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Crude Oil and Pipeline Transport

Figure: Pipes and stations

Crude oil
▶ is one of the most important resources
▶ can produce many kinds of fuel and chemical products
▶ is usually (51% around the world) transported by pipelines
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Energy Loss in Pipeline
Pressure P and head H of the oil

P = ρgH

where ρ is the density of the oil, g is gravity acceleration
▶ Head (pressure) loss: friction and elevation difference
▶ Temperature loss: dissipation

Figure: Mileage-head curve (left) and mileage-temperature curve (right)
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Crude Oil Property
Without proper transport temperature, some crude oil may
▶ dramatically increase the viscosity (high friction)
▶ precipitate wax
▶ freeze (Some oil freezes under 32◦C)

Normal temperature pipelines are incapable!

Figure: Viscosity-temperature curves
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The Heated Oil Pipeline (HOP)

Station

Heating furnace

Pipeline

Pumps

Regulator

Figure: Stations with pumps and furnaces

In each station
▶ Heating furnace: variable ∆T ∈ R+

▶ Constant speed pump (CSP): constant HCP

▶ Shifted speed pump (SSP): variable ∆HSP ∈
[
HSP,HSP]

▶ Regulator: head restriction
Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 7 / 40
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Operation Scheme and Cost
Safety requirements
▶ Inlet, outlet head and temperature bounds in each station
▶ Head bounds in the pipeline

Figure: Temperature (T) and transport cost (S)

▶ Lots of feasible schemes with
huge cost differences (vary over
50,000 yuan/d)

▶ High heating consumption
(consumes fuel equivalent to
1% transported oil)

▶ Huge rate of flow per day
(about 72,000 m3/d)

The optimal scheme will save a lot!
Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 8 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MINLP Implementation and the Nonconvexity

▶ (Nonconvex) MINLP Model
▶ Integer (binary) variables: on-off status of pumps
▶ Continuous variables: temperature rise comes from heating furnaces

▶ Nonconvexity: Friction loss (hydraulic friction based on
Darcy-Weisbach formula and Reynold numbers)

HF(T,Q,D, L) = β(T)Q2−m(T)

D5−m(T)
ν(T)m(T)L

L is the pipe length, T is the oil temperature, Q is the volume flow of
oil, D is the inner diameter of the pipe, β(·) and m(·) are piecewise
constant functions, ν(·) is the kinematic viscosity of oil.
▶ HF is nonconvex or even discontinuous about T in general

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 9 / 40
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Motivation and Contribution

M Literatures focus on approximation or meta-heuristics
▶ Two-cycle strategy based on model decomposition [Wu and Yan, 1989]
▶ Improved genetic algorithm [Liu et al., 2015]
▶ Differetial evolution and particle swarm optimization [Zhou et al., 2015]
▶ Linear approximation [Li et al., 2011]
▶ Simulated annealing algorithm [Song and Yang, 2007]

C Consider using deterministic global optimization methods
M Lack detailed and general mathematical model
C Consider different kinds of pumps and a general formulation of

hydraulic frictions
M General MINLP solvers may not efficient on the HOP problems
C Design an efficient specific algorithm for HOP problems

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 10 / 40
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Notations
Suppose

▶ there are NS stations in the pipeline;
▶ the pipe between stations j and j + 1 is divided into NP

j segments, j = 1, ...,NS − 1;
▶ there are NCP

j CSPs and NSP
j SSPs in station j.

Station 𝒋

Station 𝒋 + 𝟏

Segment 𝒓 −
𝟏

Segment 𝒓

Mileage difference ≈ 𝑳𝒋𝒓

Pipe length 𝑳𝒋𝒓

Elevation difference 𝚫𝐙𝐣𝐫

Heat transfer coefficient 𝑲𝒋𝒓

Volume flow 𝑸𝒋𝒓

Average temperature 𝑻𝒂𝒗𝒆
𝑷𝒋𝒓

Friction 𝑭𝒋𝒓

Inner diameter
𝑫𝒋𝒓

Outer diameter
𝒅𝒋𝒓

Head 𝑯𝒐𝒖𝒕
𝑷𝒋𝒓:𝟏

Temperature 𝑻𝒐𝒖𝒕
𝑷𝒋𝒓:𝟏

Head 𝑯𝒐𝒖𝒕
𝑷𝒋𝒓

Temperature 𝑻𝒐𝒖𝒕
𝑷𝒋𝒓

CSP head 𝑯𝒋
𝑪𝑷 Powered-on CSP 𝒙𝒋 Powered-on SSP 𝒚𝒋 SSP head 𝜟𝑯𝒋

𝑺𝑷 Temperature rise 𝜟𝑻𝒋
Inlet head 𝑯𝒊𝒏

𝑺𝒋 Outlet head 𝑯𝒐𝒖𝒕
𝑺𝒋 Inlet temperature 𝑻𝒊𝒏

𝑺𝒋 Outlet temperature 𝑻𝒐𝒖𝒕
𝑺𝒋

Figure: Constants (blue) and variables (red) in the pipe between stations j and j + 1
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MINLP Model for HOP
Pipe calculation constraints
▶ Head loss

HPjr
out = HPj,r−1

out − Fjr −∆Zjr, j = 1, ...,NS − 1, r = 1, ...,NP
j . (1)

▶ Friction

Fjr = f
(

TPjr
ave,Qjr,Djr

)
Ljr, j = 1, ...,NS − 1, r = 1, ...,NP

j . (2)

▶ Average temperature (based on axial temperature drop formula and
empirical formula)

TPjr
out = TPjr

g + TPjr
f +

[
TPj,r−1

out −
(

TPjr
g + TPjr

f

)]
e−αjrLjr , (3)

TPjr
ave =

1

3
TPj,r−1

out +
2

3
TPjr

out, j = 1, ...,NS − 1, r = 1, ...,NP
j . (4)

Tg is the ground temperature, Tf is the environment temperature variation
caused by friction heat, α = (Kπd)/(ρQc) is a parameter, c is the specific
heat of the oil.
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MINLP Model for HOP (cont’d)
Heating station calculation constraints
▶ Outlet value

HSj
in +

(
xjHCP

j +∆HSP
j

)
≥ HSj

out, j = 1, ...,NS − 1, (5)

TSj
in +∆Tj = TSj

out, j = 1, ...,NS − 1. (6)

Constraints (5) are inequalities due to the regulators
▶ SSP head bound

yjHSP
j ≤ ∆HSP

j ≤ yjH
SP
j , j = 1, . . . ,NS − 1. (7)

Connection constraints
▶ Pipe station connection

HPj0
out = HSj

out, H
PjNP

j
out = HSj+1

in , j = 1, ...,NS − 1, (8)

TPj0
out = TSj

out, T
PjNP

j
out = TSj+1

in , j = 1, ...,NS − 1. (9)
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MINLP Model for HOP (cont’d)
Bound constraints

▶ Number of powered-on CSPs and SSPs bounds

xj ∈ {x, ..., x}, j = 1, ...,NS − 1, (10)
yj ∈ {y, ..., y}, j = 1, ...,NS − 1. (11)

▶ Temperature rise bounds

∆Tj ≥ 0, j = 1, ...,NS − 1. (12)

▶ Inlet and outlet value bounds

HSj
in ≤ HSj

in ≤ HSj
in , j = 1, ...,NS, (13)

HSj
out ≤ HSj

out ≤ HSj
out, j = 1, ...,NS − 1, (14)

TSj
in ≤ TSj

in ≤ TSj
in , j = 1, ...,NS, (15)

TSj
out ≤ TSj

out ≤ TSj
out, j = 1, ...,NS − 1. (16)

▶ Head bounds at transition point

HPjr
out ≤ HPjr

out ≤ HPjr
out, j = 1, ...,NS − 1, r = 1, ...,NP

j . (17)
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MINLP Model for HOP (cont’d)

Transport cost (pump cost and furnace cost) objective function

C(x,∆HSP,∆T) =
NS−1∑
j=1

[
CpρQj0g

(
xjHCP

j
ξCP

j
+

∆HSP
j

ξSP
j

)
+ CfcρQj0

∆Tj
ηjVc

]
.

Cp and Cf are the unit price of electricity and fuel, respectively, ξCP and ξSP are
the efficiency of CSP and SSP, respectively, η is the efficiency of furnace, Vc is
the heating value of the fuel.
Integer variables vector and scheme vector

z := (x, y) , Ψ :=
(
z,∆HSP,∆T,HS

in,HS
out,TS

in,TS
out,HP

out,TP
out,TP

ave,F
)
.

MINLP Model for HOP
min
Ψ

C(x,∆HSP,∆T)

s.t. (1)− (17)
(HOP)

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 16 / 40
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Difficulties and Ideas

(HOP) is NP-hard even if we only consider the pump combination.

Difficulties
▶ Discrete variables: powered on CSPs and SSPs x, y
▶ Nonconvex constraints: friction F

Idea
▶ Find appropriate relaxation problems

▶ continuous relaxation
▶ convex relaxation

▶ Implement branch-and-bound techniques

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO@Work 2020 17 / 40
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Continuous Relaxation

Relax integer variables x, y

xj ∈
[
xj, xj

]
, j = 1, . . . ,NS − 1, (18)

yj ∈
[
yj, yj

]
, j = 1, . . . ,NS − 1. (19)

Continuous relaxation of (HOP)
min
Ψ

C(x,∆HSP,∆T)

s.t. (1)− (9), (12)− (19).
(HOPnr1)

▶ Nonlinear Programming (NLP) problem
▶ Nonconvex (hard to obtain the optimal solution)
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Upper Bound

If x̌ and y̌ are linear relaxation solution, then

ĤSj
in + ⌈xj⌉HCP

j + ⌈yj⌉H
SP
j ≥ ȞSj

in + x̌jHCP
j +∆ȞSP

j ≥ ȞSj
out = ĤSj

out, j = 1, ...,NS − 1.

That is, ⌈x̌⌉ and ⌈y̌⌉ consist of a feasible pump combination scheme.

Each feasible solution of (HOPnr1) derives an upper bound for (HOP)
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Assumption on Friction

Friction
HF (T,Q,D, L) = β(T)Q2−m(T)

D5−m(T)
ν(T)m(T)L.

Observation
▶ Discontinuity: hard to handle.
▶ Viscosity-temperature curve: nearly convex and monotonically

decreasing about the temperature;
▶ Friction: same convexity and monotonicity with viscosity in the

hydraulic smooth case (β ≡ 0.0246, m ≡ 0.25) with positive Q, D
and L.

Assumption 1

Given Q > 0, D > 0 and L > 0, the function f is convex and monotonically
decreasing about T > 0.
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Convex Relaxation and Lower Bound

Relax nonconvex equality constraints (2)

Fjr ≥ f
(

TPjr
ave,Qjr,Djr

)
Ljr j = 1, ...,NS − 1, r = 1, ...,NP

j . (20)

Convex relaxation of (HOP)
min
Ψ

C(x,∆HSP,∆T)

s.t. (1), (3)− (9), (12)− (20).
(HOPnr2)

▶ Convex NLP problem

Each local optimum of (HOPnr2) is a lower bound of (HOP)
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(HOPnr1) and (HOPnr2)

▶ (HOPnr1) and (HOPnr2) are equivalent if constraints (20) are active at the
optimal solution of (HOPnr2).

▶ Otherwise, this is not true.

A B C

Station

H
lb

H
ub

H
e

a
d

HOPnr1

HOPnr2 (fake)

HOPnr2 (true)

A B C

Station

T
lb

T
ub

T
e

m
p

e
ra

tu
re

HOPnr1

HOPnr2

HOPnr1 HOPnr2

Scheme

T
o

ta
l 
c
o

s
t

Power cost

Fuel cost

Figure: An example with inactive constraints (20)

▶ The blue curve is infeasible due to the upper bound violation of temperature
▶ The relaxation on nonconvex constraints break the hidden limitations on the

upper bound of the temperature
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Equivalence Between (HOPnr1) and (HOPnr2)

Lemma 1
Suppose Assumption 1 holds. For each j = 1, ...,NS − 1, if there exists a feasible
solution Ψ̃ of (HOPnr1) such that the T̃S

out satisfies

T̃Sj
out = TSj

out,

then (HOPnr2) is feasible. Moreover, for each feasible solution Ψ̌ of (HOPnr2) , there
exists a feasible solution Ψ̂ of (HOPnr1) such that

C(x̌,∆ȞSP,∆Ť) ≥ C(x̂,∆ĤSP,∆T̂).

Theorem 2
Under the conditions of Lemma 1, (HOPnr1) and (HOPnr2) have the same optimal
objective value.

A feasible (HOPnr1) is equivalent to (HOPnr2) as long as the upper bounds of
variables TSj

out, j = 1, ...,NS − 1 are exact!
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Bounds for Branch-and-Bound Framework

Relaxation

Same Feasibility

Relaxation

(HOP)
nonconvex
MINLP

Relaxation

Equivalence
(under the conditions

in Lemma 1)

(HOPnr1)
nonconvex

NLP

(HOPnr2)
convex
NLP

Figure: Relation among (HOP) and relaxations

Local optimal solution of (HOPnr2) (Lemma 1 holds)
▶ the global optimal solution of (HOPnr2) ⇒ lower bound
▶ the global optimum of (HOPnr1) ⇒ upper bound
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HOP Branch-and-Bound (HOPBB) Method

Bounds    
Update    Main Loop

Initialize parameters
and root node

Select a node from
node queue

Yes

No
Get a node?

Preprocess the node
1) Check feasibility
2) Meet conditions

 in Lemma 1

Yes

No

Need to solve? Solve (HOPnr2)

No

Yes

Need to branch?

Branch the node
and add new nodes

to node queue

Update
lower bound of

the node

Update
global upper bound
and best incumbent

YesGet a better
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Figure: HOPBB method

▶ Finite termination and global optimality
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Preprocessing in HOPBB

Check whether Lemma 1 holds
▶ Feasibility of (HOPnr1)
▶ Get the exact bound of TSj

out, j = 1, . . . ,NS − 1

Idea
▶ Stations can be decoupled since the exact upper bound of outlet

temperature and lower bound of outlet head are not influenced by
inlet values

▶ For each station, a feasible solution reaches the above two bounds is
derived by constantly coordinating the head and temperature value
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Example: The Exact Upper Bound of TA

Find the exact upper bound of outlet temperature at station A

A B

Station

H
lb

H
ub

H
e

a
d

Step 1

T
A
 = 60

A B

Station

H
lb

H
ub

H
e

a
d

Step 2

T
A
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T
A
 = 60

A B
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H
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H
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e
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d

Step 3

...

T
A
 = 60

T
A
 = 50

A B

Station

H
lb

H
ub

H
e

a
d

Final

T
A
 = 60

T
A
 = 50

T
A
 = 40

Figure: An example for illustrating preprocessing in HOPBB

1. Initialize (HA,TA) := (Hlb, 60), calculate the heads between stations A and B;
2. Find out the maximal violation point to Hlb, increase HA until the head at this point

satisfies the lower bound constraint;
3. Find out the maximal violation point to Hub, decrease TA to some appropriate value

(solving a nonlinear equation), reset HA := Hlb and update heads in pipeline;
4. Repeat steps 2 and 3 until there exists no violation point, return (HA,TA).
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Overview

1 Introduction

2 Heated Oil Pipelines Problem Formulation

3 Nonconvex and Convex Relaxations and Their Equivalence

4 The Branch-and-Bound Algorithm and Preprocessing Procedure

5 Numerical Results

6 Conclusions
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Test Problem: Pipeline

Q-T pipeline

St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7 St. 8 St. 9

Oil
Field

Oil
Field

Oil
Field

Oil
Field Refinery RefineryRefinery

Figure: Schematic diagram of the Q-T pipeline layout

▶ Total mileage: 548.54 km
▶ Pipe segments (up to 5000 m): 131
▶ Pumps (CSPs and SSPs): 24 (20, 4)
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Test Problem: Oil Property

▶ Dynamic viscosity (µ = 1000ρν):

µ(T) = 8.166× 106 exp(−0.3302T) + 77.04 exp(−0.02882T)
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Figure: Viscosity-temperature curve fitting
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Results

Station
Practical scheme Optimal scheme

x ∆HSP Cpower ∆T Cfuel x ∆HSP Cpower ∆T Cfuel

1 3 0 72510.05 3.00 14047.23 3 0 72510.05 7.30 34181.59

2 0 0 0 3.50 20818.94 0 0 0.00 1.24 7391.16

3 1 219.96 47578.26 2.90 13597.40 1 244.24 50020.79 10.13 47496.64

4 3 0 85751.64 2.80 17431.60 1 0 28583.88 3.83 23825.27

5 2 104.33 67879.53 4.10 23875.84 1 231.35 55390.45 0.00 0

6 1 170.27 39140.92 6.48 27735.78 2 224.68 67530.40 6.84 29293.14

7 1 203.94 43330.03 8.80 39156.12 0 175.05 16858.35 7.46 33178.22

8 0 0 0 6.90 29898.62 0 0 0.00 9.10 39416.83

Table: Practical and optimal operation scheme comparison (cost unit: yuan/d)

Total cost
▶ Practical scheme: 542751.95 (yuan/d)
▶ Optimal scheme: 505676.76 (yuan/d), 6.83% improvement
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Results (cont’d)
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Figure: Pressure and temperature curves of the practical scheme and the optimal scheme

▶ Advice from the optimal scheme: higher transport temperature may
lead to lower total transport cost
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Efficiency of HOPBB
Methods in the comparison
▶ Two versions of HOPBB method

▶ HOPBB-IPM: (HOPnr2) solved by IPM (IPOPT [Wächter and
Biegler, 2006])

▶ HOPBB-OAP: (HOPnr2) solved by outer approximation
▶ Nonconvex MINLP solvers aim at global optimal solution

▶ BARON [Tawarmalani and Sahinidis, 2005]
▶ ANTIGONE [Misener and Floudas, 2014]
▶ LINDOGlobal [Lin and Schrage, 2009]

Table: Performances comparison of different methods on solving the Q-T HOP problem

Method Best solution Relative gap Feasibility Iterations Time (sec)

LINDOGlobal 21069.87 1.11× 10−8 8.38× 10−13 845 1047
ANTIGONE 21069.87 1.00× 10−5 5.84× 10−8 34439 651

BARON 21069.87 9.85× 10−3 2.55× 10−10 28007 541
HOPBB-IPM 21069.86 0 7.48× 10−6 25 41
HOPBB-OAP 21069.85 0 8.59× 10−7 25 9
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Efficiency of HOPBB (cont’d)
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Figure: Performances of different methods on 10 HOP instances
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Conclusions

▶ Proposed an MINLP model for the HOP problem considering different
kinds of pumps and a general formulation of frictions

▶ Found the equivalence condition on two relaxation problems
▶ Implemented the branch-and-bound framework on proposed MINLP

model and obtained the global optimal solution
▶ Designed a preprocessing algorithm to guaranteed the equivalence

condition
▶ Achieved a considerable improvement compared with a practical

operation scheme
▶ Showed the high efficiency of HOPBB methods on HOP problems

comparing with general MINLP solvers
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Thanks for watching!
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