Robust ML Training with Conditional Gradients

Sebastian Pokutta

Technische Universität Berlin and Zuse Institute Berlin

pokutta@math.tu-berlin.de @spokutta

CO@Work 2020 Summer School September, 2020

Berlin Mathematics Research Center

Opportunities in Berlin

Shameless plug

Postdoc and PhD positions in optimization/ML.

At Zuse Institute Berlin and TU Berlin.

What is this talk about?

Introduction

Can we train, e.g., Neural Networks so that they are (more) robust to noise and adversarial attacks?

What is this talk about?

Introduction

Can we train, e.g., Neural Networks so that they are (more) robust to noise and adversarial attacks?

Outline

- A simple example
- The basic setup of supervised Machine Learning
- Stochastic Gradient Descent
- Stochastic Conditional Gradient Descent

(Hyperlinked) References are not exhaustive; check references contained therein. Statements are simplified for the sake of exposition.

A simple example

Consider the following simple learning problem, a.k.a. linear regression:

Given:

Set of points $X \doteq \{x_1, \dots, x_k\} \subseteq \mathbb{R}^n$ Vector $y \doteq (y_1, \dots, y_k) \in \mathbb{R}^k$

Find:

Linear function $\theta \in \mathbb{R}^n$, such that

$$\mathbf{x}_{i}\theta \approx \mathbf{y}_{i} \qquad \forall i \in [k],$$

or in matrix form:

$$X\theta \approx y$$
.

A simple example

Consider the following simple learning problem, a.k.a. linear regression:

Given:

Set of points $X \doteq \{x_1, \dots, x_k\} \subseteq \mathbb{R}^n$ Vector $y \doteq (y_1, \dots, y_k) \in \mathbb{R}^k$

Find: Linear function $\theta \in \mathbb{R}^n$, such that

$$\mathbf{x}_{\mathbf{i}}\theta \approx \mathbf{y}_{\mathbf{i}} \quad \forall \mathbf{i} \in [\mathbf{k}],$$

or in matrix form:

$$X\theta \approx y$$

The search for the best θ can be naturally cast as an optimization problem:

$$\min_{\theta} \sum_{i \in [k]} |x_i \theta - y_i|^2 = \min_{\theta} ||X\theta - y||_2^2$$
 (linReg)

Empirical Risk Minimization

More generally, interested in the Empirical Risk Minimization problem:

$$\min_{\theta} L(\theta) \doteq \min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta), y).$$
 (ERM)

Empirical Risk Minimization

More generally, interested in the Empirical Risk Minimization problem:

$$\min_{\theta} L(\theta) \doteq \min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta), y).$$
 (ERM)

The ERM approximates the General Risk Minimization problem:

$$\min_{\theta} \widehat{\mathcal{L}}(\theta) \doteq \min_{\theta} \mathbb{E}_{(x,y)\in\widehat{\mathcal{D}}} \,\ell(f(x,\theta),y). \tag{GRM}$$

Empirical Risk Minimization

More generally, interested in the Empirical Risk Minimization problem:

$$\min_{\theta} L(\theta) \doteq \min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta), y).$$
 (ERM)

The ERM approximates the General Risk Minimization problem:

$$\min_{\theta} \widehat{\mathcal{L}}(\theta) \doteq \min_{\theta} \mathbb{E}_{(x,y)\in\widehat{\mathcal{D}}} \ell(f(x,\theta), y).$$
 (GRM)

Note: If \mathcal{D} is chosen large enough, under relatively mild assumptions, a solution to (ERM) is a good approximation to a solution to (GRM):

$$\widehat{L}(\theta) \leq L(\theta) + \sqrt{\frac{\log|\Theta| + \log \frac{1}{\delta}}{|\mathcal{D}|}},$$

with probability $1 - \delta$. This bound is typically very loose.

[e.g., Suriya Gunasekar' lecture notes] [The Elements of Statistical Learning, Hastie et al]

Empirical Risk Minimization: Examples

1. Linear Regression $\ell(z_i, y_i) \doteq |z_i - y_i|^2$ and $z_i = f(\theta, x_i) \doteq x_i \theta$

Empirical Risk Minimization: Examples

- 1. Linear Regression $\ell(z_i, y_i) \doteq |z_i - y_i|^2$ and $z_i = f(\theta, x_i) \doteq x_i \theta$
- 2. Classification / Logistic Regression over classes C $\ell(z_i, y_i) \doteq -\sum_{c \in [C]} y_{i,c} \log z_{i,c}$ and, e.g., $z_i = f(\theta, x_i) \doteq x_i \theta$ (or a neural network)

Empirical Risk Minimization: Examples

- 1. Linear Regression $\ell(z_i, y_i) \doteq |z_i - y_i|^2$ and $z_i = f(\theta, x_i) \doteq x_i \theta$
- 2. Classification / Logistic Regression over classes C $\ell(z_i, y_i) \doteq -\sum_{c \in [C]} y_{i,c} \log z_{i,c}$ and, e.g., $z_i = f(\theta, x_i) \doteq x_i \theta$ (or a neural network)
- 3. Support Vector Machines

 $\ell(z_i, y_i) \doteq y_i \max(0, 1 - z_i) + (1 - y_i) \max(0, 1 + z_i) \text{ and } z_i = f(\theta, x_i) \doteq x_i \theta$

Empirical Risk Minimization: Examples

- 1. Linear Regression $\ell(z_i, y_i) \doteq |z_i - y_i|^2$ and $z_i = f(\theta, x_i) \doteq x_i \theta$
- 2. Classification / Logistic Regression over classes C $\ell(z_i, y_i) \doteq -\sum_{c \in [C]} y_{i,c} \log z_{i,c}$ and, e.g., $z_i = f(\theta, x_i) \doteq x_i \theta$ (or a neural network)
- 3. Support Vector Machines $\ell(z_i, y_i) \doteq y_i \max(0, 1 z_i) + (1 y_i) \max(0, 1 + z_i)$ and $z_i = f(\theta, x_i) \doteq x_i \theta$

4. Neural Networks

 $\ell(z_i, y_i)$ some loss function and $z_i = f(\theta, x_i)$ neural network with weights θ

...and many more choices and combinations possible.

How to solve Problem (ERM)?

How to solve Problem (ERM)?

Simple idea: Gradient Descent

[see blog for background on conv opt]

$$\theta_{t+1} \leftarrow \theta_t - \eta \nabla L(\theta_t)$$
 (GD)

How to solve Problem (ERM)?

Simple idea: Gradient Descent

[see blog for background on conv opt]

$$\theta_{t+1} \leftarrow \theta_t - \eta \nabla L(\theta_t)$$
 (GD)

Unfortunately, this might be too expensive if (ERM) has a lot of summands.

How to solve Problem (ERM)?

Simple idea: Gradient Descent

[see blog for background on conv opt]

$$\theta_{t+1} \leftarrow \theta_t - \eta \nabla L(\theta_t)$$
 (GD)

Unfortunately, this might be too expensive if (ERM) has a lot of summands.

However, reexamine:

$$\nabla L(\theta) = \nabla \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta),y) = \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \nabla \ell(f(x,\theta),y), \quad (\mathsf{ERMgrad})$$

How to solve Problem (ERM)?

Simple idea: Gradient Descent

[see blog for background on conv opt]

$$\theta_{t+1} \leftarrow \theta_t - \eta \nabla L(\theta_t)$$
 (GD)

Unfortunately, this might be too expensive if (ERM) has a lot of summands.

However, reexamine:

$$\nabla L(\theta) = \nabla \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta),y) = \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \nabla \ell(f(x,\theta),y), \quad (\mathsf{ERMgrad})$$

Thus if we sample $(x, y) \in \mathcal{D}$ uniformly at random, then

$$\nabla L(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \nabla \ell(f(\mathbf{x}, \theta), \mathbf{y})$$
 (gradEst)

This leads to Stochastic Gradient Descent

$$\theta_{t+1} \leftarrow \theta_t - \eta \nabla \ell(f(x, \theta_t), y) \quad \text{with } (x, y) \sim \mathcal{D},$$
 (SGD)

one of the most-used algorithm for ML training (together with its many variants).

This leads to Stochastic Gradient Descent

 $\theta_{t+1} \leftarrow \theta_t - \eta \nabla \ell(f(x, \theta_t), y) \quad \text{with } (x, y) \sim \mathcal{D},$ (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include

• Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.

This leads to Stochastic Gradient Descent

 $\theta_{t+1} \leftarrow \theta_t - \eta \nabla \ell(f(x, \theta_t), y) \quad \text{with } (x, y) \sim \mathcal{D},$ (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include

- Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.
- Learning rate schedules. To ensure convergence the learning rate η is dynamically managed.

This leads to Stochastic Gradient Descent

 $\theta_{t+1} \leftarrow \theta_t - \eta \nabla \ell(f(x, \theta_t), y) \quad \text{with } (x, y) \sim \mathcal{D},$ (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include

- Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.
- Learning rate schedules. To ensure convergence the learning rate *η* is dynamically managed.
- Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...

This leads to Stochastic Gradient Descent

 $\theta_{t+1} \leftarrow \theta_t - \eta \nabla \ell(f(x, \theta_t), y) \quad \text{with } (x, y) \sim \mathcal{D},$ (SGD)

one of the most-used algorithm for ML training (together with its many variants).

Typical variants include

- Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.
- Learning rate schedules. To ensure convergence the learning rate *η* is dynamically managed.
- Adaptive Variants and Momentum. RMSProp, Adagrad, Adadelta, Adam, ...
- Variance Reduction. Compute exact gradient once in a while as reference point, e.g., SVRG.

[for an overview of variants: blog of Sebastian Ruder]

A comparison between different variants Stochastic Gradient Descent

[Graphics from blog of Sebastian Ruder; see also for animations]

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \ell(f(\mathbf{x}, \theta), \mathbf{y}).$$

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} \ell(f(x,\theta),y).$$

In the standard formulation θ is unbounded and can get quite large.

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \ell(f(\mathbf{x}, \theta), \mathbf{y}).$$

In the standard formulation θ is unbounded and can get quite large.

Problem. Large θ for, e.g., Neural Networks lead to large Lipschitz constants. Trained network becomes sensitive to input noise and perturbations. [Tsuzuku, Sato, Sugiyama, 2018]

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \ell(f(\mathbf{x}, \theta), \mathbf{y}).$$

In the standard formulation θ is unbounded and can get quite large.

Problem. Large θ for, e.g., Neural Networks lead to large Lipschitz constants. Trained network becomes sensitive to input noise and perturbations. [Tsuzuku, Sato, Sugiyama, 2018]

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \ell(f(\mathbf{x}, \theta), \mathbf{y}).$$

In the standard formulation θ is unbounded and can get quite large.

Problem. Large θ for, e.g., Neural Networks lead to large Lipschitz constants. Trained network becomes sensitive to input noise and perturbations. [Tsuzuku, Sato, Sugiyama, 2018]

Recall Problem (ERM):

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \ell(f(\mathbf{x}, \theta), \mathbf{y}).$$

In the standard formulation θ is unbounded and can get quite large.

Problem. Large θ for, e.g., Neural Networks lead to large Lipschitz constants. Trained network becomes sensitive to input noise and perturbations. [Tsuzuku, Sato, Sugiyama, 2018]

(Partial) Solution. Constrained ERM training:

$$\min_{\theta \in \mathsf{P}} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta), y), \tag{cERM}$$

where P is a compact convex set.

(Partial) Solution. Constrained ERM training:

$$\min_{\theta \in \mathsf{P}} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(f(x,\theta), y), \tag{cERM}$$

where P is a compact convex set.

Rationelle. Find "better conditioned" local minima θ .

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Algorithm Frank-Wolfe Algorithm (FW)

- 1: $X_0 \in \mathcal{V}$
- 2: **for** *t* = 0 **to** *T* − 1 **do**
- 3: $V_t \leftarrow \arg\min_{v \in V} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

- 1: $X_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $V_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $V_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

- 5: end for
 - FW minimizes f over conv(V) by sequentially picking up vertices

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Algorithm Frank-Wolfe Algorithm (FW)

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

```
5: end for
```

- FW minimizes *f* over conv(V) by sequentially picking up vertices
- The final iterate x_T has cardinality at most T + 1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Algorithm Frank-Wolfe Algorithm (FW)

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

```
5: end for
```

- FW minimizes *f* over conv(V) by sequentially picking up vertices
- The final iterate x_T has cardinality at most T + 1
- Very easy implementation

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Algorithm Frank-Wolfe Algorithm (FW)

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$

4:
$$X_{t+1} \leftarrow X_t + \gamma_t (V_t - X_t)$$

```
5: end for
```

- FW minimizes f over conv(V) by sequentially picking up vertices
- The final iterate x_T has cardinality at most T + 1
- Very easy implementation
- Algorithm is robust and depends on few parameters

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \overline{\nabla} f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$ 5: end for

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$ 5: end for

Similarly, many variants available

• Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$ 5: end for

Similarly, many variants available

- Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.
- Learning rate schedules. To ensure convergence the learning rate η is dynamically managed.

As before choose an unbiased gradient estimator $\tilde{\nabla} f(x_t)$ with $\mathbb{E}[\tilde{\nabla} f(x_t)] = \nabla f(x_t)$.

Algorithm Stochastic Frank-Wolfe Algorithm (SFW)

1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do 3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \tilde{\nabla} f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$ 5: end for

Similarly, many variants available

- Batch versions. Rather than just taking one stochastic gradient, sample and average a mini batch. This also reduces variance of the gradient estimator.
- Learning rate schedules. To ensure convergence the learning rate η is dynamically managed.
- Variance Reduction. Compute exact gradient once in a while as reference point, e.g., SVRF, SVRCGS, ...

Same setup as before. SGD and SFW as solvers.

Same setup as before. SGD and SFW as solvers.

Same setup as before. SGD and SFW as solvers.

Same setup as before. SGD and SFW as solvers.

Same setup as before. SGD and SFW as solvers.

Performance for Neural Network trained on MNIST.

More details and experiments in the exercise...

Thank you!