
Machine Learning for
Combinatorial Optimization: a
methodological tour d’horizon

Andrea Lodi

andrea.lodi@polymtl.ca

CO@Work - ZIB, Berlin - September 18, 2020

1

mailto:andrea.lodi@polymtl.ca
mailto:andrea.lodi@polymtl.ca

Too long

• Expert knowledge of how to
make decisions

• Too expensive to compute

• Need for fast approximation

Too heuristic

• No idea which strategy will
perform better

• Need a well performing policy

• Need to discover policies

Requirement

• We want to keep the guarantees provided by exact OR
algorithms (feasibility, sometimes optimality)

The structure hypothesis

• We do not care about most instances that could exist;

• Instead, we look at problem instances as data points from
a specific, intractable, probability distribution;

• “Similar” instances show “similar” solving procedures.

Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com

Random Instances

Random iid coefficients a1c1s1 from MipLib 2017

Business Applications
• Many businesses care about

solving similar problems
repeatedly

• Solvers do not make any use of
this aspect

• Power systems and market 
[Xavier et al. 2019]

• Schedule 3.8 kWh ($400 billion)
market annually in the US

• Solved multiple times a day

• 12x speed up combining ML
and MILP

Imitation Learning Reminder
• Generally speaking, Machine Learning is a collection of techniques for

• learning patterns in or

• understanding the structure of data,

• often with the aim of performing data mining, i.e., recovering
previously unknown, actionable information from the learnt data.

• Typically, in ML (IL in particular) one has to “learn'' from data (points in
the so-called training set) a (nonlinear) function that predicts a certain
score for new data points that are not in the training set.

• Each data point is represented by a set of features, which define its
characteristics, and whose patterns should be learnt.

• The techniques used in ML are diverse, most recently artificial (deep)
neural networks algorithmically boosted by first order optimization
methods like gradient descent, etc.

Deep Learning Reminder

x

h

o

V
W

U

xt−1

ht−1

ot−1

V

U

xt

ht

ot

V

U

xt+1

ht+1

ot+1

V

U

W WW

RNN folded RNN unfolded

Deep Learning Reminder

f f f

softmax

∗ ∗ ∗

Σ

:::v1 v2 vp q

Attention mechanism

Reinforcement Learning
Reminder

π(ajs)

Environment

Agent

p(s0; rja; s)

ActionRewardState
AtRt+1St+1

Markov Decision Process for Reinforcement Learning

Learning Methods
Demonstration

• An expert/algorithm provides
a policy

• Assumes theoretical /
empirical knowledge about
the decisions

• Decisions are too long to
compute

• Supervised imitation learning

Experience

• Learn and discover new
policies (better hopefully)

• Unsatisfactory knowledge (not
mathematically well-defined)

• Decisions are too heuristic

• Reinforcement learning

Demonstration

• Approximating strong branching 
[Marcos Alvarez et al. 2014, 2016, 2017][Khalil et al. 2016]

• Approximating lower bound improvement for cut selection 
[Baltean-Lugojan et al. 2018]

• Approximating optimal node selection 
[He et al. 2014]

Decision?

πexpert

π̂ml ^action

action

min distance

Experience

• Learning greedy node selection (e.g. for TSP) 
[Khalil et al 2017a]

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018]

Decision?
π̂ml

^action reward
score

max return

.

Supervised

• Cannot beat the expert (an
algorithm) 
→ only interesting if the
approximation is faster

• Can be unstable

• Cannot cope with equally good
actions

Not mutually exclusive

Better combined!

Reinforcement

• Reinforcement can potentially
discover better policies

• Harder, with local maxima
(exploration difficult)

• Need to define a reward

Algorithmic Structure

• How do we build such algorithms? How do we mix OR
with ML?

• How do we keep guarantees provided by OR algorithms
(feasibility, optimality)?

End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]

• Predict aggregated solutions to MILP under partial
information (2nd stage stochastic optimization) 
[Larsen et al. 2018]

• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition

RL as a heuristic paradigm
• The End-to-End learning of the previous slide can be seen as a heuristic

paradigm in itself.

• This is especially applied by exploiting Reinforcement Learning, that is
certainly the ML paradigm that is closest to (discrete) optimization.

• Indeed, RL shares the same foundations of Approximate Dynamic
Programming and has certainly things in common with some form of
Metaheuristics.

• The RL basic principles are exploitation and exploration, which remind
of intensification and diversification.

• The novelty certainly resides on the neural networks renewed
effectiveness in dealing with / learning from data.

Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]

• Linearize an MIQP 
[Bonami et al. 2018, 2020]

• Provide candidate cancer treatments to be refined by
combinatorial optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision

Learning Repeated
Decisions

• Learning where to run heuristics in
B&B 
[Khalil et al. 2017b]

• Learning to branch 
[Lodi and Zarpellon 2017] (survey) 
[Gasse et al. 2019]

• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]

• Predicting booking decisions under
imperfect information 
[Larsen et al. 2018]

• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

} just a matter
of viewpoint

E. Larsen, S. Lachapelle, Y. Bengio,
E. Frejinger, S. Lacoste-Julien & A. Lodi

Predicting tactical solutions to
operational planning problems
under imperfect information

In brief:

Combine machine learning and discrete
optimization to solve a problem that we
could not solve with any existing
methodology.

Challenges:

Very restricted computing time budget.
Imperfect information.

intermodal.iro.umontreal.ca

CONTEXT
LE

VE
L

O
F

D
ET

A
IL

 O
F

SO
LU

TI
O

N Fully detailed solution -
implementable

Description of solution -
level of detail that is relevant

to the tactical decision
problem

Value of the
solution

Medium term
« tactical »

Short term
« operational »

Long term
« strategic »

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca

CONTEXT
C

O
M

PU
TI

N
G

 T
IM

E
B

U
D

G
ET

Reasonable computing time -
within the time budget for the

operational problem

Much shorter than the
time it takes to solve the

full problem under perfect
information

seconds to
minutes

milli-
seconds

Medium term
« tactical »

Short term
« operational »

Operational problem of interest:
Compute solution under

perfect information

Compute description of solution
to operational problem under

imperfect information

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca

CONTEXT

Solve deterministic
optimization problem

mathematical programming

High-precision solution

Reasonable computing time

Operational problem of interest:
Compute solution under

perfect information

Machine learning
predict the tactical solution

descriptions

High-level solution

Very short computing time
Stochastic programming

Compute description of solution
to operational problem under

imperfect information

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca

SOME NOTATION

Solution

Problem instance x = [xa, xu]xa

ȳ* = g(y*(x))

Perfect

information

Imperfect

information

Deterministic

problem

Tactical solution
description

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

y*(x) = arg min
y∈Y(x)

C(x, y)

intermodal.iro.umontreal.ca

APPLICATION - LOAD PLANNING

Short term
« operational »

Medium term
« tactical »

Load planning for
double-stack trains

Capacity management,
e.g., bookings

Request Railcar

supply

Accepted

bookings

Accept / reject

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca

APPLICATION - LOAD PLANNING

x = [xa, xu]

Pr
ob

le
m

in

st
an

ce

y*(x) = arg min
y∈Y(x)

C(x, y)

O
pe

ra
tio

na
l

so
lu

tio
n

ȳ* = g(y*(x))

Ta
ct

ic
al

so

lu
tio

n

intermodal.iro.umontreal.ca

APPLICATION - LOAD PLANNING

Containers have different
characteristics, for example:

Size

Weight

The loading (operational problem) of
the containers onto railcars crucially
depends on weight

Weight is unknown at the tactical
level

intermodal.iro.umontreal.ca

IDEA IN BRIEF

We know how to solve the deterministic problem - let’s
use that!

Generate a lot of data and pretend that we have
perfect information - solve the discrete optimization
problem with an existing solver

Let machine learning take care of the uncertain part:
hide the information that is not available at prediction
time - find best possible prediction of ȳ*

State-of-the-art ML model Parameters

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

intermodal.iro.umontreal.ca | Page

TACTICAL: MULTILAYER PERCEPTRON

34

Input
Fixed-size vector

Output
Fixed-size vector

Nb of assignable
containers of each type

Nb of of assignable
railcars of each type

Nb of containers of each
type in the solution

Nb of railcars of each
type in the solution

ȳ*xa

intermodal.iro.umontreal.ca | Page

Average performance of the MLP model is very good
MAE of only 2.1 containers/slots for classes A, B and C (up to
100 platforms and 300 containers) with very small standard
deviation (0.01)

MLP results are considerably better than benchmarks

The marginal value of using 100 times more observations is fairly
small: modest increase in MAE from 0.985 to 1.304 on class A
instances)

Prediction times are negligible, milliseconds or less and with very
little variation

35

TACTICAL: MULTILAYER PERCEPTRON

intermodal.iro.umontreal.ca | Page

The models trained and validated on simpler instances (A, B and
C) generalize well to harder instances (D)

MAE of 2.85 (training on class A)
MAE of 0.32 (training on classes A, B and C)
Important variability across models with different hyper
parameters when only trained on class A (MAE varies between
0.74 and 9.05)

Numerical analysis of feasibility: there exists a feasible
operational solution for a given predicted tactical solution in 96.6%
of the instances (the share is much lower for the benchmarks)

36

TACTICAL: MULTILAYER PERCEPTRON

intermodal.iro.umontreal.ca | Page

Class A instances

The average absolute error of the SAA solution is similar to
that of the ML algorithm: 0.82 compared to 0.985

The computing times for SAA vary between 1 second to 4
minutes with an average of 1 minute

37

TACTICAL: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA)
of the two stage stochastic program?

Exact Combinatorial Optimization with

Graph Convolutional Neural Networks
1

Maxime Gasse, Didier Chételat, Nicola Ferroni,
Laurent Charlin, Andrea Lodi

1In H. Wallach et al., Eds., Advances in Neural Information Processing
Systems 32 (NIPS 2019), Curran Associates, Inc., 2019, 15554–15566.

1/17

Graph Convolution Neural Networks

Node state encoding

Natural MILP representation : constraint / variable bipartite graph

argmin
x

c>x

subject to Ax b,
l x u,

x P Zp ⇥ Rn�p.

v0

v1

v2

c0

c1

e0,0

e2,0

e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . .)
I cj : constraint features (right-hand-side, LP slack. . .)
I ei ,j : non-zero coefficients in A

D. Selsam et al. (2018). Learning a SAT Solver from Single-Bit Supervision.

11/17

Graph Convolution Neural Networks

Branching policy as a GCNN model

Neighbourhood-based updates: vi
P

jPNi
f✓(vi , ei,j , cj)

v0

v1

v2

0.2

0.1

0.7

⇡(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data

I permutation-invariance

I benefits from sparsity

T. N. Kipf and M. Welling (2016). Semi-Supervised Classification with Graph

Convolutional Networks.

12/17

Experiments: Imitation Learning

Strong Branching approximation

Full Strong Branching (FSB): good branching rule, but computationally

expensive. Can we learn a fast, good-enough approximation ?

Imitation learning

I collect D = {(s, a?), . . . } from an expert agent (FSB) using SCIP
2

I estimate ⇡?(a | s) from D
+ no reward function, supervised learning, well-behaved

� will never surpass the expert...

Not a new idea

I Alvarez et al. (2017) predict SB scores with an XTrees model

I Khalil et al. (2016) predict SB rankings with an SVMrank model

I Hansknecht et al. (2018) do the same with a �-MART model

2A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6. Technical
Report. Optimization Online.

14/17

Experiments: Imitation Learning

Minimum set covering
3

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 20.19 0 / 100 16 282.14 0 / 100 215 3600.00 0 / 0

RPB 13.38 1 / 100 63 66.58 9 / 100 2327 1699.96 27 / 65 51 022

XTrees 14.62 0 / 100 199 106.95 0 / 100 3043 2726.56 0 / 36 58 608

SVMrank 13.33 1 / 100 157 89.63 0 / 100 2516 2401.43 0 / 48 42 824

�-MART 12.20 59 / 100 161 72.07 12 / 100 2584 2177.72 0 / 54 48 032

GCNN 12.25 39 / 100 130 59.40 79 / 100 1845 1680.59 40 / 64 34 527

3 problem sizes

I 500 rows, 1000 cols (easy), training distribution

I 1000 rows, 1000 cols (medium)

I 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.

Generalizes to harder problems !

3E. Balas and A. Ho (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study. In:
Combinatorial Optimization. Springer, pp. 37–60.

15/17

Evaluation

• What are our metrics?

• What instances do we want to generalize to?

• Instance specific policies should be easier to learn, but
have to be re-learned every time

• Policies that generalize can take some training offline
(multi-task learning) 
→ transfer learning, fine-tuning, meta-learning

• What distribution of instances are we interested in?

Challenges
• Which models and DL/RL algorithms will perform well?

• How do we represent the data? Should we approximate it?

• Can we scale?

• In the computations?

• Generalizing?

• Learning?

• How to anticipate learning? Which distribution? How to
generate data?

Summary
• Overall we start to have (mild) evidence that such an

integration approach could be effective.

• The needs for discrete optimization are clear:

• dealing with big (and uncertain) data

• introduce in the process more modern statistics

• “learn” to repeatedly solve the “same instance”

• The additional challenge is how to integrate all that in a
new sound methodology, including technology issues like
the CPU vs GPU relationship [Gupta et al. 2020].

References
• Y. Bengio, A. Lodi, A. Prouvost (2018) - Machine Learning for

Combinatorial Optimization: a Methodological Tour d’Horizon. 
https://arxiv.org/abs/1811.06128 (EJOR 2020)

• A.S. Xavier, F. Qiu, S. Ahmed (2019) - Learning to Solve Large-Scale
Security-Constrained Unit Commitment Problems. https://arxiv.org/abs/
1902.01697

• E. Larsen, S. Lachapelle, Y. Bengio, E. Frejinger, S. Lacoste-Julien, A.
Lodi (2019) - Predicting Tactical Solutions to Operational Planning
Problems under Imperfect Information. https://arxiv.org/abs/1901.07935

• M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019) - Exact
Combinatorial Optimization with Graph Convolutional Neural Networks
In H. Wallach et al., Advances in Neural Information Processing
Systems 32 (NIPS 2019), Curran Associates, Inc., 2019, 15554--15566.

https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1902.01697
https://arxiv.org/abs/1902.01697
https://arxiv.org/abs/1901.07935
https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1902.01697
https://arxiv.org/abs/1902.01697
https://arxiv.org/abs/1901.07935

