Solving Linear Programs: The Dual Simplex Algorithm

Outline

- LP basics
- Primal and dual simplex algorithms
- Implementing the dual simplex algorithm

Some Basic Theory

Linear Program – Definition

A linear program (LP) in standard form is an optimization problem of the form

Where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, and x is a vector of n variables. $c^T x$ is known as the objective function, Ax = b as the constraints, and $x \ge 0$ as the nonnegativity conditions. b is called the right-hand side.

Dual Linear Program – Definition

The **dual (**or **adjoint) linear program** corresponding to (P) is the optimization problem

In this context, (P) is referred to as the **primal linear program**.

PrimalMinimize $c^T x$ Subject toAx = b $x \ge 0$

Weak Duality Theorem

(von Neumann 1947)

Let x be feasible for (P) and π feasible for (D). Then

Maximize
$$b^{T}\pi \leq c^{T}x$$
 Minimize

If $b^T \pi = c^T x$, then x is optimal for (P) and π is optimal for (D); moreover, if either (P) or (D) is **unbounded**, then the other problem is **infeasible**.

Proof:

$$\pi^{T}b = \pi^{T}Ax \leq c^{T}x$$

$$Ax = b \quad \pi^{T}A \leq c^{T} \& x \geq 0$$

Optimization

Solving Linear Programs

- Three types of algorithms are available
 - Primal simplex algorithms (Dantzig 1947)
 - Dual simplex algorithms (Lemke 1954)
 - Developed in context of game theory
 - Primal-dual log barrier algorithms
 - Interior-point algorithms (Karmarkar 1989)
 - Reference: Primal-Dual Interior Point Methods, S. Wright, 1997, SIAM

Primary focus: Dual simplex algorithms

Basic Solutions – Definition

Let *B* be an ordered set of *m* distinct indices (B_1, \ldots, B_m) taken from $\{1, \ldots, n\}$. *B* is called a **basis** for (P) if A_B is nonsingular. The variables x_B are known as the **basic variables** and the variables x_N as the **non-basic** variables, where $N = \{1, \ldots, n\} | B$. The corresponding **basic solution** $X \in \mathbb{R}^n$ is given by $X_N = 0$ and $X_B = A_B^{-1} b$. B is called (**primal**) **feasible** if $X_B \ge 0$.

Note:
$$AX = b \Rightarrow A_BX_B + A_NX_N = b \Rightarrow A_BX_B = b \Rightarrow X_B = A_B^{-1}b$$

Primal Simplex Algorithm (Dantzig, 1947)

Input: A feasible basis *B* and vectors

 $X_B = A_B^{-1}b$ and $D_N = c_N - A_N^T A_B^{-T} c_B$.

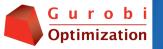
- ▶ Step 1: (Pricing) If $D_N \ge 0$, stop, *B* is optimal; else let $j = argmin\{D_k : k \in N\}$.
- Step 2: (FTRAN) Solve $A_B y = A_j$.
- Step 3: (Ratio test) If y ≤ 0, stop, (P) is unbounded; else, let

$$i = argmin\{X_{Bk}/y_k: y_k > 0\}$$

- Step 4: (BTRAN) Solve $A_B^T z = e_i$.
- Step 5: (Update) Compute $\alpha_N = -A_N^T z$. Let $B_i = j$. Update X_B (using y) and D_N (using α_N)

Note: x_j is called the **entering** variable and x_{Bi} the **leaving** variable. The D_N values are known as **reduced costs** – like partial derivatives of the objective function relative to the nonbasic variables.

Primal Simplex Example



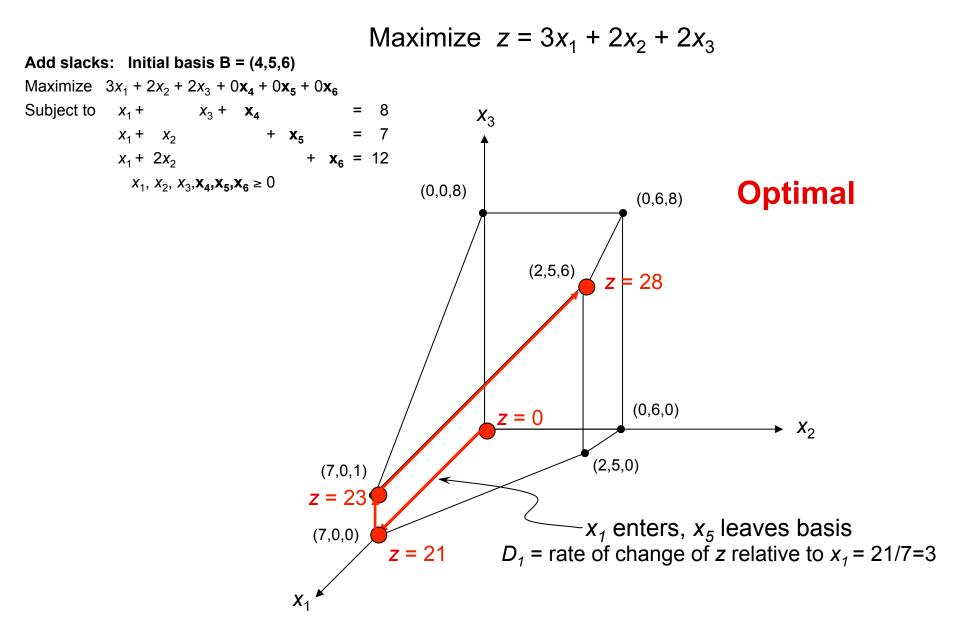
The Primal Simplex Algorithm

Consider the following simple LP:

Maximize
$$3x_1 + 2x_2 + 2x_3$$

Subject to $x_1 + x_3 \le 8$
 $x_1 + x_2 \le 7$
 $x_1 + 2x_2 \le 12$
 $x_1, x_2, x_3 \ge 0$

The Primal Simplex Algorithm



Dual Simple Algorithm – Setup

Simplex algorithms apply to problems with constraints in equality form. We convert (D) to this form by adding the dual **slacks** *d*:

$$\begin{array}{ll} Maximize & b^{T}\pi\\ Subject \ to & A^{T}\pi + d = c\\ \pi \ free, \ d \geq 0 \end{array} \Leftrightarrow A^{T}\pi \leq c \end{array}$$

Dual Simple Algorithm - Setup

 $\begin{array}{cccc} Maximize & b^{T}\pi \\ Subject \ to & A^{T}\pi + d = c \\ \pi \ free, \ d \geq 0 \end{array} \leftarrow \left[\begin{array}{cccc} A_{B}^{\ T} & I_{B} & 0 \\ A_{N}^{\ T} & 0 & I_{N} \end{array} \right] \begin{bmatrix} \pi \\ d_{B} \\ d_{N} \end{bmatrix} = \begin{bmatrix} c_{B} \\ c_{N} \end{bmatrix}$

Given a basis *B*, the corresponding **dual basic variables** are π and d_N. d_B are the **nonbasic variables**. The corresponding **dual basic solution** Π ,*D* is determined as follows:

$$D_B = 0 \implies \Pi = A_B^{-T} c_B \implies D_N = c_N - A_N^T \Pi$$

B is **dual feasible** if $D_N \ge 0$.

Dual Simple Algorithm – Setup

 $\begin{array}{ccc} Maximize & b^{T}\pi \\ Subject \ to & A^{T}\pi + d = c \\ \pi \ free, \ d \geq 0 \end{array} \longrightarrow \left[\begin{array}{c} \mathsf{A}_{\mathsf{B}}^{\ \mathsf{T}} & \mathsf{I}_{\mathsf{B}} & 0 \\ \mathsf{A}_{\mathsf{N}}^{\ \mathsf{T}} & 0 & \mathsf{I}_{\mathsf{N}} \end{array} \right] \begin{bmatrix} \pi \\ \mathsf{d}_{\mathsf{B}} \\ \mathsf{d}_{\mathsf{N}} \end{bmatrix} = \begin{bmatrix} \mathsf{C}_{\mathsf{B}} \\ \mathsf{C}_{\mathsf{N}} \end{bmatrix}$

Observation: We may assume that every dual basis has the above form.

Proof: Assuming that the primal has a basis is equivalent to assuming that rank(A)=m (# of rows), and this implies that all π variables can be assumed to be basic.

This observation establishes a 1-1 correspondence between primal and dual bases. ■

An Important Fact

If X and Π , D are corresponding primal and dual basic solutions determined by a basis B, then

$$\Pi^{\mathsf{T}}b = c^{\mathsf{T}}X.$$

Hence, by weak duality, if *B* is both primal and dual feasible, then *X* is optimal for (P) and Π is optimal for (D).

Proof:
$$c^T X = c_B^T X_B$$
 (since $X_N = 0$)
= $\Pi^T A_B X_B$ (since $\Pi = A_B^{-T} c_B$)
= $\Pi^T b$ (since $A_B X_B = b$)

Dual Simplex Algorithm (Lemke, 1954)

Input: A dual feasible basis *B* and vectors

 $X_{B} = A_{B}^{-1}b \text{ and } D_{N} = C_{N} - A_{N}^{T}B^{-T}C_{B}.$ • Step 1: (Pricing) If $X_{B} \ge 0$, stop, *B* is optimal; else let $i = argmin\{X_{Bk} : k \in \{1, ..., m\}\}.$

- Step 2: (BTRAN) Solve $A_B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- > Step 3: (Ratio test) If $\alpha_N \leq 0$, stop, (D) is unbounded; else, let

 $j = argmin\{D_k/\alpha_k: \alpha_k > 0\}.$

- Step 4: (FTRAN) Solve $A_B y = A_j$.
- Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Note: d_{Bi} is the **entering** variable and d_j is the **leaving** variable. (Expressed in terms of the primal: x_{Bi} is the leaving variable and x_j is the entering variable)

Simplex Algorithms

Input: A primal feasible basis *B* and vectors

$$X_B = A_B^{-1}b \& D_N = c_N - A_N^T A_B^{-T} c_B.$$

- Step 1: (Pricing) If D_N ≥ 0, stop, B is optimal; else, let j = argmin{D_k : k∈N}.
- Step 2: (FTRAN) Solve $A_B y = A_j$.
- Step 3: (Ratio test) If y ≤ 0, stop, (P) is unbounded; else, let
 i = argmin{X_{Bk}/y_k: y_k > 0}.
- Step 4: (BTRAN) Solve $A_B^T z = e_i$.
- Step 5: (Update) Compute $\alpha_N = -A_N^T z$. Let $B_i = j$. Update X_B (using y) and D_N (using α_N)

Input: A dual feasible basis *B* and vectors

 $X_B = A_B^{-1}b \quad \& \quad D_N = c_N - A_N^T A_B^{-T} c_B.$

- Step 1: (Pricing) If $X_B \ge 0$, stop, *B* is optimal; else, let $i = argmin\{X_{Bk} : k \in \{1, ..., m\}\}.$
- Step 2: (BTRAN) Solve $A_B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- Step 3: (Ratio test) If α_N ≤ 0, stop, (D) is unbounded; else, let j = argmin{D_k/α_k: α_k > 0}.
- Step 4: (FTRAN) Solve $A_B y = A_j$.
- Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Summary:

What we have done and what we have to do

- Done
 - Defined primal and dual linear programs
 - Proved the weak duality theorem
 - Introduced the concept of a basis
 - Stated primal and dual simplex algorithms
- To do (for dual simplex algorithm)
 - Show correctness
 - Describe key implementation ideas

Correctness: Dual Simplex Algorithm

- Termination criteria
 - Optimality (DONE by "An Important Fact")
 - Unboundedness
- Other issues
 - Finding starting dual feasible basis, or showing that no feasible solution exists
 - Input conditions are preserved (i.e., that B is still a feasible basis)
 - Finiteness

Dual Unboundedness (⇒ primal infeasible)

- We carry out a key calculation
- As noted earlier, in an iteration of the dual

<i>d_{Bi}</i> enters basis <i>d_j</i> leaves basis	in	Maximize $b^T \pi$
		Subject to $A^T\pi + d = c$
		π free, $d \ge 0$

• The idea: Currently $d_{Bi} = 0$, and $X_{Bi} < 0$ has motivated us to increase d_{Bi} to $\theta > 0$, leaving the other components of d_B at 0 (the object being to increase the objective). Letting $\underline{d,\pi}$ be the corresponding dual solution as a function of θ , we obtain

 $\underline{d}_{B} = \theta e_{i} \quad \underline{\pi} = \Pi - \theta z \quad \underline{d}_{N} = D_{N} - \theta \alpha_{N}$ where α_{N} and z are as computed in the algorithm.

(Dual Unboundedness – cont.)

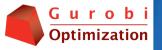
• Letting $\underline{d}, \underline{\pi}$ be the corresponding dual solution as a function of θ . Using α_N and z from dual algorithm,

$$\underline{d}_{B} = \theta e_{i} \qquad \underline{d}_{N} = D_{N} - \theta \alpha_{N} \qquad \underline{\pi} = \pi - \theta z.$$

• Using $\theta > 0$ and $X_{Bi} < 0$ yields

$$\begin{array}{l} new_objective = \underline{\pi}^{\mathsf{T}}b = (\Pi - \theta \, z)^{\mathsf{T}} \, b \\ = \Pi^{\mathsf{T}}b - \theta \, e_i^{\mathsf{T}}A_B^{-1}b = \Pi^{\mathsf{T}}b - \theta \, e_i^{\mathsf{T}}X_B \\ = old_objective - \theta \, X_{Bi} > old_objective \end{array}$$

- Conclusion 1: If $\alpha_N \leq 0$, then $\underline{d}_N \geq 0 \forall \theta > 0 \Rightarrow$ (D) is unbounded.
- Conclusion 2: If $\alpha_N \text{ not} \le 0$, then $\underline{d}_N \ge 0 \implies \theta \le D_j / \alpha_j \forall \alpha_j > 0$ $\implies \theta_{max} = \min\{D_j / \alpha_j: \alpha_j > 0\}$



(Dual Unboundedness – cont.)

- Feasibility preserved: follows from the ratio test.
- Nonsingularity preserved: follows from (also yields update)
 - new $A_B = A_B (I + (y e_i) e_i^T)$
 - new $A_B^{-1} = (I (1/\gamma_i) (\gamma e_i) e_i^T) A_B^{-1}$
- Finiteness: If $D_B > 0$ for all dual feasible bases *B*, then the dual simplex algorithm is finite: The dual objective strictly increases at each iteration \Rightarrow no basis repeats, and there are a finite number of bases.
- There are various approaches to guaranteeing finiteness in general:
 - Bland's Rules: Purely combinatorial, bad in practice.
 - **Gurobi:** A perturbation is added to "guarantee" $D_B > 0$.

Implementing the Dual Simplex Algorithm

Some Motivation

- Dual simplex vs. primal: Dual > 2x faster
- Dual is the best algorithm for MIP
- There isn't much in books about implementing the dual.

Dual Simplex Algorithm (Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis *B* and vectors

 $X_B = A_B^{-1}b$ and $D_N = c_N - A_N^T B^{-T} c_B^{-T}$.

- ▶ Step 1: (Pricing) If $X_B \ge 0$, stop, *B* is optimal; else let $i = argmin\{X_{Bk} : k \in \{1,...,m\}\}$.
- Step 2: (BTRAN) Solve $B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- > Step 3: (Ratio test) If $\alpha_N \leq 0$, stop, (D) is unbounded; else, let

 $j = argmin\{D_k/\alpha_k: \alpha_k > 0\}.$

- Step 4: (FTRAN) Solve $A_B y = A_{i}$.
- Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Dual Simplex Algorithm (Lemke, 1954: Commercial codes ~1990)

- Input: A dual feasible basis *B* and vectors $X_B = A_B^{-1}b$ and $D_N = c_N - A_N^T A_B^{-T} c_B$. Step 1: (Pricing) If $X_B \ge 0$, stop, *B* is optimal; else let $i = argmin\{X_{Bk} : k \in \{1, ..., m\}\}$.
- Step 2: (BTRAN) Solve $B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- > Step 3: (Ratio test) If $\alpha_N \leq 0$, stop, (D) is unbounded; else, let

 $j = argmin\{D_k/\alpha_k: \alpha_k > 0\}.$

- Step 4: (FTRAN) Solve $A_B y = A_i$.
- Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Implementation Issues for Dual Simplex

- 1. Finding an initial feasible basis or concluding that there is none: Phase I of the simplex algorithm.
- 2. Pricing: dual steepest edge
- 3. Solving the linear systems
 - LU factorization and factorization update
 - BTRAN and FTRAN exploiting sparsity
- 4. Numerically stable ratio test: Bound shifting and perturbation
- 5. Bound flipping: Exploiting "boxed" variables to combine many iterations into one.

Issue 0 Preparation: Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following form:

Minimize $c^T x$ Subject toAx = b (P_{BD}) $l \le x \le u$

where *l* is an n-vector of **lower bounds** and *u* an n-vector of **upper bounds**. *l* is allowed to have $-\infty$ entries and u is allowed to have $+\infty$ entries. (Note that (P_{BD}) is in standard form if $I_i = 0$, $u_i = +\infty \forall j$.)

(Issue 0 – Bounds on variables) Basic Solution

A basis for (P_{BD}) is a triple (B,L,U) where *B* is an ordered *m*-element subset of $\{1,...,n\}$ (just as before), (B,L,U) is a partition of $\{1,...,n\}$, $I_j > -\infty \forall j \in L$, and $u_j < +\infty \forall j \in U$. $N = L \cup U$ is the set of **nonbasic** variables. The associated (**primal**) **basic solution** *X* is given by $X_L = I_L$, $X_U = u_U$ and

$$X_B = A_B^{-1}(b - A_L I_L - A_U u_U).$$

This solution is feasible if

$$I_B \leq X_B \leq u_B$$
.

The associated **dual basic solution** is defined exactly as before: $D_B = 0$, $\Pi^T A_B = c_B^T$, $D_N = c_N - A_N^T \Pi$. It is **dual feasible** if

$$D_L \geq 0$$
 and $D_U \leq 0$.

(Issue 0 – Bounds on variables) The Full Story

- Modify simplex algorithm
 - Only the "Pricing" and "Ratio Test" steps must be changed substantially.
 - The complicated part is the ratio test
- Reference: See Chvátal for the primal

<u>Issue 1</u> The Initial Feasible Basis – Phase I

- Two parts to the solution
 - 1. Finding some initial basis (probably not feasible)
 - 2. Modified simplex algorithm to find a feasible basis

(Issue 1 – Initial feasible basis) Initial Basis

 Primal and dual bases are the same. We begin in the context of the primal. Consider

$$\begin{array}{ll} \text{Minimize} & c^T x\\ \text{Subject to } Ax = b & (\mathsf{P}_{\mathsf{BD}})\\ & l \leq x \leq u \end{array}$$

- Assumption: Every variable has some finite bound.
- Trick: Add artificial variables x_{n+1}, \dots, x_{n+m} :

$$Ax + I \begin{pmatrix} x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix} = b$$

where $I_{j} = u_{j} = 0$ for j = n + 1, ..., n + m.

- Initial basis: B = (n+1,...,n+m) and for each $j \notin B$, pick some finite bound and place *j* in *L* or *U*, as appropriate.
- Free-Variable Refinement: Make free variables non-basic at value 0. This leads to a notion of a *superbasis*, where non-basic variables can be between their bounds.

(Issue 1 – Initial feasible basis) Solving the Phase I

> If the initial basis is not dual feasible, we consider the problem:

Maximize $\Sigma (d_j : d_j < 0)$ Subject to $A^T \pi + d = c$

• This problem is "locally linear": Define $\kappa \in \mathbb{R}^n$ by $\kappa_j = 1$ if $D_j < 0$, and 0 otherwise. Let

$$K = \{j: D_j < 0\} \text{ and } \underline{K} = \{j: D_j \ge 0\}$$

Then our "local" problem becomes

 $\begin{array}{ll} \text{Maximize} & \kappa^{\mathsf{T}}d \\ \text{Subject to} & A^{\mathsf{T}}\pi + d = c \\ & d_{\mathsf{K}} \leq 0, \ d_{\underline{\mathsf{K}}} \geq 0 \end{array}$

• Apply dual simplex, and whenever d_j for $j \in K$ becomes 0, move it to <u>K</u>.

Solving Phase I: An Interesting Computation

• Suppose d_{Bi} is the entering variable. Then $X_{Bi} < 0$ where X_B is obtained using the following formula:

$$X_B = A_B^{-1} A_N \kappa$$

Suppose now that d_j is determined to be the leaving variable. Then in terms of the phase I objective, this means κ_j is replace by κ_j + ε e_j, where ε ∈ {0, +1, -1}. It can then be shown that

$$\underline{X}_{Bi} = X_{Bi} + \varepsilon \ \alpha_j$$

- Conclusion: If $x_{Bi} < 0$, then the current iteration can continue without the necessity of changing the basis.
- Advantages
 - Multiple iterations are combined into one.
 - x_{Bi} will tend not to change sign precisely when α_j is small. Thus this procedure tends to avoid unstable pivots.

Issue 2 Pricing

• The textbook rule is **TERRIBLE**: For a problem in standard form, select the entering variable using the formula

 $j = argmin\{X_{Bi} : i = 1,...,m\}$

- Geometry is wrong: Maximizes rate of change relative to axis; better to do relative to edge.
- Goldfard and Forrest 1992 suggested the following steepest-edge alternative

$$j = argmin\{X_{Bi} / \eta_i : i = 1, ..., m\}$$

where $\eta_i = ||e_i^T A_{B^{-1}}||_2$, and gave an efficient update.

- Note that there are two ingredients in the success of Dual SE:
 - Significantly reduced iteration counts
 - The fact that there is a very efficient update for η

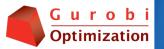
Example: Pricing Model: dfl001

Pricing: Greatest infeasibility

Solved in 281829 iterations and 118.68 seconds Optimal objective 1.126639304e+07

Pricing: Goldfarb-Forrest steepest-edge

Solved in 18412 iterations and 5.36 seconds Optimal objective 1.126639304e+07



Issue 3 Solving FTRAN, BTRAN

- Computing LU factorization: See Suhl & Suhl (1990).
 "Computing sparse LU factorization for large-scale linear programming basis", ORSA Journal on Computing 2, 325-335.
- Updating the Factorization: Forrest-Tomlin update is the method of choice. See Chvátal Chapter 24.
 - There are multiple, individually relatively minor tweaks that collectively have a significant effect on update efficiency.
- Further exploiting sparsity: This is the main recent development.ds

(Issue 3 – Solving FTRAN & BTRAN)

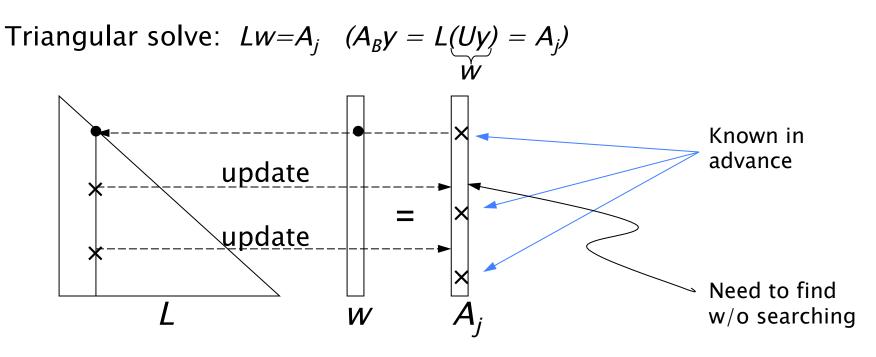
We must solve two linear systems per iteration:

FTRAN BTRAN
$$A_B y = A_j$$
 $A_B^T z = e_j$

where

$A_B =$ basis matrix	(very sparse)
A_j = entering column	(very sparse)
$e_i = unit vector$	(very sparse)
$\Rightarrow y$ an z are typically very sparse	

Example:	Model pla85	900 (from TSP)
	Constraints	85900
·	Variables	144185
	Average y	15.5



Graph structure: Define an acyclic digraph $D = (\{1, ..., m\}, E)$ where $(i,j) \in E \Leftrightarrow I_{ij} \neq 0$ and $i \neq j$.

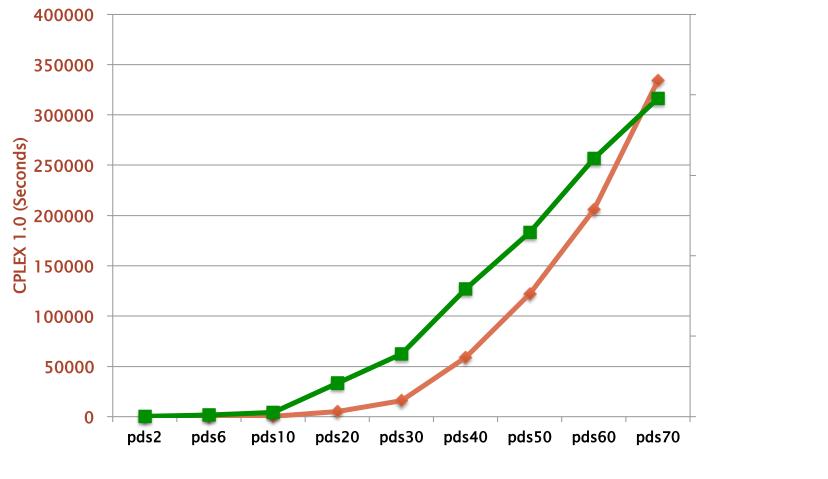
Solving using *D*: Let $X = \{i \in V: L_{ij} \neq 0\}$. Compute $\underline{X} = \{i \in V: \exists a \text{ directed path from } i \text{ to } X\}$. \underline{X} can be computed in time linear in $|E(\underline{X})| + |\underline{X}|$.

PDS Models (2002)

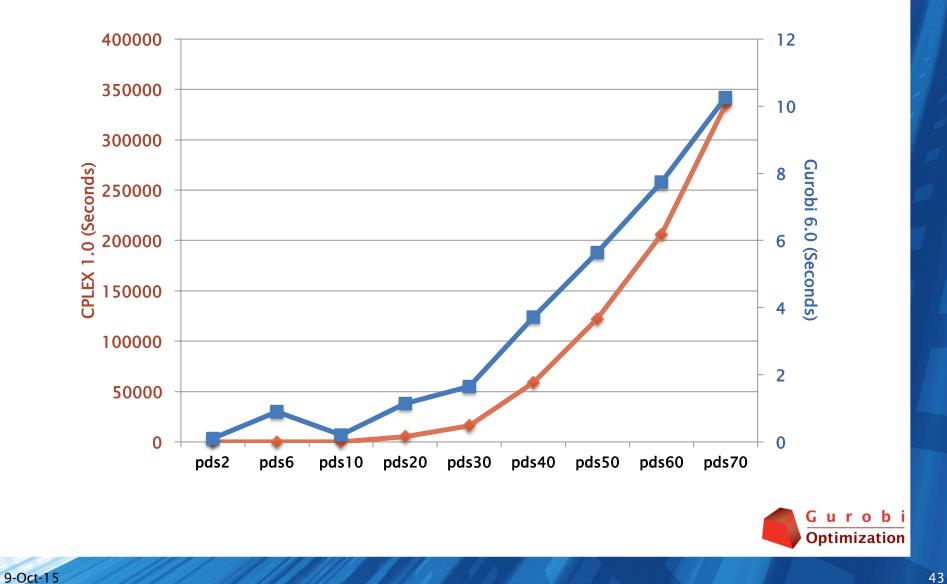
"Patient Distribution System": Carolan, Hill, Kennington, Niemi, Wichmann, An empirical evaluation of the KORBX algorithms for military airlift applications, Operations Research 38 (1990), pp. 240–248

		CPLEX1.0	CPLEX5.0	CPLEX8.0	SPEEDUP
MODEL	ROWS	1988	1997	2002	1.0→8.0
pds02	2953	0.4	0.1	0.1	4.0
pds06	9881	26.4	2.4	0.9	29.3
pds10	16558	208.9	13.0	2.6	80.3
pds20	33874	5268.8	232.6	20.9	247.3
pds30	49944	15891.9	1154.9	39.1	406.4
pds40	66844	58920.3	2816.8	79.3	743.0
pds50	83060	122195.9	8510.9	114.6	1066.3
pds60	99431	205798.3	7442.6	160.5	1282.2
pds70	114944	335292.1	21120.4	197.8	1695.1
		Primal	Dual	Dual	
		Simplex	Simplex	Simplex	Gurobi Optimization

Not just faster -- Growth with size: Quadratic *then* & Linear *now*!



Gurobi Headline goes here...



Issue 4 Ratio Test and Finiteness

The "standard form" dual problem is

 $\begin{array}{ll} \textit{Maximize} & b^{\mathsf{T}}\pi\\ \textit{Subject to} & \mathsf{A}^{\mathsf{T}}\pi + d = c\\ & d \geq 0 \end{array}$

Feasibility means

 $d \ge 0$

However, in practice this condition is replaced by

 $d \geq -\varepsilon e$

where $e^{T} = (1, ..., 1)$ and $\varepsilon = 10^{-6}$, the feasibility tolerance.

Reason: Degeneracy. In 1972 Paula Harris suggested exploiting this fact to improve numerical stability.

(Issue 4 – Ratio test & finiteness)

STANDARD RATIO TEST
$$j_{enter} = argmin\{D_j / \alpha_j : \alpha_j > 0\}$$

Motivation: Feasibility \Rightarrow step length θ satisfies

$$D_N - \theta \alpha_N \geq 0$$

Since the bigger the step length, the bigger the change in the objective, we choose

$$\theta_{max} = \min\{D_j / \alpha_j : \alpha_j > 0\}$$

Using ε , we have

$$\theta \epsilon_{max} = min\{(D_j + \epsilon)/\alpha_j : \alpha_j > 0\} > \theta_{max}$$

HARRIS RATIO TEST $j_{enter} = argmax\{\alpha_j : \theta_{max} \le D_j / \alpha_j \le \theta_{max}^{\varepsilon}, \alpha_j > 0\}$

(Issue 4 - Ratio test & finiteness)

- Advantages
 - Numerical stability α_{jenter} = "pivot element"
 - Degeneracy Reduces # of 0–length steps
- Disadvantage
 - $D_{jenter} < 0 \Rightarrow$ objective goes in wrong direction
- Solution: BOUND SHIFTING
 - If D_{jenter} < 0, we replace the lower bound on d_{jenter} by something less than its current value.
 - Note that this shift changes the problem and must be removed: 5% of cases, this produces dual infeasibility ⇒ process is iterated.

Example: Bound-Shifting Removal

Read MPS format model from file qap12.mps.bz2 Optimize a model with 3192 rows, 8856 columns and 38304 nonzeros

Iteration	Objective	Primal Inf.	Dual Inf.	Time	
0	0.0000000e+00	1.230000e+02	0.000000e+00	0s	
101	0.0000000e+00	7.229833e+02	0.000000e+00	0s	
173	3.3669520e+00	9.125960e+02	0.000000e+00	0s	
••••					
49843	5.2387894e+02	5.585623e+01	0.000000e+00	32s	
50213	5.2388556e+02	7.361090e+00	0.000000e+00	32s	
50584	5.2388824e+02	1.648797e+01	0.000000e+00	32s	
50744	5.2388840e+02	0.000000e+00	0.000000e+00	33s	
Switch to g	primal 🔶				Shift removed
50934	5.2289692e+02	0.000000e+00	3.404469e+01	33s	
51123	5.2289527e+02	0.000000e+00	1.021229e+00	33s	
51312	5.2289450e+02	0.000000e+00	2.841123e-01	33s	
51499	5.2289434e+02	0.000000e+00	1.686059e-01	33s	
Perturbati	on ends 🚽 🚽				Shift removed
51516	5.2289435e+02	0.000000e+00	0.000000e+00	33s	

Solved in 51516 iterations and 33.15 seconds Optimal objective 5.228943506e+02

(Issue 4 - Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the "perturbation" method employed in Gurobi if no progress is being made in the objective.

If "insufficient" progress is being made, replace

$$d_j \geq -\varepsilon$$
 $j = 1, ..., n$

by

$$d_j \geq -\varepsilon - \varepsilon_j$$
 $j = 1,...,n,$

where ε_j is pseudo-random uniform on $[0,\varepsilon]$. This makes the probability of a 0-length step very small, and in practice has been sufficient to guarantee finiteness.

Issue 5 Bound Flipping (Long-Step Dual)

- A basis is given by a triple (B,L,U)
 - L = non-basics at lower bound: Feasibility $D_L \ge 0$
 - U = non-basics at upper bound: Feasibility $D_U \le 0$
- ► Ratio test: Suppose X_{Bi} is the leaving variable, and the step length is blocked by some variable d_j, j∈L, where d_j is about to become negative and u_j<+∞:</p>
 - Flipping means: Move *j* from *L* to *U*.
 - **Check:** Do an update to see if X_{Bi} is still favorable (just as we did in Phase I!)
- Can combine many iterations into a single iteration.

Example: Bound Flipping

Time

0s

1s

Read MPS format model from file fit2d.mps.bz2 Optimize a model with 25 rows, 10500 columns and 129018 nonzeros

Iteration Objective Primal Inf. Dual Inf. 0 -9.1662550e+04 9.553095e+03 0.000000e+00 6023 -6.8464293e+04 0.000000e+00 0.000000e+00

Solved in 6023 iterations and 0.82 seconds Optimal objective -6.846429329e+04

Read MPS format model from file fit2d.mps.bz2 Optimize a model with 25 rows, 10500 columns and 129018 nonzero

Iteration	Objective	Primal Inf.	Dual Inf.	Time
0	-9.1662550e+04	9.553095e+03	0.000000e+00	0s
255	-6.8464293e+04	0.000000e+00	0.000000e+00	0s

Solved in 255 iterations and 0.07 seconds Optimal objective -6.846429329e+04

w/o flipping

w/ flipping