
Solving Linear Programs:
The Dual Simplex Algorithm

2

Outline

}  LP basics
}  Primal and dual simplex algorithms
}  Implementing the dual simplex algorithm

3

Some Basic Theory

4

Where c∈Rn, b∈Rm, A∈Rm×n, and x is a vector of
n variables. cTx is known as the objective
function, Ax=b as the constraints, and x ≥ 0 as
the nonnegativity conditions. b is called the
right-hand side.

(P)
Minimize cTx
Subject to Ax = b

x ≥ 0

A linear program (LP) in standard form is an
optimization problem of the form

Linear Program – Definition

5

In this context, (P) is referred to as the primal
linear program.

(D)
Maximize bTπ
Subject to ATπ ≤ c

π free

The dual (or adjoint) linear program
corresponding to (P) is the optimization
problem

Minimize cTx
Subject to Ax = b

x ≥ 0

Primal

Dual Linear Program – Definition

6

If bTπ = cTx, then x is optimal for (P) and π is
optimal for (D); moreover, if either (P) or (D) is
unbounded, then the other problem is
infeasible.

bTπ ≤ cTx

Let x be feasible for (P) and π feasible for (D).
Then

Weak Duality Theorem
(von Neumann 1947)

Proof:
πTAx πTb =

Ax = b

≤ cTx

πTA ≤ cT & x ≥ 0

Minimize Maximize

▆

7

Solving Linear Programs

}  Three types of algorithms are available
◦  Primal simplex algorithms (Dantzig 1947)

◦  Dual simplex algorithms (Lemke 1954)
�  Developed in context of game theory

◦  Primal-dual log barrier algorithms
�  Interior-point algorithms (Karmarkar 1989)
�  Reference: Primal-Dual Interior Point Methods,

S. Wright, 1997, SIAM

Primary focus: Dual simplex algorithms

8

Basic Solutions – Definition
Let B be an ordered set of m distinct indices (B1,
…,Bm) taken from {1,…,n}. B is called a basis for
(P) if AB is nonsingular. The variables xB are
known as the basic variables and the variables xN
as the non-basic variables, where N = {1,…,n}\B.
The corresponding basic solution X∈ Rn is given
by XN=0 and XB=AB

-1 b. B is called (primal)
feasible if XB ≥ 0.

Note: AX = b ⇒ ABXB + ANXN = b ⇒ AB XB = b ⇒ XB = AB
-1b

9

Primal Simplex Algorithm  
(Dantzig, 1947)

Input: A feasible basis B and vectors
 XB = AB

-1b and DN = cN – AN
TAB

-TcB.

}  Step 1: (Pricing) If DN ≥ 0, stop, B is optimal; else let
 j = argmin{Dk : k∈N}.

}  Step 2: (FTRAN) Solve ABy=Aj.
}  Step 3: (Ratio test) If y ≤ 0, stop, (P) is unbounded;

else, let
 i = argmin{XBk/yk: yk > 0}.
}  Step 4: (BTRAN) Solve AB

Tz = ei.
}  Step 5: (Update) Compute αN=-AN

Tz. Let Bi=j. Update
XB (using y) and DN (using αN)

Note: xj is called the entering variable and xBi the leaving variable.
The DN values are known as reduced costs – like partial derivatives of
the objective function relative to the nonbasic variables.

10

Primal Simplex Example

11

Consider the following simple LP:

Maximize 3x1 + 2x2 + 2x3
Subject to x1 + x3 ≤ 8
 x1 + x2 ≤ 7
 x1 + 2x2 ≤ 12
 x1, x2, x3 ≥ 0

The Primal Simplex Algorithm

12

The Primal Simplex Algorithm

x1

x2

x3

(0,0,8) (0,6,8)

(2,5,6)

(0,6,0)

(2,5,0) (7,0,1)

(7,0,0)

Maximize z = 3x1 + 2x2 + 2x3

z = 0

z = 21

z = 23

Optimal

z = 28

Add slacks: Initial basis B = (4,5,6)
Maximize 3x1 + 2x2 + 2x3 + 0x4 + 0x5 + 0x6

Subject to x1 + x3 + x4 = 8
 x1 + x2 + x5 = 7
 x1 + 2x2 + x6 = 12
 x1, x2, x3,x4,x5,x6 ≥ 0

x1 enters, x5 leaves basis
D1 = rate of change of z relative to x1 = 21/7=3

13

Dual Simple Algorithm – Setup
Simplex algorithms apply to problems with
constraints in equality form. We convert (D)
to this form by adding the dual slacks d:

Maximize bTπ
Subject to ATπ + d = c

π free, d ≥ 0
⇔ ATπ ≤ c

14

Dual Simple Algorithm – Setup
Maximize bTπ

Subject to ATπ + d = c
π free, d ≥ 0

Given a basis B, the corresponding dual basic variables
are π and dN. dB are the nonbasic variables. The
corresponding dual basic solution Π,D is determined as
follows:

 DB=0 ⇒ Π = AB

-TcB ⇒ DN=cN – AN
TΠ

B is dual feasible if DN ≥ 0.

= AB
T IB 0

AN
T 0 IN

π
dB
dN

cB

cN

15

Dual Simple Algorithm – Setup
Maximize bTπ

Subject to ATπ + d = c
π free, d ≥ 0

= AB
T IB 0

AN
T 0 IN

π
dB
dN

cB

cN

Observation: We may assume that every dual basis has
the above form.

Proof: Assuming that the primal has a basis is equivalent
to assuming that rank(A)=m (# of rows), and this implies
that all π variables can be assumed to be basic.

This observation establishes a 1-1 correspondence
between primal and dual bases. ▆

16

An Important Fact
If X and Π,D are corresponding primal and
dual basic solutions determined by a basis B,
then

 Π Tb = cTX.

Hence, by weak duality, if B is both primal and
dual feasible, then X is optimal for (P) and Π is
optimal for (D).

Proof: cTX = cB
TXB (since XN=0)

 = Π TABXB (since Π = AB
-TcB)

 = Π Tb (since ABXB=b) ▆

17

Dual Simplex Algorithm  
(Lemke, 1954)

Input: A dual feasible basis B and vectors
 XB = AB

-1b and DN = cN – AN
TB-TcB.

}  Step 1: (Pricing) If XB ≥ 0, stop, B is optimal; else let
 i = argmin{XBk : k∈{1,…,m}}.
}  Step 2: (BTRAN) Solve AB

Tz = ei. Compute αN=-AN
Tz.

}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else,
let

 j = argmin{Dk/αk: αk > 0}.
}  Step 4: (FTRAN) Solve ABy = Aj.
}  Step 5: (Update) Set Bi=j. Update XB (using y) and DN

(using αN)
Note: dBi is the entering variable and dj is the leaving variable.
(Expressed in terms of the primal: xBi is the leaving variable and xj is
the entering variable)

18

Simplex Algorithms
Input: A primal feasible basis B and

vectors

 XB=AB

-1b & DN=cN – AN
TAB

-TcB.

}  Step 1: (Pricing) If DN ≥ 0, stop, B

is optimal; else, let
 j = argmin{Dk : k∈N}.

}  Step 2: (FTRAN) Solve ABy=Aj.

}  Step 3: (Ratio test) If y ≤ 0, stop, (P)
is unbounded; else, let

 i = argmin{XBk/yk: yk > 0}.

}  Step 4: (BTRAN) Solve AB

Tz = ei.

}  Step 5: (Update) Compute αN = -
AN

Tz. Let Bi=j. Update XB (using y)
and DN (using αN)

Input: A dual feasible basis B and
vectors

 XB=AB

-1b & DN=cN – AN
TAB

-TcB.

}  Step 1: (Pricing) If XB ≥ 0, stop, B is

optimal; else, let
 i = argmin{XBk : k∈{1,…,m}}.

}  Step 2: (BTRAN) Solve AB

Tz = ei. Compute αN=-AN
Tz.

}  Step 3: (Ratio test) If αN ≤ 0, stop,
(D) is unbounded; else, let

 j = argmin{Dk/αk: αk > 0}.

}  Step 4: (FTRAN) Solve ABy = Aj.

}  Step 5: (Update) Set Bi=j. Update
XB (using y) and DN (using αN)

19

Summary:  
What we have done and what we have to do

}  Done
◦  Defined primal and dual linear programs
◦  Proved the weak duality theorem
◦  Introduced the concept of a basis
◦  Stated primal and dual simplex algorithms

}  To do (for dual simplex algorithm)
◦  Show correctness
◦  Describe key implementation ideas

20

Correctness:  
Dual Simplex Algorithm

}  Termination criteria
◦  Optimality
◦  Unboundedness

}  Other issues
◦  Finding starting dual feasible basis, or showing

that no feasible solution exists
◦  Input conditions are preserved (i.e., that B is still

a feasible basis)
◦  Finiteness

(DONE – by “An Important Fact”)

21

Dual Unboundedness  
(⇒ primal infeasible)

}  We carry out a key calculation
}  As noted earlier, in an iteration of the dual

}  The idea: Currently dBi = 0, and XBi < 0 has motivated us
to increase dBi to θ > 0, leaving the other components of
dB at 0 (the object being to increase the objective). Letting
d,π be the corresponding dual solution as a function of θ,
we obtain

 dB = θ ei π = Π – θ z dN = DN – θ αN
 where αN and z are as computed in the algorithm.

dBi enters basis
dj leaves basis in

Maximize bTπ
Subject to ATπ + d = c

π free, d ≥ 0

22

(Dual Unboundedness – cont.)
}  Letting d,π be the corresponding dual solution as a function

of θ. Using αN and z from dual algorithm,

 dB = θ ei dN = DN – θ αN π = π – θ z.

}  Using θ > 0 and XBi < 0 yields

}  Conclusion 1: If αN ≤ 0, then dN ≥ 0 ∀ θ > 0 ⇒ (D) is
unbounded.

}  Conclusion 2: If αN not≤ 0, then
 dN ≥ 0 ⇒ θ ≤ Dj /αj ∀ αj > 0
 ⇒ θmax = min{Dj /αj: αj > 0}

new_objective = πT b = (Π – θ z)T b
 = ΠT b – θ ei

TAB
-1b = ΠT b - θ ei

TXB

 = old_objective – θ XBi > old_objective

23

(Dual Unboundedness – cont.)
}  Feasibility preserved: follows from the ratio test.

}  Nonsingularity preserved: follows from (also yields update)
◦  new AB = AB (I + (y – ei) ei

T)
◦  new AB

-1 = (I – (1/yi) (y - ei) ei
T) AB

-1

}  Finiteness: If DB > 0 for all dual feasible bases B, then the
dual simplex algorithm is finite: The dual objective strictly
increases at each iteration ⇒ no basis repeats, and there
are a finite number of bases.

}  There are various approaches to guaranteeing finiteness in
general:
◦  Bland’s Rules: Purely combinatorial, bad in practice.
◦  Gurobi: A perturbation is added to “guarantee” DB > 0.

24

Implementing the  
Dual Simplex Algorithm

25

Some Motivation

}  Dual simplex vs. primal: Dual > 2x faster

}  Dual is the best algorithm for MIP

}  There isn’t much in books about implementing
the dual.

26

Dual Simplex Algorithm  
(Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis B and vectors
 XB = AB

-1b and DN = cN – AN
TB-TcB.

}  Step 1: (Pricing) If XB ≥ 0, stop, B is optimal; else let
 i = argmin{XBk : k∈{1,…,m}}.
}  Step 2: (BTRAN) Solve BTz = ei. Compute αN=-AN

Tz.
}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else,

let
 j = argmin{Dk/αk: αk > 0}.
}  Step 4: (FTRAN) Solve ABy = Aj.
}  Step 5: (Update) Set Bi=j. Update XB (using y) and DN

(using αN)

27

Dual Simplex Algorithm  
(Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis B and vectors
 XB = AB

-1b and DN = cN – AN
TAB

-TcB.
}  Step 1: (Pricing) If XB ≥ 0, stop, B is optimal; else let
 i = argmin{XBk : k∈{1,…,m}}.
}  Step 2: (BTRAN) Solve BTz = ei. Compute αN=-AN

Tz.
}  Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else,

let
 j = argmin{Dk/αk: αk > 0}.
}  Step 4: (FTRAN) Solve ABy = Aj.
}  Step 5: (Update) Set Bi=j. Update XB (using y) and DN

(using αN)

28

Implementation Issues for Dual Simplex

1.  Finding an initial feasible basis or concluding that there is none:
Phase I of the simplex algorithm.

2.  Pricing: dual steepest edge

3.  Solving the linear systems
◦  LU factorization and factorization update
◦  BTRAN and FTRAN – exploiting sparsity

4.  Numerically stable ratio test: Bound shifting and perturbation

5.  Bound flipping: Exploiting “boxed” variables to combine many
iterations into one.

29

Issue 0  
Preparation: Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following
form:

Minimize cTx
Subject to Ax = b

l ≤ x ≤ u

where l is an n-vector of lower bounds and u an n-vector of upper
bounds. l is allowed to have -∞ entries and u is allowed to have +∞
entries. (Note that (PBD) is in standard form if lj = 0, uj = +∞ ∀ j.)

(PBD)

30

(Issue 0 – Bounds on variables)  
Basic Solution

A basis for (PBD) is a triple (B,L,U) where B is an ordered m-element subset
of {1,…,n} (just as before), (B,L,U) is a partition of {1,…,n}, lj > -∞ ∀ j∈L, and
uj < +∞ ∀ j∈U. N = L∪U is the set of nonbasic variables. The associated
(primal) basic solution X is given by XL = lL, XU = uU and

 XB = AB

-1(b – ALlL – AUuU).

This solution is feasible if

 lB ≤ XB ≤ uB.

The associated dual basic solution is defined exactly as before: DB=0, Π TAB
= cB

T, DN = cN – AN
T Π. It is dual feasible if

 DL ≥ 0 and DU ≤ 0.

31

(Issue 0 – Bounds on variables)  
The Full Story

}  Modify simplex algorithm
◦  Only the “Pricing” and “Ratio Test” steps must be changed

substantially.
◦  The complicated part is the ratio test

}  Reference: See Chvátal for the primal

32

Issue 1  
The Initial Feasible Basis – Phase I

}  Two parts to the solution
1.  Finding some initial basis (probably not feasible)
2.  Modified simplex algorithm to find a feasible basis

33

(Issue 1 – Initial feasible basis)  
Initial Basis

}  Primal and dual bases are the same. We begin in the context of the
primal. Consider

}  Assumption: Every variable has some finite bound.
}  Trick: Add artificial variables xn+1,…,xn+m:

 where lj = uj = 0 for j = n+1,…,n+m.
}  Initial basis: B = (n+1,…,n+m) and for each j ∉ B, pick some finite bound

and place j in L or U, as appropriate.
}  Free-Variable Refinement: Make free variables non-basic at value 0.

This leads to a notion of a superbasis, where non-basic variables can be
between their bounds.

Minimize cTx
Subject to Ax = b

l ≤ x ≤ u
(PBD)

Ax + I = b

xn+1
.
.

xn+m

34

(Issue 1 – Initial feasible basis)  
Solving the Phase I

}  If the initial basis is not dual feasible, we consider the problem:

}  This problem is “locally linear”: Define κ∈Rn by κj = 1 if Dj < 0, and 0
otherwise. Let

 K = {j: Dj < 0} and K = {j: Dj ≥ 0}

 Then our “local” problem becomes

}  Apply dual simplex, and whenever dj for j∈K becomes 0, move it to K.

Maximize Σ (dj : dj < 0)
Subject to ATπ + d = c

Maximize κTd
Subject to ATπ + d = c
 dK ≤ 0, dK ≥ 0

35

Solving Phase I:  
An Interesting Computation

}  Suppose dBi is the entering variable. Then XBi < 0 where XB is obtained
using the following formula:

 XB = AB
-1AN κ

}  Suppose now that dj is determined to be the leaving variable. Then in
terms of the phase I objective, this means κj is replace by κj + ε ej, where
ε ∈ {0,+1,-1}. It can then be shown that

 xBi = XBi + ε αj

}  Conclusion: If xBi < 0, then the current iteration can continue without the
necessity of changing the basis.

}  Advantages
◦  Multiple iterations are combined into one.
◦  xBi will tend not to change sign precisely when αj is small. Thus this

procedure tends to avoid unstable pivots.

36

Issue 2  
Pricing

}  The textbook rule is TERRIBLE: For a problem in standard form, select the
entering variable using the formula

 j = argmin{XBi : i = 1,…,m}

}  Geometry is wrong: Maximizes rate of change relative to axis; better to do
relative to edge.

}  Goldfard and Forrest 1992 suggested the following steepest-edge alternative

 j = argmin{XBi /ηi : i = 1,…,m}

 where ηi = ||ei
TAB

-1||2, and gave an efficient update.

}  Note that there are two ingredients in the success of Dual SE:
◦  Significantly reduced iteration counts
◦  The fact that there is a very efficient update for η

37

 Pricing: Greatest infeasibility

Solved in 281829 iterations and 118.68 seconds
Optimal objective 1.126639304e+07

 Pricing: Goldfarb-Forrest steepest-edge

Solved in 18412 iterations and 5.36 seconds
Optimal objective 1.126639304e+07

Example: Pricing
Model: dfl001

38

Issue 3  
Solving FTRAN, BTRAN

}  Computing LU factorization: See Suhl & Suhl (1990).
“Computing sparse LU factorization for large-scale linear
programming basis”, ORSA Journal on Computing 2,
325-335.

}  Updating the Factorization: Forrest-Tomlin update is the
method of choice. See Chvátal Chapter 24.
◦  There are multiple, individually relatively minor tweaks that

collectively have a significant effect on update efficiency.

}  Further exploiting sparsity: This is the main recent
development.ds

39

(Issue 3 – Solving FTRAN & BTRAN)

We must solve two linear systems per iteration:
 FTRAN BTRAN
 ABy = Aj AB

Tz = ei
where
 AB = basis matrix (very sparse)
 Aj = entering column (very sparse)
 ei = unit vector (very sparse)
⇒ y an z are typically very sparse

 Example: Model pla85900 (from TSP)

 Constraints 85900
 Variables 144185
 Average |y| 15.5

40

AB = L
U

Triangular solve: Lw=Aj (ABy = L(Uy) = Aj)
w

×

×
×

×

×

L w Aj

Graph structure: Define an acyclic digraph D = ({1,…,m}, E)
where (i,j)∈E ⇔ lij ≠ 0 and i ≠ j.

Solving using D: Let X = {i∈V: Lij ≠ 0}. Compute
 X = {i∈V: ∃ a directed path from i to X}.
X can be computed in time linear in |E(X)|+|X|.

update

update =

Known in
advance

Need to find
w/o searching

41

PDS Models (2002)  
“Patient Distribution System”: Carolan, Hill, Kennington, Niemi, Wichmann, An
empirical evaluation of the KORBX algorithms for military airlift applications,

Operations Research 38 (1990), pp. 240-248

MODEL ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30 49944
pds40 66844
pds50 83060
pds60 99431
pds70 114944

CPLEX1.0
 1988
 0.4
 26.4
 208.9
 5268.8
 15891.9
 58920.3
122195.9
205798.3
335292.1

CPLEX5.0
 1997
 0.1
 2.4
 13.0
 232.6
 1154.9
 2816.8
 8510.9
 7442.6
 21120.4

CPLEX8.0
 2002
 0.1
 0.9
 2.6
 20.9
 39.1
 79.3
 114.6
 160.5
 197.8

 SPEEDUP
 1.0à8.0

 4.0
 29.3
 80.3

247.3
406.4
743.0

1066.3
1282.2
1695.1

Primal
Simplex

Dual
Simplex

Dual
Simplex

Not just faster -- Growth with size:
Quadratic then & Linear now!

42 9-Oct-15

0

50

100

150

200

250

0

50000

100000

150000

200000

250000

300000

350000

400000

pds2 pds6 pds10 pds20 pds30 pds40 pds50 pds60 pds70

CPLEX 8.0 (Seconds) CP
LE

X
1.

0
(S

ec
on

ds
)

0

2

4

6

8

10

12

0

50000

100000

150000

200000

250000

300000

350000

400000

pds2 pds6 pds10 pds20 pds30 pds40 pds50 pds60 pds70

Gurobi 6.0 (Seconds) CP
LE

X
1.

0
(S

ec
on

ds
)

Gurobi Headline goes here…

43 9-Oct-15

44

Issue 4  
Ratio Test and Finiteness

The “standard form” dual problem is

 Maximize bTπ
 Subject to ATπ + d = c
 d ≥ 0

Feasibility means

 d ≥ 0

However, in practice this condition is replaced by

 d ≥ - ε e

where eT=(1,…,1) and ε =10-6, the feasibility tolerance.

Reason: Degeneracy. In 1972 Paula Harris suggested exploiting this fact to
improve numerical stability.

45

(Issue 4 – Ratio test & finiteness)

Motivation: Feasibility ⇒ step length θ satisfies
 DN – θαN ≥ 0
Since the bigger the step length, the bigger the change in the
objective, we choose
 θmax = min{Dj /αj : αj > 0}
Using ε, we have
 θ εmax = min{(Dj+ε)/αj : αj > 0} > θmax

STANDARD RATIO TEST jenter = argmin{Dj /αj : αj > 0}

HARRIS RATIO TEST jenter = argmax{αj : θmax ≤ Dj /αj ≤ θ εmax, αj > 0}

46

(Issue 4 – Ratio test & finiteness)

}  Advantages
◦  Numerical stability – αjenter = “pivot element”
◦  Degeneracy – Reduces # of 0-length steps

}  Disadvantage
◦  Djenter < 0 ⇒ objective goes in wrong direction

}  Solution: BOUND SHIFTING
◦  If Djenter < 0, we replace the lower bound on djenter by something

less than its current value.
◦  Note that this shift changes the problem and must be removed:

5% of cases, this produces dual infeasibility ⇒ process is
iterated.

47

Read MPS format model from file qap12.mps.bz2
Optimize a model with 3192 rows, 8856 columns and 38304 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 0.0000000e+00 1.230000e+02 0.000000e+00 0s
 101 0.0000000e+00 7.229833e+02 0.000000e+00 0s
 173 3.3669520e+00 9.125960e+02 0.000000e+00 0s
....
 49843 5.2387894e+02 5.585623e+01 0.000000e+00 32s
 50213 5.2388556e+02 7.361090e+00 0.000000e+00 32s
 50584 5.2388824e+02 1.648797e+01 0.000000e+00 32s
 50744 5.2388840e+02 0.000000e+00 0.000000e+00 33s
Switch to primal
 50934 5.2289692e+02 0.000000e+00 3.404469e+01 33s
 51123 5.2289527e+02 0.000000e+00 1.021229e+00 33s
 51312 5.2289450e+02 0.000000e+00 2.841123e-01 33s
 51499 5.2289434e+02 0.000000e+00 1.686059e-01 33s
Perturbation ends
 51516 5.2289435e+02 0.000000e+00 0.000000e+00 33s

Solved in 51516 iterations and 33.15 seconds
Optimal objective 5.228943506e+02

Example: Bound-Shifting Removal

Shift removed

Shift removed

48

(Issue 4 – Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the
“perturbation” method employed in Gurobi if no progress
is being made in the objective.

If “insufficient” progress is being made, replace

 dj ≥ -ε j = 1,…,n

by

 dj ≥ -ε – εj j = 1,…,n,

where εj is pseudo-random uniform on [0,ε]. This makes
the probability of a 0-length step very small, and in
practice has been sufficient to guarantee finiteness.

49

Issue 5  
Bound Flipping (Long-Step Dual)

}  A basis is given by a triple (B,L,U)
◦  L = non-basics at lower bound: Feasibility DL ≥ 0
◦  U = non-basics at upper bound: Feasibility DU ≤ 0

}  Ratio test: Suppose XBi is the leaving variable, and the step length is
blocked by some variable dj, j∈L, where dj is about to become
negative and uj<+∞:
◦  Flipping means: Move j from L to U.
◦  Check: Do an update to see if XBi is still favorable (just as we did

in Phase I!)

}  Can combine many iterations into a single iteration.

50

Read MPS format model from file fit2d.mps.bz2
Optimize a model with 25 rows, 10500 columns and 129018 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 -9.1662550e+04 9.553095e+03 0.000000e+00 0s
 6023 -6.8464293e+04 0.000000e+00 0.000000e+00 1s

Solved in 6023 iterations and 0.82 seconds
Optimal objective -6.846429329e+04

Read MPS format model from file fit2d.mps.bz2
Optimize a model with 25 rows, 10500 columns and 129018 nonzero

Iteration Objective Primal Inf. Dual Inf. Time
 0 -9.1662550e+04 9.553095e+03 0.000000e+00 0s
 255 -6.8464293e+04 0.000000e+00 0.000000e+00 0s

Solved in 255 iterations and 0.07 seconds
Optimal objective -6.846429329e+04

w/o flipping

w/ flipping

Example: Bound Flipping

