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Crude Qil and Pipeline Transport

Figure: Pipes and stations

Crude oil
» is one of the most important resources
» can produce many kinds of fuel and chemical products

» is usually (51% around the world) transported by pipelines
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Energy Loss in Pipeline

Pressure P and head H of the oil
P = pgH

where p is the density of the oil, g is gravity acceleration
» Head (pressure) loss: friction and elevation difference
» Temperature loss: dissipation

Figure: Mileage-head curve (left) and mileage-temperature curve (right)

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO®@Work 2020 5/40



Crude Oil Property

Without proper transport temperature, some crude oil may
» dramatically increase the viscosity (high friction)
P precipitate wax
> freeze (Some oil freezes under 32°C)

Normal temperature pipelines are incapable!
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Figure: Viscosity-temperature curves
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The Heated Oil Pipeline (HOP)
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Figure: Stations with pumps and furnaces

In each station
» Heating furnace: variable AT € R,
» Constant speed pump (CSP): constant HP
> Shifted speed pump (SSP): variable AHSP & [ﬂSP, wr ]

> Regulator: head restriction
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Operation Scheme and Cost

Safety requirements
» Inlet, outlet head and temperature bounds in each station
» Head bounds in the pipeline

> Lots of feasible schemes with
huge cost differences (vary over
50,000 yuan/d)

» High heating consumption
(consumes fuel equivalent to
1% transported oil)

» Huge rate of flow per day
(about 72,000 m?3/d)

~Y
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Figure: Temperature (T) and transport cost (S)

The optimal scheme will save a lot!
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MINLP Implementation and the Nonconvexity

» (Nonconvex) MINLP Model
> Integer (binary) variables: on-off status of pumps
» Continuous variables: temperature rise comes from heating furnaces
» Nonconvexity: Friction loss (hydraulic friction based on
Darcy-Weisbach formula and Reynold numbers)

HF(T, Q,D, L @D pymny
(T.Q,D.L) = 5(DWV(T)
L is the pipe length, T is the oil temperature, Q is the volume flow of
oil, D is the inner diameter of the pipe, 3(-) and m(-) are piecewise
constant functions, v(-) is the kinematic viscosity of oil.

» HF is nonconvex or even discontinuous about T in general
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Motivation and Contribution

M Literatures focus on approximation or meta-heuristics

> Two-cycle strategy based on model decomposition [\Wu and Yan, 1989]
> Improved genetic algorithm [Liu et al., 2015]

> Differetial evolution and particle swarm optimization [Zhou et al., 2015]
> Linear approximation [Li et al., 2011]

> Simulated annealing algorithm [Song and Yang, 2007]

C Consider using deterministic global optimization methods
M Lack detailed and general mathematical model

C Consider different kinds of pumps and a general formulation of
hydraulic frictions

M General MINLP solvers may not efficient on the HOP problems
C Design an efficient specific algorithm for HOP problems
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Overview

© Heated Oil Pipelines Problem Formulation
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Notations

Suppose
> there are N° stations in the pipeline;
> the pipe between stations j and j+ 1 is divided into I\ij segments, j=1,..., NS —1;

> there are NJ.CP CSPs and I\IJ.SP SSPs in station j.
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MINLP Model for HOP

Pipe calculation constraints

» Head loss

Hote = Hott ™" = Fir—= AZjpy j=1,.., NS =1, r=1,.,N°. (1)
» Friction

Fr= f(Tfi’e, Qi Dj,) Liy =1,y NS =1, r=1,.., N (2)

> Average temperature (based on axial temperature drop formula and
empirical formula)

=104 T [T - (121, @

out —
TPjr 1 TPj,rfl 2-,-Pj, f S P
ave = 3 Tout +§ oues J= 1, NP =1, r=1,..., N (4)

Tg is the ground temperature, Ty is the environment temperature variation
caused by friction heat, « = (Knd)/(pQc) is a parameter, c is the specific
heat of the oil.
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MINLP Model for HOP (cont'd)

Heating station calculation constraints
» Qutlet value

Hy+ (GHE + AHEP) = M j= 1. NS =1, (5)
T4 AT =T j=1,..,NS—1. (6)

Constraints (5) are inequalities due to the regulators
» SSP head bound

yHP < AHP < yHF, j=1,.. NS —1. (7)

Connection constraints
> Pipe station connection

) ) P. P )

HOE = Hy Houd = HIP, j=1,.., NS — 1, (8)
. . P ,

Toh = Tohes Towt = T, j=1,.,N°— L. (9)
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MINLP Model for HOP (cont'

Bound constraints
» Number of powered-on CSPs and SSPs bounds

X € X X}, j= 1,0, NS — 1, (10)
Vi €y Vb =1, N° = 1. (11)

» Temperature rise bounds
AT; >0, j=1,..,N°—1. (12)

» Inlet and outlet value bounds

HI < HJ <H), J=1,.., N, (13)
Hole < Mol < Foles J= 1N (14)
TS T ST, J= 1N (15)
Ii{,tﬁ T?L-ltgﬁ{m Jj= 1"-~7NS_1~ (16)
» Head bounds at transition point
Hyhe < Hole S Fgly j=1,. NS =1, r=1,., N, (17)
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MINLP Model for HOP (cont'd)

Transport cost (pump cost and furnace cost) objective function

$P

N —1 CcP
x;H; AT;
Clx, AHFP AT) = E [Cprj()g <J§CJP + fSP ) + CrepQpo 71\/1 :
j C

j=1

C, and Cr are the unit price of electricity and fuel, respectively, ¢ and ¢F
the efficiency of CSP and SSP, respectively, 7 is the efficiency of furnace, V. is
the heating value of the fuel.

Integer variables vector and scheme vector

= (X’ Y)a U= (z AHSP AT, H;Sm ngta Tﬁv Tgut’ out> Tguta vaev F)

MINLP Model for HOP

min X, 2
in Clx, AHF, AT) op)
st. (1) —(17)
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Difficulties and ldeas

(HOP) is N'P-hard even if we only consider the pump combination.

Difficulties
» Discrete variables: powered on CSPs and SSPs x, y
» Nonconvex constraints: friction F

Idea
» Find appropriate relaxation problems

» continuous relaxation
» convex relaxation

» Implement branch-and-bound techniques
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Overview

© Nonconvex and Convex Relaxations and Their Equivalence
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Continuous Relaxation

Relax integer variables x, y
X € [x.%], j=1,...,N°—1, (18)

yje[gj,yj},j:L...,/vst (19)

Continuous relaxation of (HOP)

min  C(x, AH*F,AT)
v (HOPnr1)
st. (1) —(9),(12) — (19).

» Nonlinear Programming (NLP) problem

» Nonconvex (hard to obtain the optimal solution)
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If X and y are linear relaxation solution, then

~C. _sp . c. . - .. ~C. .

Fi - D H 4 [y 1) 2 H -+ SGHEP + AFP = = Hoypy =1, N = 1,
That is, [X]| and [y] consist of a feasible pump combination scheme.

Each feasible solution of (HOPnrl) derives an upper bound for (HOP)
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Assumption on Friction

Friction
Q2—m(T)

o/

HF (T, Q,D, L) = B(T)

Observation
» Discontinuity: hard to handle.

P> Viscosity-temperature curve: nearly convex and monotonically
decreasing about the temperature;

» Friction: same convexity and monotonicity with viscosity in the
hydraulic smooth case (8 = 0.0246, m = 0.25) with positive Q, D
and L.

Given @ >0, D> 0 and L > 0, the function f is convex and monotonically
decreasing about T > 0.
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Convex Relaxation and Lower Bound

Relax nonconvex equality constraints (2)

Fr > f(Tf(}e, Q. Dj,) Lipj=1,s NS =1, r=1,.., NP, (20)

Convex relaxation of (HOP)

min  C(x, AHP AT)
st (1),(3) = (9),(12) — (20).

(HOPnr2)

» Convex NLP problem

Each local optimum of (HOPnr2) is a lower bound of (HOP)
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(HOPnrl) and (HOPnr2)

» (HOPnrl) and (HOPnNr2) are equivalent if constraints (20) are active at the
optimal solution of (HOPnr2).

» Otherwise, this is not true.

—%— HOPnr1 Power cost
Hyp = — — —A— HOPnr2 (fake) Fuel cost
3 —®— HOPnNr2 (true)
e
=1 b7}
° 1 T S
© 5 =2
T g s
& e
ficd
r
Hlb 7777777
A B C A B C HOPnri HOPnr2
Station Station Scheme

Figure: An example with inactive constraints (20)
» The blue curve is infeasible due to the upper bound violation of temperature

» The relaxation on nonconvex constraints break the hidden limitations on the
upper bound of the temperature
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Equivalence Between (HOPnrl) and (HOPnr2)

Lemma 1

Suppose Assumption 1 holds. For each j=1, ..., N° — 1, if there exists a feasible
solution W of (HOPnrl) such that the TS, satisfies

75] 7—osju ty

out —

then (HOPnr2) is feasible. Moreover, for each feasible solution U of (HOPnr2) , there
exists a feasible solution ¥ of (HOPnrl) such that

C(x, AP AT) > C(x, AH" A T).

Under the conditions of Lemma 1, (HOPnrl1) and (HOPnr2) have the same optimal
objective value.

A feasible (HOPnrl) is equivalent to (HOPnr2) as long as the upper bounds of

variables T:{,t, j=1,..,N° — 1 are exact!
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Overview

@ The Branch-and-Bound Algorithm and Preprocessing Procedure
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Bounds for Branch-and-Bound Framework

(HOP)
nonconvex
MINLP

Relaxation

Y

A
Y

Relaxation
(HOPnr1) >l (HOPnr2)
nonconvex convex
NLP < > NLP
Equivalence

Same Feasibility

Relaxation

(under the conditions

A

in Lemma 1)

Figure: Relation among (HOP) and relaxations

Local optimal solution of (HOPnr2) (Lemma 1 holds)
» the global optimal solution of (HOPnr2) = lower bound

» the global optimum of (HOPnrl) = upper bound

CO®@Work 2020
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HOP Branch-and-Bound (HOPBB) Method

Initialize parameters
and root node

Branch the node
and add new nodes
to node queue

Select a node from
node queue

Return the best
incumbent

Preprocess the node
1) Check feasibility
2) Meet conditions

in Lemma 1

Solve (HOPnr2)

Figure: HOPBB method

» Finite termination and global optimality
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Update

Get a feasible
solution of (HOP)
through Lemma 1
and (HOPnr1)

Update
lower bound of
the node
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global upper bound
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Preprocessing in HOPBB

Check whether Lemma 1 holds

» Feasibility of (HOPnrl)

> Get the exact bound of T2, j=1,..., NS — 1
Idea

» Stations can be decoupled since the exact upper bound of outlet

temperature and lower bound of outlet head are not influenced by
inlet values

» For each station, a feasible solution reaches the above two bounds is
derived by constantly coordinating the head and temperature value
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Example: The Exact Upper Bound of T4

Find the exact upper bound of outlet temperature at station A
Step 1 Step 2 Final
/
Hpl——— — Lo X —/~ Hpl — — — — /;\; ,/,/;
/ / >
/N

Head

Head

Station

Station

Station

Head

—A— Tp=50
—o—T,=40

Station
Figure: An example for illustrating preprocessing in HOPBB

1. Initialize (Ha, Ta) :== (Hp, 60), calculate the heads between stations A and B;

2. Find out the maximal violation point to Hy,, increase Hp until the head at this point
satisfies the lower bound constraint;

3. Find out the maximal violation point to H,,, decrease T4 to some appropriate value
(solving a nonlinear equation), reset Hy := Hj, and update heads in pipeline;

4. Repeat steps 2 and 3 until there exists no violation point, return (Ha, Ta).
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Overview

© Numerical Results
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Test Problem: Pipeline

Q-T pipeline

Figure: Schematic diagram of the Q-T pipeline layout

> Total mileage: 548.54 km
> Pipe segments (up to 5000 m): 131
» Pumps (CSPs and SSPs): 24 (20, 4)
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Test Problem: Oil Property

» Dynamic viscosity (1 = 1000pv):

() = 8.166 x 10° exp(—0.33027T) + 77.04 exp(—0.02882T)

110 T T T T T T

+ Data point
—— Fitting curve | |

Dynamic viscosity (mPa - s)

10 I I I I
35 40 45 50 55 60 65 70

Temperature (Celsius degree)

Figure: Viscosity-temperature curve fitting
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Results

‘ Practical scheme ‘ Optimal scheme
Station

‘ x  AH®P Cpower AT Cruel ‘ x  AHP Crower AT Cruel
1 3 0 72510.05 3.00 14047.23 3 0 72510.05 7.30 34181.59
2 0 0 0 350 2081894 | 0 0 0.00 1.24 7391.16
3 1 219.96 47578.26 2.90 13597.40 1 24424 50020.79 10.13 47496.64
4 3 0 85751.64  2.80 17431.60 1 0 28583.88 3.83 23825.27
5 2 104.33 67879.53 4.10 23875.84 1 231.35 55390.45 0.00 0
6 1 170.27 39140.92 6.48 27735.78 2 224.68 67530.40 6.84 29293.14
7 1 20394 43330.03 880 39156.12 | 0 175.05 16858.35 7.46  33178.22
8 0 0 0 6.90 29898.62 0 0 0.00 9.10 39416.83

Table: Practical and optimal operation scheme comparison (cost unit: yuan/d)
Total cost
» Practical scheme: 542751.95 (yuan/d)
» Optimal scheme: 505676.76 (yuan/d), 6.83% improvement
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Results (cont'd)
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Figure: Pressure and temperature curves of the practical scheme and the optimal scheme

» Advice from the optimal scheme: higher transport temperature may
lead to lower total transport cost
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Efficiency of HOPBB

Methods in the comparison

» Two versions of HOPBB method

> HOPBB-IPM: (HOPnr2) solved by IPM (IPOPT [Wachter and
Biegler, 2006])

» HOPBB-OAP: (HOPnr2) solved by outer approximation

» Nonconvex MINLP solvers aim at global optimal solution
» BARON [Tawarmalani and Sahinidis, 2005]
> ANTIGONE [Misener and Floudas, 2014]
> LINDOGIobal [Lin and Schrage, 2009]

Table: Performances comparison of different methods on solving the Q-T HOP problem

Method Best solution  Relative gap Feasibility Iterations  Time (sec)
LINDOGlobal 21069.87 1.11 x 1078 8.38 x 10~13 845 1047
ANTIGONE 21069.87 1.00 x 10~° 5.84 x 10~8 34439 651
BARON 21069.87 9.85 x 1073  2.55 x 1010 28007 541
HOPBB-IPM 21069.86 0 7.48x 106 25 41
HOPBB-DAP 21069.85 0 859x10°7 25 9

Yu-Hong Dai (AMSS, CAS) Solving HOP Problems Via MINLP CO®@Work 2020 35/40



Efficiency of HOPBB (cont'd)
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Figure: Performances of different methods on 10 HOP instances
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Conclusions

» Proposed an MINLP model for the HOP problem considering different
kinds of pumps and a general formulation of frictions

» Found the equivalence condition on two relaxation problems

» Implemented the branch-and-bound framework on proposed MINLP
model and obtained the global optimal solution

» Designed a preprocessing algorithm to guaranteed the equivalence
condition

» Achieved a considerable improvement compared with a practical
operation scheme

» Showed the high efficiency of HOPBB methods on HOP problems
comparing with general MINLP solvers
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Thanks for watching!
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