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What is this talk about?
Introduction

Can we train, e.g., Neural Networks so that they are (more)
robust to noise and adversarial attacks?

Outline
• A simple example
• The basic setup of supervised Machine Learning
• Stochastic Gradient Descent
• Stochastic Conditional Gradient Descent

(Hyperlinked) References are not exhaustive; check references contained therein.
Statements are simplified for the sake of exposition.

Sebastian Pokutta · Training with Conditional Gradients 2 / 14



What is this talk about?
Introduction

Can we train, e.g., Neural Networks so that they are (more)
robust to noise and adversarial attacks?

Outline
• A simple example
• The basic setup of supervised Machine Learning
• Stochastic Gradient Descent
• Stochastic Conditional Gradient Descent

(Hyperlinked) References are not exhaustive; check references contained therein.
Statements are simplified for the sake of exposition.

Sebastian Pokutta · Training with Conditional Gradients 2 / 14



Supervised Machine Learning and ERM
A simple example

Consider the following simple learning problem, a.k.a. linear regression:

Given:
Set of points X � {x1, . . . ,xk} ⊆ Rn

Vector y � (y1, . . . ,yk) ∈ Rk

Find:
Linear function θ ∈ Rn, such that

xiθ ≈ yi ∀i ∈ [k],

or in matrix form:

Xθ ≈ y. [Wikipedia]

The search for the best θ can be naturally cast as an optimization problem:

min
θ

∑
i∈[k]
|xiθ − yi |

2 = min
θ
‖Xθ − y‖22 (linReg)
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Supervised Machine Learning and ERM
Empirical Risk Minimization

More generally, interested in the Empirical Risk Minimization problem:

min
θ
L(θ) � min

θ

1
|D|

∑
(x,y)∈D

`(f (x, θ),y). (ERM)

The ERM approximates the General Risk Minimization problem:

min
θ
L̂(θ) � min

θ
E
(x,y)∈D̂ `(f (x, θ),y). (GRM)

Note: If D is chosen large enough, under relatively mild assumptions, a solution to
(ERM) is a good approximation to a solution to (GRM):

L̂(θ) ≤ L(θ) +

√
log|Θ| + log 1

δ

|D|
,

with probability 1 − δ. This bound is typically very loose.
[ e.g., Suriya Gunasekar’ lecture notes] [The Elements of Statistical Learning, Hastie et al]
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Supervised Machine Learning and ERM
Empirical Risk Minimization: Examples

1. Linear Regression
`(zi,yi) � |zi − yi |2 and zi = f (θ,xi) � xiθ

2. Classification / Logistic Regression over classes C
`(zi,yi) � −

∑
c∈[C] yi,c log zi,c and, e.g., zi = f (θ,xi) � xiθ (or a neural network)

3. Support Vector Machines
`(zi,yi) � yimax(0,1 − zi) + (1 − yi)max(0,1 + zi) and zi = f (θ,xi) � xiθ

4. Neural Networks
`(zi,yi) some loss function and zi = f (θ,xi) neural network with weights θ

...and many more choices and combinations possible.
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Optimizing the ERM Problem
Stochastic Gradient Descent

How to solve Problem (ERM)?

Simple idea: Gradient Descent [see blog for background on conv opt]

θt+1 ← θt − η∇L(θt) (GD)

Unfortunately, this might be too expensive if (ERM) has a lot of summands.

However, reexamine:

∇L(θ) = ∇ 1
|D|

∑
(x,y)∈D

`(f (x, θ),y) = 1
|D|

∑
(x,y)∈D

∇`(f (x, θ),y), (ERMgrad)

Thus if we sample (x,y) ∈ D uniformly at random, then

∇L(θ) = E(x,y)∈D∇`(f (x, θ),y) (gradEst)
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Optimizing the ERM Problem
Stochastic Gradient Descent

This leads to Stochastic Gradient Descent

θt+1 ← θt − η∇`(f (x, θt),y) with (x,y) ∼ D, (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.
• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.
• Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...
• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

Sebastian Pokutta · Training with Conditional Gradients 7 / 14

https://ruder.io/optimizing-gradient-descent/


Optimizing the ERM Problem
Stochastic Gradient Descent

This leads to Stochastic Gradient Descent

θt+1 ← θt − η∇`(f (x, θt),y) with (x,y) ∼ D, (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.

• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.
• Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...
• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

Sebastian Pokutta · Training with Conditional Gradients 7 / 14

https://ruder.io/optimizing-gradient-descent/


Optimizing the ERM Problem
Stochastic Gradient Descent

This leads to Stochastic Gradient Descent

θt+1 ← θt − η∇`(f (x, θt),y) with (x,y) ∼ D, (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.
• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.

• Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...
• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

Sebastian Pokutta · Training with Conditional Gradients 7 / 14

https://ruder.io/optimizing-gradient-descent/


Optimizing the ERM Problem
Stochastic Gradient Descent

This leads to Stochastic Gradient Descent

θt+1 ← θt − η∇`(f (x, θt),y) with (x,y) ∼ D, (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.
• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.
• Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...

• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

Sebastian Pokutta · Training with Conditional Gradients 7 / 14

https://ruder.io/optimizing-gradient-descent/


Optimizing the ERM Problem
Stochastic Gradient Descent

This leads to Stochastic Gradient Descent

θt+1 ← θt − η∇`(f (x, θt),y) with (x,y) ∼ D, (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.
• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.
• Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...
• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

Sebastian Pokutta · Training with Conditional Gradients 7 / 14

https://ruder.io/optimizing-gradient-descent/


A comparison between different variants
Stochastic Gradient Descent

[Graphics from blog of Sebastian Ruder; see also for animations]
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(More) robust ERM training
Stochastic Conditional Gradients

Recall Problem (ERM):

min
θ

1
|D|

∑
(x,y)∈D

`(f (x, θ),y).

In the standard formulation θ is unbounded and can get quite large.

Problem. Large θ for, e.g., Neural Networks lead to large Lipschitz constants. Trained
network becomes sensitive to input noise and perturbations. [Tsuzuku, Sato, Sugiyama, 2018]
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(More) robust ERM training
Stochastic Conditional Gradients

(Partial) Solution. Constrained ERM training:

min
θ∈P

1
|D|

∑
(x,y)∈D

`(f (x, θ),y), (cERM)

where P is a compact convex set.

Rationelle. Find “better conditioned” local minima θ.
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The Frank-Wolfe Algorithm a.k.a. Conditional Gradients
Stochastic Conditional Gradients

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ V
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈V
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

• FW minimizes f over conv(V) by
sequentially picking up vertices
• The final iterate xT has cardinality at
most T + 1
• Very easy implementation
• Algorithm is robust and depends on
few parameters

f (x) = ‖x − x∗‖22

xt

vt

−∇f (xt)

x∗

xt+1
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5: end for

• FW minimizes f over conv(V) by
sequentially picking up vertices
• The final iterate xT has cardinality at
most T + 1
• Very easy implementation
• Algorithm is robust and depends on
few parameters
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Does it work?
Stochastic Conditional Gradients

As before choose an unbiased gradient estimator ∇̃f (xt) with E[∇̃f (xt)] = ∇f (xt).

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)
1: x0 ∈ V
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈V
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

Similarly, many variants available
• Batch versions. Rather than just taking one stochastic gradient, sample and
average a mini batch. This also reduces variance of the gradient estimator.
• Learning rate schedules. To ensure convergence the learning rate η is dynamically
managed.
• Variance Reduction. Compute exact gradient once in a while as reference point,
e.g., SVRF, SVRCGS, ...
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Does it work?
Stochastic Conditional Gradients

Same setup as before. SGD and SFW as solvers.

test set accuracy
Frank Wolfe Gradient Descent
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Performance for Neural Network trained on MNIST.

More details and experiments in the exercise...
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Thank you!

Sebastian Pokutta · Training with Conditional Gradients 14 / 14


	Introduction
	Stochastic Gradient Descent
	Stochastic Conditional Gradients

