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Outline 

}  LP basics 
}  Primal and dual simplex algorithms 
}  Implementing the dual simplex algorithm 
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Some Basic Theory 
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Where c∈Rn, b∈Rm, A∈Rm×n, and x is a vector of 
n variables.  cTx is known as the objective 
function, Ax=b as the constraints, and x ≥ 0 as 
the nonnegativity conditions.  b is called the 
right-hand side. 

(P) 
Minimize         cTx 
Subject to  Ax = b 

x ≥ 0 

A linear program (LP) in standard form is an 
optimization problem of the form 

Linear Program – Definition 
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In this context, (P) is referred to as the primal 
linear program.  

(D) 
Maximize         bTπ 
Subject to  ATπ ≤ c 

π  free 

The dual (or adjoint) linear program 
corresponding to (P) is the optimization 
problem 

Minimize         cTx 
Subject to  Ax = b 

x ≥ 0 

Primal 

Dual Linear Program – Definition 
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If bTπ = cTx, then x is optimal for (P) and  π is 
optimal for (D);  moreover, if either (P) or (D) is 
unbounded,  then the other problem is 
infeasible.  

bTπ ≤ cTx 

Let x be feasible for (P) and π feasible for (D). 
Then 

Weak Duality Theorem   
(von Neumann 1947) 

Proof: 
πTAx πTb = 

Ax = b 

≤ cTx 

πTA ≤ cT  &  x ≥ 0 

Minimize Maximize 

▆ 
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Solving Linear Programs 

}  Three types of algorithms are available 
◦  Primal simplex algorithms (Dantzig 1947) 

◦  Dual simplex algorithms (Lemke 1954) 
�  Developed in context of game theory 

◦  Primal-dual log barrier algorithms 
�  Interior-point algorithms (Karmarkar 1989) 
�  Reference:   Primal-Dual Interior Point Methods, 

S. Wright, 1997, SIAM 

Primary focus:  Dual simplex algorithms 
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Basic Solutions – Definition 
Let B be an ordered set of m distinct indices (B1,
…,Bm) taken from {1,…,n}.  B is called a basis for 
(P) if AB is nonsingular.  The variables xB are 
known as the basic variables  and the variables xN 
as the non-basic variables, where N = {1,…,n}\B.   
The corresponding basic solution X∈ Rn is given 
by XN=0 and XB=AB

-1 b.  B is called (primal) 
feasible if XB ≥ 0. 

Note:   AX = b  ⇒  ABXB + ANXN = b  ⇒  AB XB = b  ⇒  XB = AB
-1b 
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Primal Simplex Algorithm  
(Dantzig, 1947) 

Input:  A feasible basis B and vectors  
            XB = AB

-1b   and   DN = cN – AN
TAB

-TcB. 
 

}  Step 1:  (Pricing) If DN ≥ 0, stop, B is optimal;  else let  
           j = argmin{Dk : k∈N}. 

}  Step 2:  (FTRAN) Solve ABy=Aj. 
}  Step 3: (Ratio test) If y ≤ 0, stop, (P) is unbounded; 

else, let 
                             i = argmin{XBk/yk: yk > 0}. 
}  Step 4: (BTRAN) Solve  AB

Tz = ei. 
}  Step 5: (Update) Compute αN=-AN

Tz.  Let Bi=j.  Update 
XB (using y) and DN (using αN) 

Note:  xj is called the entering variable and xBi the leaving variable.   
The DN values are known as reduced costs – like partial derivatives of 
the objective function relative to the nonbasic variables. 
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Primal Simplex Example 
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Consider the following simple LP: 

Maximize   3x1 + 2x2 + 2x3 
Subject to     x1 +             x3 ≤    8 
                     x1 +    x2          ≤    7 
                     x1 +  2x2          ≤  12 
                        x1, x2, x3 ≥ 0 

The Primal Simplex Algorithm 
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The Primal Simplex Algorithm 

x1 

x2 

x3 

(0,0,8) (0,6,8) 

(2,5,6) 

(0,6,0) 

(2,5,0) (7,0,1) 

(7,0,0) 

Maximize  z = 3x1 + 2x2 + 2x3 

z = 0 

z = 21 

z = 23 

Optimal 

z = 28 

Add slacks:   Initial basis B = (4,5,6) 
Maximize   3x1 + 2x2 + 2x3  + 0x4 + 0x5 + 0x6 

Subject to     x1 +             x3 +    x4                     =    8 
                     x1 +    x2                     +   x5           =    7 
                     x1 +  2x2                              +   x6  =  12 
                        x1, x2, x3,x4,x5,x6 ≥ 0 

x1 enters, x5 leaves basis 
D1 = rate of change of z relative to x1 = 21/7=3 
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Dual Simple Algorithm – Setup 
Simplex algorithms apply to problems with 
constraints in equality form.  We convert (D) 
to this form by adding the dual slacks d: 

Maximize    bTπ              
Subject to   ATπ + d = c 

π  free, d ≥ 0 
⇔ ATπ ≤ c 
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Dual Simple Algorithm – Setup 
Maximize    bTπ              

Subject to   ATπ + d = c 
π  free, d ≥ 0 

Given a basis B, the corresponding dual basic variables 
are π and dN.  dB are the nonbasic variables. The 
corresponding dual basic solution Π,D is determined as 
follows:  
 
            DB=0  ⇒  Π = AB

-TcB  ⇒  DN=cN – AN
TΠ 

 
B is dual feasible if DN ≥ 0. 
 

= AB
T   IB  0 

AN
T   0  IN 

π 
dB 
dN 

cB 

cN 
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Dual Simple Algorithm – Setup 
Maximize    bTπ              

Subject to   ATπ + d = c 
π  free, d ≥ 0 

= AB
T   IB  0 

AN
T   0  IN 

π 
dB 
dN 

cB 

cN 

Observation:  We may assume that every dual basis has 
the above form. 
 

Proof:  Assuming that the primal has a basis is equivalent 
to assuming that rank(A)=m (# of rows), and this implies 
that all π variables can be assumed to be basic. 
 

This observation establishes a 1-1 correspondence 
between primal and dual bases. ▆ 
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An Important Fact 
If X and Π,D are corresponding primal and 
dual basic solutions determined by a basis B, 
then 

                       Π Tb = cTX. 
 

Hence, by weak duality, if B is both primal and 
dual feasible, then X is optimal for (P) and Π is 
optimal for (D). 
 

Proof:   cTX = cB
TXB      (since XN=0) 

                    = Π TABXB   (since Π = AB
-TcB) 

                    = Π Tb         (since ABXB=b) ▆ 
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Dual Simplex Algorithm  
(Lemke, 1954) 

Input:  A dual feasible basis B and vectors  
                      XB = AB

-1b   and   DN = cN – AN
TB-TcB. 

}  Step 1:  (Pricing) If XB ≥ 0, stop, B is optimal;  else let 
                             i = argmin{XBk : k∈{1,…,m}}. 
}  Step 2:  (BTRAN) Solve AB

Tz = ei.  Compute αN=-AN
Tz. 

}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, 
let  

                             j = argmin{Dk/αk: αk > 0}. 
}  Step 4: (FTRAN) Solve  ABy = Aj. 
}  Step 5: (Update) Set Bi=j.  Update XB (using y) and DN 

(using αN) 
Note:  dBi is the entering variable and dj is the leaving variable.  
(Expressed in terms of the primal:  xBi is the leaving variable and xj is 
the entering variable) 
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Simplex Algorithms 
Input:  A primal feasible basis B and 

vectors  
 
   XB=AB

-1b  &  DN=cN – AN
TAB

-TcB. 
 
}  Step 1:  (Pricing) If DN ≥ 0, stop, B 

is optimal;  else, let  
       j = argmin{Dk : k∈N}. 

 
}  Step 2:  (FTRAN) Solve ABy=Aj. 

}  Step 3: (Ratio test) If y ≤ 0, stop, (P) 
is unbounded; else, let 

            i = argmin{XBk/yk: yk > 0}. 
 
}  Step 4: (BTRAN) Solve  AB

Tz = ei. 

}  Step 5: (Update) Compute  αN  = -
AN

Tz.  Let Bi=j.  Update XB (using y) 
and DN (using αN) 

Input:  A dual feasible basis B and 
vectors  

 
   XB=AB

-1b   &  DN=cN – AN
TAB

-TcB. 
 
}  Step 1:  (Pricing) If XB ≥ 0, stop, B is 

optimal;  else, let 
           i = argmin{XBk : k∈{1,…,m}}. 
 
}  Step 2:  (BTRAN) Solve AB

Tz = ei.  Compute αN=-AN
Tz. 

}  Step 3: (Ratio test) If αN ≤ 0, stop, 
(D) is unbounded; else, let  

             j = argmin{Dk/αk: αk > 0}. 
 
}  Step 4: (FTRAN) Solve  ABy = Aj. 

}  Step 5: (Update) Set Bi=j.  Update 
XB (using y) and DN (using αN) 
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Summary:  
What we have done and what we have to do 

}  Done 
◦  Defined primal and dual linear programs 
◦  Proved the weak duality theorem 
◦  Introduced the concept of a basis 
◦  Stated primal and dual simplex algorithms 

}  To do (for dual simplex algorithm) 
◦  Show correctness 
◦  Describe key implementation ideas 
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Correctness:   
Dual Simplex Algorithm 

}  Termination criteria 
◦  Optimality 
◦  Unboundedness  

}  Other issues 
◦  Finding starting dual feasible basis, or showing 

that no feasible solution exists 
◦  Input conditions are preserved (i.e., that B is still 

a feasible basis) 
◦  Finiteness 

(DONE – by “An Important Fact”) 
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Dual Unboundedness  
(⇒ primal infeasible) 

}  We carry out a key calculation 
}  As noted earlier, in an iteration of the dual 

      

}  The idea:  Currently dBi = 0, and XBi < 0 has motivated us 
to increase dBi  to θ > 0, leaving the other components of 
dB at 0  (the object being to increase the objective).  Letting 
d,π  be the corresponding dual solution as a function of θ, 
we obtain 

           dB =  θ ei       π = Π – θ z     dN = DN – θ αN 
    where αN and z are as computed in the algorithm. 

dBi  enters basis 
dj   leaves basis in 

Maximize    bTπ              
Subject to   ATπ + d = c 

π  free, d ≥ 0 
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(Dual Unboundedness – cont.) 
}  Letting d,π  be the corresponding dual solution as a function 

of θ.  Using αN and z from dual algorithm, 

           dB =  θ ei     dN = DN – θ αN     π = π – θ z. 
 
}  Using θ > 0 and XBi < 0 yields 

}  Conclusion 1:  If αN ≤ 0, then dN ≥ 0 ∀ θ  > 0  ⇒ (D) is 
unbounded. 

}  Conclusion 2:  If αN not≤ 0, then  
                    dN ≥ 0  ⇒  θ ≤ Dj /αj   ∀  αj > 0  
                                ⇒  θmax = min{Dj /αj: αj > 0} 

new_objective = πT b  =  (Π – θ z)T b  
                       =  ΠT b – θ ei

TAB
-1b = ΠT b - θ ei

TXB 

                                  =  old_objective – θ XBi  >  old_objective 
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(Dual Unboundedness – cont.) 
}  Feasibility preserved:  follows from the ratio test. 

}  Nonsingularity preserved:   follows from (also yields update) 
◦  new AB      = AB (I + (y – ei) ei

T) 
◦  new AB

-1 = (I – (1/yi) (y - ei) ei
T) AB

-1 

}  Finiteness:  If DB > 0 for all dual feasible bases B, then the 
dual simplex algorithm is finite:   The dual objective strictly 
increases at each iteration ⇒ no basis repeats, and there 
are a finite number of bases. 

}  There are various approaches to guaranteeing finiteness in 
general: 
◦  Bland’s Rules:  Purely combinatorial, bad in practice. 
◦  Gurobi:   A perturbation is added to “guarantee”  DB > 0. 
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Implementing the  
Dual Simplex Algorithm 
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Some Motivation 

}  Dual simplex vs. primal:   Dual > 2x faster 

}  Dual is the best algorithm for MIP 

}  There isn’t much in books about implementing 
the dual. 
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Dual Simplex Algorithm  
(Lemke, 1954:  Commercial codes ~1990) 

Input:  A dual feasible basis B and vectors  
                      XB = AB

-1b   and   DN = cN – AN
TB-TcB. 

}  Step 1:  (Pricing) If XB ≥ 0, stop, B is optimal;  else let 
                             i = argmin{XBk : k∈{1,…,m}}. 
}  Step 2:  (BTRAN) Solve BTz = ei.  Compute αN=-AN

Tz. 
}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, 

let  
                             j = argmin{Dk/αk: αk > 0}. 
}  Step 4: (FTRAN) Solve  ABy = Aj. 
}  Step 5: (Update) Set Bi=j.  Update XB (using y) and DN 

(using αN) 
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Dual Simplex Algorithm  
(Lemke, 1954:  Commercial codes ~1990) 

Input:  A dual feasible basis B and vectors  
                      XB = AB

-1b   and   DN = cN – AN
TAB

-TcB. 
}  Step 1:  (Pricing) If XB ≥ 0, stop, B is optimal;  else let 
                             i = argmin{XBk : k∈{1,…,m}}. 
}  Step 2:  (BTRAN) Solve BTz = ei.  Compute αN=-AN

Tz. 
}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, 

let  
                             j = argmin{Dk/αk: αk > 0}. 
}  Step 4: (FTRAN) Solve  ABy = Aj. 
}  Step 5: (Update) Set Bi=j.  Update XB (using y) and DN 

(using αN) 



28 

Implementation Issues for Dual Simplex 

1.  Finding an initial feasible basis or concluding that there is none:  
Phase I of the simplex algorithm. 

2.  Pricing:  dual steepest edge 

3.  Solving the linear systems 
◦  LU factorization and factorization update 
◦  BTRAN and FTRAN – exploiting sparsity 
 

4.  Numerically stable ratio test:  Bound shifting and perturbation 

5.  Bound flipping:  Exploiting “boxed” variables to combine many 
iterations into one. 
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Issue 0  
Preparation:  Bounds on Variables 

In practice, simplex algorithms need to accept LPs in the following 
form: 

Minimize         cTx 
Subject to  Ax = b 

l ≤ x ≤ u 

where l is an n-vector of lower bounds and u an n-vector of upper 
bounds.  l is allowed to have -∞ entries and u is allowed to have +∞ 
entries.  (Note that (PBD) is in standard form if lj = 0, uj = +∞ ∀ j.) 

(PBD) 
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(Issue 0 – Bounds on variables)  
Basic Solution 

A basis for (PBD) is a triple (B,L,U) where B is an ordered m-element subset 
of {1,…,n} (just as before), (B,L,U) is a partition of {1,…,n}, lj > -∞ ∀ j∈L, and 
uj < +∞ ∀ j∈U.  N = L∪U is the set of nonbasic variables.  The associated 
(primal) basic solution X is given by XL = lL, XU = uU and 
 
                                    XB = AB

-1(b – ALlL – AUuU). 
 
This solution is feasible if 
 
                                              lB ≤  XB ≤ uB. 
 
The associated dual basic solution is defined exactly as before:  DB=0, Π TAB 
= cB

T, DN = cN – AN
T Π.  It is dual feasible if 

 
                                         DL ≥ 0  and  DU ≤ 0. 



31 

(Issue 0 – Bounds on variables)  
The Full Story 

}  Modify simplex algorithm  
◦  Only the “Pricing” and “Ratio Test” steps must be changed 

substantially. 
◦  The complicated part is the ratio test 

}  Reference:  See Chvátal for the primal 
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Issue 1  
The Initial Feasible Basis – Phase I 

}  Two parts to the solution 
1.  Finding some initial basis (probably not feasible) 
2.  Modified simplex algorithm to find a feasible basis 
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(Issue 1 – Initial feasible basis)  
Initial Basis 

}  Primal and dual bases are the same.  We begin in the context of the 
primal.   Consider 

 
 

}  Assumption:  Every variable has some finite bound. 
}  Trick:  Add artificial variables xn+1,…,xn+m: 

 
      where  lj = uj = 0 for j = n+1,…,n+m.  
}  Initial basis:  B = (n+1,…,n+m) and for each j ∉ B, pick some finite bound 

and place j in L or U, as appropriate. 
}  Free-Variable Refinement:   Make free variables non-basic at value 0.  

This leads to a notion of a superbasis, where non-basic variables can be 
between their bounds.  

Minimize         cTx 
Subject to  Ax = b 

l ≤ x ≤ u 
(PBD) 

Ax + I  =  b 

xn+1 
. 
. 

xn+m 
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(Issue 1 – Initial feasible basis)  
Solving the Phase I 

}  If the initial basis is not dual feasible, we consider the problem: 

 

}  This problem is “locally linear”:  Define κ∈Rn by κj = 1 if Dj < 0, and 0 
otherwise.   Let  

                                 K = {j: Dj < 0}  and  K = {j: Dj ≥ 0} 
 

    Then our “local” problem becomes 
 
 
 
}  Apply dual simplex, and whenever dj for j∈K becomes 0, move it to K. 

Maximize  Σ (dj : dj < 0) 
Subject to  ATπ + d = c 

Maximize   κTd 
Subject to  ATπ + d = c  
                  dK ≤ 0, dK ≥ 0 
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Solving Phase I:  
An Interesting Computation 

}  Suppose dBi is the entering variable.  Then XBi < 0 where XB is obtained 
using the following formula: 

              XB = AB
-1AN κ 

 

}  Suppose now that dj is determined to be the leaving variable.  Then in 
terms of the phase I objective, this means κj is replace by κj + ε ej, where 
ε ∈ {0,+1,-1}.   It can then be shown that  

             xBi = XBi + ε αj 
 

}  Conclusion:  If xBi < 0, then the current iteration can continue without the 
necessity of changing the basis. 

}  Advantages 
◦  Multiple iterations are combined into one. 
◦  xBi will tend not to change sign precisely when αj is small.  Thus this 

procedure tends to avoid unstable pivots. 
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Issue 2  
Pricing 

}  The textbook rule is TERRIBLE:  For a problem in standard form, select the 
entering variable using the formula 

                   j = argmin{XBi : i = 1,…,m} 
 

}  Geometry is wrong:  Maximizes rate of change relative to axis; better to do 
relative to edge. 

}  Goldfard and Forrest 1992 suggested the following steepest-edge alternative 

                   j = argmin{XBi /ηi : i = 1,…,m} 
 

     where ηi = ||ei
TAB

-1||2,  and gave an efficient update. 
 

}  Note that there are two ingredients in the success of Dual SE: 
◦  Significantly reduced iteration counts 
◦  The fact that there is a very efficient update for η 
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            Pricing:  Greatest infeasibility 
 
Solved in 281829 iterations and 118.68 seconds 
Optimal objective  1.126639304e+07 

 
 
    Pricing:  Goldfarb-Forrest steepest-edge 
 
Solved in 18412 iterations and 5.36 seconds 
Optimal objective  1.126639304e+07 
 
 

Example:  Pricing 
Model:  dfl001 
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Issue 3  
Solving FTRAN, BTRAN 

}  Computing  LU factorization:   See Suhl & Suhl (1990). 
“Computing sparse LU factorization for large-scale linear 
programming basis”, ORSA Journal on Computing 2, 
325-335. 

}  Updating the Factorization:  Forrest-Tomlin update is the 
method of choice.  See Chvátal Chapter 24. 
◦  There are multiple, individually relatively minor tweaks that 

collectively have a significant effect on update efficiency. 

}  Further exploiting sparsity:  This is the main recent 
development.ds 
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(Issue 3 – Solving FTRAN & BTRAN) 

We must solve two linear systems per iteration: 
                         FTRAN     BTRAN  
                        ABy = Aj     AB

Tz = ei 
where 
                       AB  =  basis matrix         (very sparse) 
                        Aj   =  entering column  (very sparse) 
                        ei     =  unit vector           (very sparse) 
⇒ y  an  z  are typically very sparse 
 
 Example:  Model pla85900 (from TSP) 

               Constraints          85900 
               Variables            144185 
               Average |y|              15.5 
 



40 

AB  =   L 
U 

Triangular solve:  Lw=Aj   (ABy = L(Uy) = Aj) 
w 

× 

× 
× 

× 

× 

L w Aj 

Graph structure: Define an acyclic digraph D = ({1,…,m}, E) 
where (i,j)∈E ⇔ lij ≠ 0 and i ≠ j. 
 

Solving using D:  Let X = {i∈V: Lij ≠ 0}.  Compute 
                 X = {i∈V: ∃ a directed path from i to X}.    
X can be computed in time linear in |E(X)|+|X|. 

update 

update = 

Known in 
advance 

Need to find 
w/o searching 
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PDS Models (2002)  
“Patient Distribution System”:  Carolan, Hill, Kennington, Niemi, Wichmann, An 
empirical evaluation of the KORBX algorithms for military airlift applications, 

Operations Research 38 (1990), pp. 240-248 

MODEL   ROWS 
pds02   2953 
pds06   9881 
pds10  16558 
pds20  33874 
pds30  49944 
pds40  66844    
pds50  83060 
pds60  99431 
pds70 114944 

CPLEX1.0 
    1988 
     0.4       
    26.4       
   208.9      
  5268.8     
 15891.9    
 58920.3    
122195.9    
205798.3    
335292.1  

CPLEX5.0  
    1997 
     0.1       
     2.4     
    13.0       
   232.6      
  1154.9      
  2816.8      
  8510.9     
  7442.6     
 21120.4 

CPLEX8.0   
    2002 
     0.1       
     0.9      
     2.6      
    20.9     
    39.1     
    79.3     
   114.6    
   160.5    
   197.8  

   SPEEDUP 
 1.0à8.0 

       4.0 
      29.3 
      80.3                     

247.3 
406.4 
743.0 

1066.3 
1282.2 
1695.1  

Primal 
Simplex 

Dual 
Simplex 

Dual 
Simplex 



Not just faster -- Growth with size: 
Quadratic then & Linear now! 
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Issue 4  
Ratio Test and Finiteness 

The “standard form” dual problem is 
 
                       Maximize   bTπ 
                      Subject to   ATπ + d = c 
                                                  d ≥ 0 
 
Feasibility means 
 
                                d ≥ 0 
 
However, in practice this condition is replaced by 
 
                               d ≥ - ε e 
 
where eT=(1,…,1) and ε =10-6, the feasibility tolerance.   
 
Reason:  Degeneracy.   In 1972 Paula Harris suggested exploiting this fact to 
improve numerical stability. 
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(Issue 4 – Ratio test & finiteness) 

Motivation:  Feasibility ⇒ step length θ satisfies 
                              DN – θαN ≥ 0 
Since the bigger the step length, the bigger the change in the 
objective, we choose 
                      θmax = min{Dj /αj : αj > 0} 
Using  ε, we have 
                  θ εmax  = min{(Dj+ε)/αj : αj > 0} > θmax 

STANDARD RATIO TEST jenter = argmin{Dj /αj : αj > 0} 

HARRIS RATIO TEST jenter = argmax{αj :  θmax ≤ Dj /αj ≤ θ εmax, αj > 0} 
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(Issue 4 – Ratio test & finiteness) 

}  Advantages 
◦  Numerical stability – αjenter = “pivot element” 
◦  Degeneracy – Reduces # of 0-length steps 

}  Disadvantage 
◦  Djenter < 0  ⇒ objective goes in wrong direction 

}  Solution:  BOUND SHIFTING 
◦  If Djenter < 0, we replace the lower bound on djenter by something 

less than its current value. 
◦  Note that this shift changes the problem and must be removed:  

5% of cases, this produces dual infeasibility ⇒ process is 
iterated. 
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Read MPS format model from file qap12.mps.bz2 
Optimize a model with 3192 rows, 8856 columns and 38304 nonzeros 
 
Iteration    Objective       Primal Inf.    Dual Inf.      Time 
       0    0.0000000e+00   1.230000e+02   0.000000e+00      0s 
     101    0.0000000e+00   7.229833e+02   0.000000e+00      0s 
     173    3.3669520e+00   9.125960e+02   0.000000e+00      0s 
.... 
   49843    5.2387894e+02   5.585623e+01   0.000000e+00     32s 
   50213    5.2388556e+02   7.361090e+00   0.000000e+00     32s 
   50584    5.2388824e+02   1.648797e+01   0.000000e+00     32s 
   50744    5.2388840e+02   0.000000e+00   0.000000e+00     33s 
Switch to primal 
   50934    5.2289692e+02   0.000000e+00   3.404469e+01     33s 
   51123    5.2289527e+02   0.000000e+00   1.021229e+00     33s 
   51312    5.2289450e+02   0.000000e+00   2.841123e-01     33s 
   51499    5.2289434e+02   0.000000e+00   1.686059e-01     33s 
Perturbation ends 
   51516    5.2289435e+02   0.000000e+00   0.000000e+00     33s 
 
Solved in 51516 iterations and 33.15 seconds 
Optimal objective  5.228943506e+02 
 

Example: Bound-Shifting Removal 

Shift removed 

Shift removed 
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(Issue 4 – Ratio test & finiteness) 

Finiteness:  Bound shifting is closely related to the 
“perturbation” method employed in Gurobi if no progress 
is being made in the objective.    

If “insufficient” progress is being made, replace 

                       dj ≥ -ε            j = 1,…,n 

by 

                      dj ≥ -ε – εj        j = 1,…,n, 

where εj is pseudo-random uniform on [0,ε].   This makes 
the probability of a 0-length step very small, and in 
practice has been sufficient to guarantee finiteness. 
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Issue 5  
Bound Flipping (Long-Step Dual) 

}  A basis is given by a triple (B,L,U) 
◦  L = non-basics at lower bound:    Feasibility DL ≥ 0 
◦  U = non-basics at upper bound:   Feasibility DU ≤ 0 

}  Ratio test:  Suppose XBi is the leaving variable, and the step length is 
blocked by some variable dj, j∈L, where dj is about to become 
negative and uj<+∞: 
◦  Flipping means:  Move j from L to U. 
◦  Check:  Do an update to see if XBi is still favorable (just as we did 

in Phase I!) 

}  Can combine many iterations into a single iteration. 



50 

 
Read MPS format model from file fit2d.mps.bz2 
Optimize a model with 25 rows, 10500 columns and 129018 nonzeros 
 
Iteration    Objective       Primal Inf.    Dual Inf.      Time 
       0   -9.1662550e+04   9.553095e+03   0.000000e+00      0s 
    6023   -6.8464293e+04   0.000000e+00   0.000000e+00      1s 
 
Solved in 6023 iterations and 0.82 seconds 
Optimal objective -6.846429329e+04 
 
 
 
 
Read MPS format model from file fit2d.mps.bz2 
Optimize a model with 25 rows, 10500 columns and 129018 nonzero 
 
Iteration    Objective       Primal Inf.    Dual Inf.      Time 
       0   -9.1662550e+04   9.553095e+03   0.000000e+00      0s 
     255   -6.8464293e+04   0.000000e+00   0.000000e+00      0s 
 
Solved in 255 iterations and 0.07 seconds 
Optimal objective -6.846429329e+04 
 

w/o flipping 

w/ flipping 

Example: Bound Flipping 


