers o track a greater com-
bination of tasks than ever before and in a frac-
tion of the time.

Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world
“Breakthrough s one of the most abused
wonds in science.” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs
“But this is one situation where it is truly ap-
propriate.”

Before the Kermarkar method, linear equa-
tions could be solved only in a cumbersome
fashion, ironically known as the simplex
method, devised by Mathematician George
Dantzig in 1947 Problems are conceived of
as giant geodesic domes with thousands of
sides. Each corner of a facet on the dome

image source: M. Grotschel



Barrier method

Instead of min {c¢Tx | Ax = b,x > 0} solve min {cTx-u Y. Inx; | Ax = b, x > 0}
» Strictly convex problem, has a single unique solution (when original problem feasible)

For small x, -In x becomes large, hence solution is an interior point
» Converges to optimum of original LP when u — 0

Integrate primal and dual LP into the following nonlinear(!) equation system:
cAx=b primal
* yA + s = c dual
cXS=U complementary slackness
°x,s=0

This can be solved by a Newton method
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Crossover

Barrier solutions are not basic

* Typically only few columns at their bound
 Can neither be used for simplex warmstart, nor for Gomory cuts
« Numerically slightly off

Crossover: Creates a basic vertex solution from a nonbasic interior point solution

Algorithm similar to simplex

Guesses initial basis (crash) and nonbasis (note: some columns might be at their bounds),
maintains set of superbasic columns (not at their bound and not basic) and tries to push
those to zero or to push a basic column to zero and a superbasic into the basis

« Primal and dual crossover
 Polynomial-time algorithm

FICO



Analytic center

« Solve min {-uY Inx; | Ax = b,x = 0}
* barrier system without original objective

 This computes the analytic center of the polytope
+ Point that maximizes distance to the boundary

- Several MIP applications make use of analytic center:

In standalone primal heuristics:

— Recursive central rounding (Naoum-Sawaya 2013)

— Use AC in Feasibility Pump (Baena and Castro 2011, Boland et al 2011)

— Metaheuristic based on interior point solutions (Plateau et al 2001)

In mixed-integer convex optimization:
— Analytic center cutting plane method (Gondzio, du Merle et al 1996)
— Also for MIP applications (Ferris et al 2001, Fischetti, Salvagnin 2010)

— Branching, presolving (Berthold et al 2018)




Quiz time

« An LP (in standard from) with 20 constraints over 100 variables
a) will have at most 20 nonzeros in an optimal basic solution

b) might have more than 20, but at most 80 nonzeros in an optimal basic solution
c) might have more than 80, but at most 100 nonzeros in an optimal basic solution ‘

« We can warm start the Primal Simplex algorithm after .
a) adding a row
b) changing a variable bound
c) changing the objective

» The Barrier algorithm converges to
a) avertex solution
b) apointin the center of the optimal face

c) apoint outside the polyhedron
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Gomory cuts: the first IP solver

OUTLINE OF AN ALGORITHM FOR INTEGER
SOLUTIONS TO LINEAR PROGRAMS

BY RALPH E. GOMORY!
Communicated by A. W. Tucker, May 3, 1958

The problem of obtaining the best integer solution to a linear pro-
gram comes up in several contexts. The connection with combina-
torial problems is given by Dantzig in [1], the connection with prob-
lems involving economies of scale is given by Markowitz and Manne
[3]in a paper which also contains an interesting example of the effect
of discrete variables on a scheduling problem. Also Dreyfus [4] has
discussed the role played by the requirement of discreteness of vari-
ables in limiting the range of problems amenable to linear program-
ming techniques.

It is the purpose of this note to outline a finite algorithm for ob-
taining integer solutions to linear programs. The algorithm has been
programmed successfully on an E101 computer and used to run off
the integer solution to small {seven or less variables) linear programs _ A

image source: ralphgomory.com
completely automatically.




Integer Programming

Fi ::{xGZi:Axgb}

Fioi={x e R} : Ax < b}

X1

ro! o
hd L

) O
_‘r Lo’

=
=

min{c"x:x € Fp}

« Optimizing over a discrete set

« Optimal solution not necessarily in a vertex



General cutting plane method

conv(F;p) is a polyhedron

Principally, every IP could be formulated as LP

Problems:

* Linear description not known
» Might require exponentially many rows

Motivation:
» For optimal solution, we need at most n rows

FICO © 2019 F \ orporation. Confidential. This presentation is provided for the recipien
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{cTx | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. (Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{c’x | x € F}

3. |f x* € FIP:
Stop!
4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 2 3 4

min{c’x : x € conv(Fip)}
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3 4

3. |f x* € FIP:
Stop!
4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 2 3 4

min{c’x : x € conv(Fip)}

rat! Confidential. This presentation is provided for th pient
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3
3. |f x* € FIP:

Stop!

4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 > 3 4

min{c’x : x € conv(Fip)}
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{cTx | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. (Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{cTx | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{c’x | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. (Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3

3. |f x* € FIP:
Stop!
4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 2 3 4

min{c’x : x € conv(Fip)}
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3
3. |f x* € FIP:

Stop!

4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 > 3 4

min{c’x : x € conv(Fip)}
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{cTx | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. (Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip
2. Solve x* « min{cTx | x € F}
3. Ifx* € Fp:
Stop!

4. Add inequality to F that is:

« Valid for conv(F;p) and

*  Violated by x*
5. Goto 2.
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3 4

3. |f x* € FIP:
Stop!
4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 2 3 4

min{c’x : x € conv(Fip)}
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General cutting plane method: Colorful picture

1. Initialize: F « Fip X2
2. Solve x* «min{c"x | x € F} 3 4

3. |f x* € FIP:
Stop!
4. Add inequality to F that is:
« Valid for conv(F;p) and
*  Violated by x*

5. Goto 2. 1 2 3 4

min{c’x : x € conv(Fip)}
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Gomory cuts (1958)

 Given an arbitrary IP, with an optimal basic solution of its LP relaxation

» Finds for each fractional variable in the LP solution a hyperplane that separates the LP
solution from the set of all feasible solutions of the IP

+ Add one (or all) to the LP relaxation, rinse, repeat
-« Assumes standard form max{c’x| Ax = b;x > 0;x € Z"}

» Use basic representation of the solution
* X <4 ZCL_UX] = Ei
* Basic LP solution: x; = by, x; = 0

» Choose a fractional basic variable: x;= b; & Z
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Gomory cuts, proof

¢ X +ZC_1UX] = Ei 6£Z




Gomory cuts, proof

¢ X +Za_ux] = Bi € Z.
« Add some zeros
© x; + X(a;+|ag| - agx = b + |by| - [bi]
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Gomory cuts, proof

© Xi+ 2a;ix; = b, ¢ 7
« Add some zeros

* x; + 2@+ a;] — |a; Dy = b + by — |bi]
 Sort by integral and fractional parts

* x; + X|ailx; = |bi| = b — |bi| - Z(@;—|ay x;
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Gomory cuts, proof

Xi + ZQ_UX] = Ei € Z.

Add some zeros

* x; + 2@+ a;] — |a; Dy = b + by — |bi]
Sort by integral and fractional parts

* x; + X|ailx; = |bi| = b — |bi| - Z(@;—|ay x;

The left hand side must be integer for all integer solutions
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Gomory cuts, proof

Xi + ZQ_UX] = Ei € Z.

Add some zeros

* x; + 2@+ a;] — |a; Dy = b + by — |bi]
Sort by integral and fractional parts

* x; + X|ailx; = |bi| = b — |bi| - Z(@;—|ay x;

The left hand side must be integer for all integer solutions

The right hand side is less than one
* b; — |b;| is less than one

* ¥ (a;;—|ai;])x; is a sum of non-negative values
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Gomory cuts, proof

Xi + ZQ_UX] = Ei € Z.

Add some zeros

* x; + 2@+ a;] — |a; Dy = b + by — |bi]
Sort by integral and fractional parts

* x; + X|ailx; = |bi| = b — |bi| - Z(@;—|ay x;

The left hand side must be integer for all integer solutions

The right hand side is less than one
* b; — |b;| is less than one

* ¥ (a;;—|ai;])x; is a sum of non-negative values

Hence, the right hand side must be less equal zero for all integer solutions
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Gomory cuts, proof part

* x; + X\ aix = |bi| = bi = |bi| = X(@;—|ai])x;
* Right hand side is less equal zero



Gomory cuts, proof part

* x; + X\ aix = |bi| = bi = |bi| = X(@;—|ai])x;
* Right hand side is less equal zero

- Hence, —Y.(a;;—|ai;|)x; < |b;| — b; is a valid inequality for the given IP
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Gomory cuts, proof part

* x; + 3| alx — [bi] = b = |b:i| - X(@i—|ai; D
* Right hand side is less equal zero
- Hence, —Y.(a;;—|ai;|)x; < |b;| — b; is a valid inequality for the given IP

« And it is violated by the basic LP solution, since the right hand side is zero, but the right
hand is negative
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Gomory cuts, proof part

xi + X|ai|x; — [bi| = bi — |bi| — Z(@;;—|ai; P
* Right hand side is less equal zero

Hence, —¥.(@;;—|a;;|)x; < |b;| — b; is a valid inequality for the given IP

« And it is violated by the basic LP solution, since the right hand side is zero, but the right
hand is negative

This is the Gomory cut!

Add a slack variable, add to the equation system, iterate

Similar idea works for mixed-integer programming (Gomory 1960)
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Gamification

« By Gonzalo Mufoz: http://cuttingplanegame.gonzalomunoz.org/

* Get yourself on the leaderboard and win a prize! (code: cutsatwork)
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Branch&Bound
Click to add text
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First IFORS meeting: kickstart for LP-based Branch&Bound?

Alison Doig

Ailsa Land

“In 1957 | met‘Ahsqn Doig (later Harcourt), an Australian graduate from
Melbourne University, at the first international Operational Research

(OR) conference held at Oxford.” — Alisa Land

George Dantzig
o A

image source: abc.net.au

» Alison Harcourt recently appointed
Senior Australian of the year 2019

« From Bill Cook's fantastic IFORS distinguished lecture:
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https://www.youtube.com/watch?v=5VjphFYQKj8

Branch&Bound

Divide&Conquer

Split search region into strictly smaller subproblems, hopefully easier to solve, iterate
 Typically two subproblems, typically disjoint

Maintain lower and upper bounds, prune subproblems outside of bounds

General version for discrete problems by Land&Doig 1960

Easier implementation, MIP-specific, with LP-relaxations, by Dakin 1965
* Dual simplex shines: Warm starts when adding new variable bounds
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LP-based Branch&Bound: Algorithm

Steps
1. Abort criterion 3. Solve relaxation 5. Feasibility check
2. Node selection 4. Bounding 6. Branching

L« {P}, U + oo, x™ <« NULL;

if £ =0 then return x'P and U:

Select P, e L, L «+ L\{Pi};

Solve LP relaxation of P;, L. + c(x'F) or oc;

if L;.c > U then goto line 2

if xtP € P then x¥ + x'*, U <« L. goto line 2;

Select j € I: xJ,-LP ¢ 7. Split Pj into Ppj1 1= P;U{x; < LX}'PJ}, and
Pz,'+2 = P,' U {Xj > ’VXJLP“}, L+ LU {P2;+1,P2,'+2}, goto line 2;
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LP-based Branch&Bound (colorful picture)

1. Abort Criterion 3. Solve relaxation 5. Feasibility Check
2. Node selection 4. Bounding 6. Branching
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LP-based Branch&Bound (colorful picture)
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LP-based Branch&Bound (colorful picture)
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LP-based Branch&Bound (colorful picture)
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LP-based Branch&Bound (colorful picture)
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Running time

« Can obviously be exponential, but is it even finite?

Minimize
obj: x3
Subject To
cl: 12 x1 + 9 x2 - x3 =0
Bounds
-inf <= x1
-inf <= x2
1 <= x3
General
x1 x2 x3
End

Careful modelling matters!
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Quiz time

« With Gomory's algorithm, the first integer solution found
a) will be an optimal solution
b) might be suboptimal, but within a factor 2 of optimality
¢) has a minimum number of nonzero variables

* You get one Gomory cut per
a) basic solution
b) basic variable
c) fractional variable

» The LP algorithm of choice for LP-based branch-and-bound is:
a) Primal Simplex
b) Dual Simplex

c) Barrier
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Thank You!

Timo Berthold




