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Exact control decisions of Network Stations

I Listen to previous talks
I Provides descriptions of individual gas

network elements
I Provides background into the derivation of

this problem

I Problem Setting (Important sub-networks
inside larger network)

I Problem Aim (Control Decisions)

I Two Different Approaches:
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I Problem Setting (Important sub-networks
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I Focus on Network Stations
I Network Stations contain all heavy machinery

of the entire network
I Network stations are commonly the

intersection points between large
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Exact control decisions of Network Stations

I Listen to previous talks

I Problem Setting (Important sub-networks
inside larger network)

I Problem Aim (Control Decisions)
I Find control decisions for all network elements
I Ensure these control decisions are safe and

realisable
I Make these control decisions as ‘stable’ as

possible
I Control decisions are made at each time-step

over a time-horizon {0, ..., |T |}.

I Two Different Approaches:
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Exact control decisions of Network Stations

I Listen to previous talks

I Problem Setting (Important sub-networks
inside larger network)

I Problem Aim (Control Decisions)

I Two Different Approaches:
I (Model driven) Rolling Horizon approach
I (Data driven) Machine Learning approach
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Problem Input and Output

I Input:
I Network Topology - Complete individual

element descriptions and connectedness
I Initial State - Starting values for all elements
I Prognosis - Set of demands we aim to meet

I Output (For all future time steps):
I Valve states (Open / Closed)
I Compressor states (Active (operating point) /

Bypass / Closed)
I Regulator states (Active (operating point) /

Open / Closed)
I Additional: Flow / Pressure levels throughout

the network

Network 
Topology

Initial State of 
all Elements

Flow and 
Pressure 

Prognosis at 
Boundaries

Model

Future Control Decisions for all 
Elements
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time

I Model exactness
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Problem Uncertainties and Difficulties

I Organising priorities.
I Supply and Demand is met

I Solution must be output in reasonable time

I Model exactness

∑
u

flow(u,v) +
∑
u

flow(v ,u) = vinflow − vslack

|vslack| ≤ ε v ∈ Boundaries
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Problem Uncertainties and Difficulties

I Organising priorities.
I Supply and Demand is met
I Control Decisions are safe

I Solution must be output in reasonable time

I Model exactness

E.g. Make sure there are well defined pressure limits
for all bits of the network, and that your solution
respects them:

LB(pressurev ) ≤ pressurev ≤ UB(pressurev )

Potentially less well defined requests. E.g. Avoid
stressing the network
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Problem Uncertainties and Difficulties

I Organising priorities.
I Supply and Demand is met
I Control Decisions are safe
I Control Decisions are stable

I Solution must be output in reasonable time

I Model exactness

E.g. Make sure that your active point inside of a
compressor polytope moves as little as possible
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Problem Uncertainties and Difficulties

I Organising priorities.
I Supply and Demand is met
I Control Decisions are safe
I Control Decisions are stable
I Weighted Objective vs Multi Level

I Solution must be output in reasonable time

I Model exactness

minx,y Ax + By

vs.

minx Ax

s.t

miny By
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time
I Model will be used in reality.
I Output in time is necessary

I Model exactness

https://xkcd.com/612/
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time

I Model exactness
I Pipe discretisation

I What assumptions do I make? E.g. Ignore
temperature

I Which discretisation technique do I use?

I Do I leave as is, convexify, or linearise my end
result?

I See Kai Hoppmann’s talk on more information
on pipe equations. (We linearise)
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time

I Model exactness
I Pipe discretisation
I Compressor polytope

Compressor stations increase gas-pressure in the
forward direction. We must choose which
configuration of machines to use inside of the
compressor station, and the operating point inside
of the configuration’s associated polytope.

Idea: Disjunctive Formulation

Use case: Efficiently model each compressor
configuration polytope s.t we retrieve the active
configuration, and the active operating point inside
of the polytope.
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time

I Model exactness
I Pipe discretisation
I Compressor polytope

mc ∈ {0, 1} ∀c ∈ C : Active configuration

plc ∈ R+ ∀c ∈ C : LHS pressure

prc ∈ R+ ∀c ∈ C : RHS pressure

qc ∈ R+ ∀c ∈ C : Flow∑
c

mc = 1 pl =
∑
c

plc

pr =
∑
c

prc q =
∑
c

qc

LB(plc)mc ≤ plc ≤ UB(plc)mc

LB(prc)mc ≤ prc ≤ UB(prc)mc

LB(qc)mc ≤ qc ≤ UB(qc)mc

w · plc + x · prc + y · qc + z ·mc ≤ 0 ∀c ∈ C

∀(w , x , y , z) ∈ HPlanes(c)
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Problem Uncertainties and Difficulties

I Organising priorities.

I Solution must be output in reasonable time

I Model exactness
I Pipe discretisation
I Compressor polytope
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Operation Modes (Example Constraint Set)

Operation Modes:

I Determines modes and configurations (binary
decisions) for all valves and compressors

M(o, a) :=x where x is the mode / configuration

of arc a in operation mode o ∀o ∈ O

with x ∈ {open, closed} if a ∈ Valves

x ∈ {bypass, closed, cfgs}
if a ∈ Compressors

I Limits these mode combinations to a set of
size |O|

I Determines the polytope choice for each
compressor (Not the active point within)

I Has an allowed set of flow directions with each
choice. For example, the four choices shown
never allowed east to north flow.
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Operation Modes (Example Constraint Set)

Operation Modes:

I Determines modes and configurations (binary
decisions) for all valves and compressors

I Limits these mode combinations to a set of
size |O|

|O| << 2|valves| ·
∏

a∈compressors

(2 + |cfgsa|)

I Determines the polytope choice for each
compressor (Not the active point within)

I Has an allowed set of flow directions with each
choice. For example, the four choices shown
never allowed east to north flow.
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Operation Modes (Example Constraint Set)

Operation Modes:

I Determines modes and configurations (binary
decisions) for all valves and compressors

I Limits these mode combinations to a set of
size |O|

I Determines the polytope choice for each
compressor (Not the active point within)

mc1 = 0 mc2 = 1 mc3 = 0

plc1
= plc3

= prc1
= prc3

= qc1 = qc3 = 0

w · plc2
+ x · prc2

+ y · qc2 + z ≤ 0

∀(w , x , y , z) ∈ HPlanes(c2)

I Has an allowed set of flow directions with each
choice. For example, the four choices shown
never allowed east to north flow.
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Operation Modes (Example Constraint Set)

Operation Modes:

I Determines modes and configurations (binary
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Model Driven Rolling Horizon Approach

I Single large MIP is too unreliable. Solve times can take days to even find a primal solution.

I Idea: Break up by timesteps. Create greedy heuristic for determining best binary decisions

I Introduce a penalty for changing operation modes (set of binary control decisions)

I Create process where series of operation modes can be re-combined if continuity leads to better
objective value

I Smooth solution and make it feasible w.r.t the larger impractical MIP

t = 0 t = 1 t = 2
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Smoothening Procedure

I Downside of greedy approach: Time steps continuous variables are largely independent

I Upside of greedy approach: Quick to solve and end-result scales linearly w.r.t number of time-steps.

I Solution: Rolling Horizon Approach with fixed binary variables to smooth solution

I Guarantees primal feasibility to original MIP
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I Solution: Rolling Horizon Approach with fixed binary variables to smooth solution
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Data Driven Dual Neural Network Approach

I Do I have enough data?
I Substantial amount of data needed for

complex tasks
I Never ending amount of new features and

interfaces
I The first step of a project is often simply

creating data readers and ensuring data
quality

I What technique is best for my purpose?

I Will a simple heuristic suffice?

I How do I model my input?

Data Data Data Data Data Dato Data Data Data
Data Data Data Data Data Data Data Data Data
Data Data Data Data Data Deta Data Data Data
Data Data Data Data Data Data Daqa Data Data
Data Data Data Data Data Data Data Data Data
Data Data Data Gataca Data Data Data Data
Data Data Data Data Data Data Dataa Data Data
Data Data Data Data Data Data Data Data Gato
Data Data Data Data Data Data Data Data Data
Data Data Data Data Data Data Data Data Data
Data Data Data Data Data Data Data Data Data
Data Data Data Dito Data Data Data Data Data
Cata Data acataG Data Data Data Data Data Data
Data Data Data Data Data Data Data Data Data
Dita Data Data Data Data Data Data Data Data
Data Data Data Data Data Data Data Dara Data
Data Data Data Data Data eixt quit kill what exit
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Data Driven Dual Neural Network Approach

I Do I have enough data?

I What technique is best for my purpose?
I More complex techniques aren’t always

better!
I There is no universal method (Free Lunch

Theorem)
I Choose method that best fits the problem.

Can be from a theoretic approach or
preliminary trial and error.

I Will a simple heuristic suffice?

I How do I model my input?

https://xkcd.com/1838/
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Data Driven Dual Neural Network Approach

I Do I have enough data?

I What technique is best for my purpose?

I Will a simple heuristic suffice?
I As seen in this series of lectures, non

data-driven heuristics can be very effective
I Do I need to worry about proven optimality?

I How do I model my input?

https://xkcd.com/1838/
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Data Driven Dual Neural Network Approach

I Do I have enough data?

I What technique is best for my purpose?

I Will a simple heuristic suffice?

I How do I model my input?
I Heavily depends on your method choice
I Does your data already have intrinsic

patterns? E.g. Time repeated values

https://xkcd.com/1838/

7



Dual Neural Network Design

I Inspiration
I Generative Adversarial Networks (GANs) (Learn by having two networks compete against each other)
I Actor-Critic Methods (Learn with feedback from an environment with an introduced variability in

downstream decisions)

I Properties of our design:

Initial State

Network 
Topology

Boundary 
Node Forecast

Generator

Discriminator

Operation 
Mode 

Decisions

Objective 
Value
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Dual Neural Network Design

I Inspiration

I Properties of our design:
I Uses a Generator and Discriminator Design
I Generator produces binary decisions
I Disicriminator predicts the induced optimal objective value of a problem with these variables fixed
I Our MIP/LP solver is the environment
I Discriminator and Generator are trained at different times, never simultaneously

Initial State

Network 
Topology

Boundary 
Node Forecast

Generator

Discriminator

Operation 
Mode 

Decisions

Objective 
Value
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Pros and Cons of design and implementation

I Pros:
I Can generate our own data. As we learn our

MIP formulation instead of reality itself, data
generation is much simpler.

I Learn on a gradient of objective values. This
means that our non-optimal decisions are
much more likely to be near optimal.

I Can move a substantial amount of training
off-line. Specifically the Discriminator’s early
training.

I Reduced problem complexity and is used as
primal heuristic

I Cons:
I Our MIP must accurately represent reality.

This may be a problem in extreme scenarios
due to simplifications such as our
linearisation.

I Definition of objective function may change.
No bound guarantees on solution.

I The Generator requires on-line training to
ensure that the Discriminator is returning
accurate induced optimal objective values.

I Output is only binary variables, and the
continuous variable values must be found by
a MIP/LP solver.
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The Last Slide

Thanks for watching!

Combinatorial Optimization @ Work 2020
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