Column Generation, Dantzig-Wolfe, Branch-Price-and-Cut Marco Lübbecke · OR Group · RWTH Aachen University, Germany @mluebbecke #### Prerequisites - \rightarrow you already know - modeling with integer variables - basic facts about polyhedra - how the simplex algorithm works - a bit about linear programming duality - have seen some cutting planes and know what they are good for - know the branch-and-bound algorithm #### Goals of this Unit - ▶ introduce you to the column generation and branch-and-price algorithms - with the aim of expanding your modeling (!) capabilities - which may result in stronger formulations for specially structured problems - ▶ to ultimately help you solving such problems faster # The Cutting Stock Problem image source: commons.wikimedia.org, Leeco Steel - Antonio Rosset ### The Cutting Stock Problem: Kantorovich (1939, 1960) m rolls of length $L \in \mathbb{Z}_+$, n orders of length $\ell_i \in \mathbb{Z}_+$, and demand $d_i \in \mathbb{Z}_+$, $i \in [n] := \{1, \dots, n\}$ a minimum number of rolls has to be cut into orders; from each order i we need d_i pieces in total $$\begin{array}{ll} \min & \sum_{j=1} y_j & \text{$/\!\!/} \text{ minimize number of used rolls} \\ \text{s. t.} & \sum_{j=1}^m x_{ij} = d_i & i \in [n] & \text{$/\!\!/} \text{ every order has to be cut sufficiently often} \\ & \sum_{j=1}^n \ell_i x_{ij} \leq L & j \in [n] & \text{$/\!\!/} \text{ do not exceed rolls' lengths} \\ & x_{ij} \leq d_i y_j & i \in [n], \ j \in [m] & \text{$/\!\!/} \text{ we can only cut rolls that we use} \\ & x_{ij} \in \mathbb{Z}_+ & i \in [n], \ j \in [m] & \text{$/\!\!/} \text{ how often to cut order i from roll j} \\ & y_j \in \{0,1\} & j \in [m] & \text{$/\!\!/} \text{ whether or not to use roll j} \\ \end{array}$$ how do solutions look like? how can we possibly cut one roll \triangleright the set \mathcal{P} of (encodings of) all feasible cutting patterns is $$\mathcal{P} = \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{Z}_+^n \mid \sum_{i=1}^n \ell_i a_i \le L \right\}$$ ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p - ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p - build a model on these observations, based on entire configurations $$\lambda_p \in \mathbb{Z}_+ \quad p \in \mathcal{P} \quad ext{ // how often to cut pattern } p?$$ - ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p - build a model on these observations, based on entire configurations s.t. $$\sum_{p\in\mathcal{P}}a_{ip}\lambda_p=d_i$$ $i\in[n]$ // cover all demands $$\lambda_p\in\mathbb{Z}_+$$ // $p\in\mathcal{P}$ // how often to cut pattern p ? - ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p - build a model on these observations, based on entire configurations $$\begin{array}{ll} \min & \sum_{p\in\mathcal{P}}\lambda_p & \text{ // minimimize number of patterns used} \\ \text{s.t.} & \sum_{p\in\mathcal{P}}a_{ip}\lambda_p=d_i & i\in[n] & \text{ // cover all demands} \\ & \lambda_p\in\mathbb{Z}_+ & p\in\mathcal{P} & \text{ // how often to cut pattern }p? \end{array}$$ this is an integer program with maany variables // in contrast to Kantorovich's formulation, this model does not precisely specify which rolls to actually use #### Why would we care about different Models? image source: twitter.com, @MurrietaPD #### Overview - 1 Column Generation - 2 Dantzig-Wolfe Reformulation - 3 Branch-Price-and-Cut - 4 Dual View ▶ we want to solve a linear program, the *master problem* (MP) $$z_{ ext{MP}}^* = \min \quad \sum_{j \in J} c_j \lambda_j$$ s.t. $\sum_{j \in J} \mathbf{a}_j \lambda_j \geq \mathbf{b}$ $\lambda_j \geq 0 \qquad \forall j \in J$ ightharpoonup typically, |J| super huge **b** but we solve a linear program, the *restricted master problem* (RMP), with $J' \subseteq J$ $$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$ s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b}$ $\lambda_j \geq 0 \qquad \forall j \in J'$ • typically, |J| super huge, |J'| small but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$ $$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$ s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} \quad [\pi]$ $\lambda_j \geq 0 \qquad \forall j \in J'$ - ightharpoonup typically, |J| super huge, |J'| small - \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$ $$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$ s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} \quad [\pi]$ $\lambda_j \geq 0 \qquad \forall j \in J'$ - ightharpoonup typically, |J| super huge, |J'| small - \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP - is λ an optimal solution to the MP as well? // maybe we are lucky! but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$ $$egin{aligned} z^*_{\mathrm{RMP}} &= \min & \sum_{j \in J'} c_j \lambda_j \ & ext{s.t.} & \sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} & [oldsymbol{\pi}] \ & \lambda_j \geq 0 & orall j \in J' \end{aligned}$$ - ightharpoonup typically, |J| super huge, |J'| small - \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP - is λ an optimal solution to the MP as well? // maybe we are lucky! - sufficient optimality condition: non-negative reduced cost $\bar{c}_j = c_j \pi^t \mathbf{a}_j \geq 0, \forall j \in J$ ### Naïve Idea for an Algorithm: Explicit Pricing checking the reduced cost (to identify a promising variable, if any) is called *pricing* #### algorithm column generation with explicit pricing ``` input: restricted master problem RMP with an initial set J' \subseteq J of variables; output: optimal solution \lambda to the master problem MP; ``` #### repeat ``` solve RMP to optimality, obtain \lambda and \pi; compute all \bar{c}_i = c_i - \pi^t \mathbf{a}_i, j \in J; // computationally prohibitive if there is a variable \lambda_{i^*} with \bar{c}_{i^*} < 0 then J' \leftarrow J' \cup \{j^*\}; ``` until all variables λ_i , $i \in J$, have $\bar{c}_i > 0$; ### Better Idea: Implicit Pricing ▶ instead: solve an auxiliary optimization problem, the pricing problem $$z = \min\{\bar{c}_j \mid j \in J\}$$ - \rightarrow if z < 0, we set $J' \leftarrow J' \cup \arg\min_{j \in J} \{\bar{c}_j\}$ and re-optimize the restricted master problem - \rightarrow otherwise, i.e., $z \geq 0$, there is no $j \in J$ with $\bar{c}_j < 0$ and we proved that we solved the master problem to optimality #### The Column Generation Algorithm #### algorithm column generation #### Example: Cutting Stock: Restricted Master Problem solve LP relaxation of Gilmore & Gomory formulation $$\min \qquad \sum_{p\in\mathcal{P}'} \lambda_p$$ $$\text{s.t.} \quad \sum_{p\in\mathcal{P}'} a_{ip}\lambda_p = d_i \quad [\pi_i] \quad i\in[n] \quad \textit{i'} \text{ one dual variable per order/demand}$$ $$\lambda_p \geq 0 \qquad \qquad p\in\mathcal{P}'$$ with $$\mathcal{P}'\subseteq\mathcal{P}=\{(a_1,\ldots,a_n)^t\in\mathbb{Z}_+^n\mid \sum_{i=1}^n\ell_ia_i\leq L\}$$ a subset of variables \rightarrow obtain optimal primal λ and optimal dual $\pi^t = (\pi_1, \dots, \pi_n)$ # solving a linear program, we always obtain both, optimal primal and optimal dual solutions ### **Example: Cutting Stock: Reduced Cost** - ightharpoonup optimal dual $\pi^t = (\pi_1, \dots, \pi_n)$ - reduced cost of λ_p // that formula again! it must be important... $$\bar{c}_p = 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$ for all feasible cutting patterns $p \in \mathcal{P}$ again: explicit enumeration of all patterns is totally out of the question // it does not seem that we are making good progress ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$ $$z = \min_{p \in \mathcal{P}} \bar{c}_p = \min_{p \in \mathcal{P}} 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$ ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$ $$z = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$ $$= \min \quad 1 - \sum_{i=1}^n \pi_i x_i$$ $$\text{s.t.} \qquad \sum_{i=1}^n \ell_i x_i \le L$$ $$x_i \in \mathbb{Z}_+ \quad i \in [n]$$ ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$ $$z = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$ $$= 1 - \max_{i=1}^n \pi_i x_i$$ s.t. $$\sum_{i=1}^n \ell_i x_i \le L$$ $$x_i \in \mathbb{Z}_+ \quad i \in [n]$$ which is a knapsack problem! • two cases for the minimum reduced cost $z = \min_{p \in \mathcal{P}} \bar{c}_p$: **1**. $$z < 0$$ pricing variable values $(x_i)_{i \in [n]}$ encode a feasible pattern $p^* = (a_{ip^*})_{i \in [n]}$ $$\mathcal{P}' \leftarrow \mathcal{P}' \cup \{p^*\}$$; repeat solving the RMP. 2. $$z \ge 0$$ proves that there is no negative reduced cost (master variable that corresponds to a) feasible pattern $$\min \sum_{p \in \mathcal{P}'} \lambda_p$$ $$\text{s.t.} \sum_{p \in \mathcal{P}'} a_{1p} \lambda_p = d_1$$ $$\vdots$$ $$\sum_{p \in \mathcal{P}'} a_{np} \lambda_p = d_n$$ $$\lambda_p = d_n$$ $$\geq 0 \qquad p \in \mathcal{P}$$ $$\begin{array}{lll} & \sum\limits_{p\in\mathcal{P}'}\lambda_p \ + & 1\\ \lambda_{p^*} \\ & \text{s.t.} &
\sum\limits_{p\in\mathcal{P}'}a_{1p}\lambda_p \ + & a_{1p^*}\lambda_{p^*} \\ & & \vdots \\ & \sum\limits_{p\in\mathcal{P}'}a_{np}\lambda_p \ + & a_{np^*}\lambda_{p^*} \\ & & \lambda_p \ , & \lambda_{p^*} \end{array} \qquad = \ d_1$$ - this dynamic addition of variables is called column generation - column generation is an algorithm to solve linear programs #### Why should this work? #### Motivation for Column Generation I - in a basic solution to the master problem, at most $m \ll |J|$ variables are non-zero - empirically, run time of simplex method linearly depends on no. m of rows - possibly, many variables are never part of the basis #### Motivation for Column Generation II - the "pattern based" model can be stronger than the "assignment based" model - theory helps us proving this (via Dantzig-Wolfe reformulation) - the "pattern based" model is not symmetric ## Another Example: Vertex Coloring #### Data G = (V, E) undirected graph #### Goal color all vertices such that adjacent vertices receive different colors, minimizing the number of used colors $$x_{ic} \in \{0,1\}$$ $i \in V, c \in C$ // color i with c ? $$\text{s.t.} \qquad \sum_{c \in C} x_{ic} = 1 \qquad \qquad i \in V \qquad \qquad \textit{\# color each vertex}$$ $$x_{ic} \in \{0,1\}$$ $i \in V, c \in C$ // color i with c ? s.t. $$\sum_{c \in C} x_{ic} = 1 \qquad i \in V \qquad \text{$///$ color each vertex}$$ $$x_{ic} + x_{jc} \le 1 \qquad ij \in E, \ c \in C \qquad \text{$///$ avoid conflicts}$$ $$x_{ic} \in \{0,1\} \quad i \in V, \ c \in C \qquad \text{$///$ color i with c?}$$ $$\begin{aligned} \text{s.t.} & \sum_{c \in C} x_{ic} = 1 & i \in V & \text{ $/\!\!/} \text{ color each vertex} \\ & x_{ic} + x_{jc} \leq 1 & ij \in E, \ c \in C & \text{ $/\!\!/} \text{ avoid conflicts} \\ & x_{ic} \leq y_c & i \in V, \ c \in C & \text{ $/\!\!/} \text{ couple x and y} \\ & x_{ic} \in \{0,1\} & i \in V, \ c \in C & \text{ $/\!\!/} \text{ color } i \text{ with } c? \\ & y_c \in \{0,1\} & c \in C & \text{ $/\!\!/} \text{ do we use color } c? \end{aligned}$$ ### Vertex Coloring: Textbook Model notation: C set of available colors $$\chi(G) = \min \quad \sum_{c \in C} y_c \qquad \text{$/$minimize number of used colors}$$ s.t. $$\sum_{c \in C} x_{ic} = 1 \qquad i \in V \qquad \text{$/\!\!/$color each vertex}$$ $$x_{ic} + x_{jc} \leq 1 \qquad ij \in E, \ c \in C \qquad \text{$/\!\!/$avoid conflicts}$$ $$x_{ic} \leq y_c \qquad i \in V, \ c \in C \qquad \text{$/\!\!/$color i with c?}$$ $$y_c \in \{0,1\} \quad i \in V, \ c \in C \qquad \text{$/\!\!/$color i with c?}$$ $$y_c \in \{0,1\} \quad c \in C \qquad \text{$/\!\!/$do we use color c?}$$ \blacktriangleright $\chi(G)$ is called the *chromatic number of G*. ## Vertex Coloring: Master Problem - ▶ observation: each color class forms an *independent set* in *G* - ightharpoonup denote by $\mathcal P$ the set of (encodings of) all independent sets in G - $ightharpoonup a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p $$\lambda_p \in \{0,1\} \quad p \in \mathcal{P} \quad \textit{# do we use independent set } p?$$ - ► The LP relaxation gives a master problem - solve it by column generation - \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex ## Vertex Coloring: Master Problem - observation: each color class forms an independent set in G - ightharpoonup denote by $\mathcal P$ the set of (encodings of) all independent sets in G - $lacktriangleq a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p s.t. $$\sum_{p\in\mathcal{P}}a_{ip}\lambda_p=1$$ $i\in V$ // every vertex must be covered $$\lambda_p\in\{0,1\}\quad p\in\mathcal{P}$$ // do we use independent set p ? - ► The LP relaxation gives a master problem - solve it by column generation - \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex ### Vertex Coloring: Master Problem - observation: each color class forms an independent set in G - ightharpoonup denote by $\mathcal P$ the set of (encodings of) all independent sets in G - $ightharpoonup a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p $$\min \qquad \sum_{p \in \mathcal{P}} \lambda_p \qquad \text{{\it //} minimimize no. of sets used}$$ $$\text{s.t.} \quad \sum_{p \in \mathcal{P}} a_{ip} \lambda_p = 1 \qquad i \in V \quad \text{{\it //} every vertex must be covered}$$ $$\lambda_p \in \{0,1\} \quad p \in \mathcal{P} \quad \text{{\it //} do we use independent set } p?$$ - ▶ The LP relaxation gives a master problem - solve it by column generation - \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex ## Do you know it? how does the pricing problem look like? # Vertex Coloring: Pricing Problem the pricing problem looks like $$\bar{c}^* = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix}$$ # Vertex Coloring: Pricing Problem the pricing problem looks like $$\bar{c}^* = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix}$$ $$= \min \quad 1 - \sum_{i \in V} \pi_i x_i$$ $$\text{s.t.} \qquad x_i + x_j \le 1 \qquad ij \in E$$ $$x_i \in \{0, 1\} \quad i \in V \ .$$ # Vertex Coloring: Pricing Problem the pricing problem looks like $$\begin{split} \bar{c}^* &= \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix} \\ &= 1 - \max_{i \in V} \underbrace{\sum_{i \in V} \pi_i x_i}_{s.t.} \\ \text{s.t.} \qquad x_i + x_j \leq 1 \qquad ij \in E \\ x_i \in \{0, 1\} \quad i \in V \ . \end{split}$$ which is a maximum weight independent set problem! #### Question ▶ how do we arrive at such models like Gilmore & Gomory's? #### Overview - 1 Column Generation - 2 Dantzig-Wolfe Reformulation - 2.1 Dantzig-Wolfe Reformulation - 2.2 Column Generation - 2.3 Example - 3 Branch-Price-and-Cut - 4 Dual View ## Minkowski (1896) and Weyl (1935) #### Outer and Inner Representation of a Polyhedron For $P \subseteq \mathbb{R}^n$, the following are equivalent: - 1. P is a polyhedron - 2. There are finite sets $Q, R \subseteq \mathbb{R}^n$ such that P = conv(Q) + cone(R) \mathbb{Z}^n is finitely generated - ightharpoonup choose Q (resp. R) as extreme points (resp. rays) of P we use this to equivalently reformulate what we call the ``` original model min \mathbf{c}^t \mathbf{x} s.t. A\mathbf{x} \geq \mathbf{b} D\mathbf{x} \geq \mathbf{d} x > 0 ``` we use this to equivalently reformulate what we call the $$\begin{array}{cccc} \textit{original} \; \mathsf{model} & \min & \mathbf{c^t} \mathbf{x} \\ & \mathsf{s.t.} & A\mathbf{x} \; \geq \; \mathbf{b} \\ & D\mathbf{x} \; \geq \; \mathbf{d} \\ & \mathbf{x} \; \geq \; \mathbf{0} \end{array}$$ identify two sets of constraints, typically constraints we know how to deal (well) with (the "easy constraints") and everything else (the "complicating constraints"). original formulation $$z_{\mathrm{LP}}^* = \min \ \mathbf{c^t x}$$ s.t. $A\mathbf{x} \geq \mathbf{b}$ $D\mathbf{x} \geq \mathbf{d}$ $\mathbf{x} \geq \mathbf{0}$ Idea: apply Minkowski-Weyl on the "easy constraints" $X = \{x \ge 0 \mid Dx \ge d\}$ vertices $Q = \{\mathbf{x}_1, \dots, \mathbf{x}_{|Q|}\}$, extreme rays $R = \{\mathbf{x}_1, \dots, \mathbf{x}_{|R|}\}$ of X vertices $$Q=\{\mathbf{x}_1,\dots,\mathbf{x}_{|Q|}\}$$, extreme rays $R=\{\mathbf{x}_1,\dots,\mathbf{x}_{|R|}\}$ of X express every $\mathbf{x}\in X$ as $$\begin{aligned} \mathbf{x} = &\sum_{q\in Q} \lambda_q \mathbf{x}_q \ + \ &\sum_{r\in R} \lambda_r \mathbf{x}_r \\ &\sum_{q\in Q} \lambda_q \end{aligned} = 1 \quad \text{$/\!\!/} \text{convexity constraint}$$ ≥ 0 $q \in Q$ $\lambda_r \geq 0$ $r \in R$ and substitute this $\mathbf{x} \in X$ in $A\mathbf{x} > \mathbf{b}$ and $\mathbf{c}^t\mathbf{x}$. substitution of $\mathbf{x} \in X$ in $A\mathbf{x} > \mathbf{b}$ and $\mathbf{c}^t \mathbf{x}$ $$\min \quad \mathbf{c}^{t} \left(\sum_{q \in Q} \lambda_{q} \mathbf{x}_{q} + \sum_{r \in R} \lambda_{r} \mathbf{x}_{r} \right)$$ $$\text{s.t.} \quad A \left(\sum_{q \in Q} \lambda_{q} \mathbf{x}_{q} + \sum_{r \in R} \lambda_{r} \mathbf{x}_{r} \right) \ge \mathbf{b}$$ $$\sum_{q \in Q} \lambda_{q} = 1$$ $$\lambda_{q} \geq 0 \qquad q \in Q$$ $$\lambda_{r} > 0 \qquad r \in R$$ substitution of $\mathbf{x} \in X$ in $A\mathbf{x} \geq \mathbf{b}$ and $\mathbf{c}^t\mathbf{x}$ and some rearranging $$\begin{aligned} & \min & & \sum_{q \in Q} \lambda_q \mathbf{c}^t \mathbf{x}_q \ + & \sum_{r \in R} \lambda_r \mathbf{c}^t \mathbf{x}_r \\ & \text{s.t.} & & \sum_{q \in Q} \lambda_q A \mathbf{x}_q \ + & \sum_{r \in R} \lambda_r A \mathbf{x}_r \ge \mathbf{b} \\ & & & \sum_{q \in Q} \lambda_q \end{aligned} & = 1 \\ & & & \lambda_q \qquad \qquad \ge 0 \qquad q \in Q \\ & & & \lambda_r \qquad \ge 0 \qquad r \in R \end{aligned}$$ substitution of $\mathbf{x} \in X$ in $A\mathbf{x} \geq \mathbf{b}$ and $\mathbf{c}^t \mathbf{x}$ and some rearranging $$\min \sum_{q \in Q} \lambda_q \underbrace{\mathbf{c}^t \mathbf{x}_q}_{=:c_q} + \sum_{r \in R} \lambda_r \underbrace{\mathbf{c}^t \mathbf{x}_r}_{=:c_r}$$ $$\text{s.t.} \quad \sum_{q \in Q} \lambda_q \underbrace{A \mathbf{x}_q}_{=:\mathbf{a}_q} + \sum_{r \in R} \lambda_r \underbrace{A \mathbf{x}_r}_{=:\mathbf{a}_r} \ge \mathbf{b}$$ $$\sum_{q \in Q} \lambda_q = 1$$ $$\lambda_q = 20 \qquad q \in Q$$ $$\lambda_r \geq 0 \qquad r \in R$$ leads to an extended LP which we call the master problem $$\begin{split} z_{\text{MP}}^* &= \min \quad \sum_{q \in Q} c_q \lambda_q \ + \quad \sum_{r \in R} c_r \lambda_r \\ \text{s.t.} &\quad \sum_{q \in Q} \mathbf{a}_q \lambda_q \ + \quad \sum_{r \in R} \mathbf{a}_r \lambda_r \geq \mathbf{b} \\ &\quad \sum_{q \in Q} \lambda_q \qquad \qquad = 1 \\ &\quad \lambda_q \qquad \qquad \geq 0 \qquad q \in Q
\\ &\quad \lambda_r \geq 0 \qquad r \in R \end{split}$$ which is *equivalent* to the original LP, i.e., $z_{\rm LP}^*=z_{\rm MP}^*$ ## The Dantzig-Wolfe Master Problem - ▶ the master problem has a huge number |Q| + |R| of variables - it needs to be solved by column generation - ▶ initialize the RMP with $Q' \subseteq Q$ and $R' \subseteq R$ - **>** solve the RMP to obtain primal λ and dual π , π_0 ### The Dantzig-Wolfe Restricted Master Problem $$\begin{split} z^*_{\text{RMP}} &= \min \quad \sum_{q \in Q'} c_q \lambda_q \ + \quad \sum_{r \in R'} c_r \lambda_r \\ \text{s.t.} &\quad \sum_{q \in Q'} \mathbf{a}_q \lambda_q \ + \quad \sum_{r \in R'} \mathbf{a}_r \lambda_r \geq \mathbf{b} \quad [\pi] \\ &\quad \sum_{q \in Q'} \lambda_q \qquad \qquad = 1 \quad [\pi_0] \\ &\quad \lambda_q \qquad \qquad \geq 0 \qquad \qquad q \in Q' \\ &\quad \lambda_r \geq 0 \qquad \qquad r \in R' \end{split}$$ ### **Reduced Cost Computation** - for the reduced cost formula we distinguish two cases - \rightarrow for λ_q , $q \in Q$: # variables corresponding to extreme points $$\bar{c}_q = c_q - (\boldsymbol{\pi}^t, \pi_0) \begin{pmatrix} \mathbf{a}_q \\ 1 \end{pmatrix} = c_q - \boldsymbol{\pi}^t \mathbf{a}_q - \pi_0$$ $$= \mathbf{c}^t \mathbf{x}_q - \boldsymbol{\pi}^t A \mathbf{x}_q - \pi_0$$ \rightarrow for λ_r , $r \in R$: / variables corresponding to extreme rays $$\bar{c}_r = c_r - (\boldsymbol{\pi}^t, \pi_0) \begin{pmatrix} \mathbf{a}_r \\ 0 \end{pmatrix} = c_r - \boldsymbol{\pi}^t \mathbf{a}_r$$ $$= \mathbf{c}^t \mathbf{x}_r - \boldsymbol{\pi}^t A \mathbf{x}_r$$ • we need to compute $ar{c}^* = \min\{\min_{q \in Q} ar{c}_q, \min_{r \in R} ar{c}_r\}$ // the smallest reduced cost ightharpoonup in words: find an extreme point $q \in Q$ with minimum \bar{c}_q and/or an extreme ray $r \in R$ with minimum \bar{c}_r - ▶ in words: find an extreme point $q \in Q$ with minimum \bar{c}_q and/or an extreme ray $r \in R$ with minimum \bar{c}_r - ▶ to this end, solve the *Dantzig-Wolfe pricing problem* $$z_{\mathrm{PP}}^* = \min_{j \in Q \cup R} \ \mathbf{c}^t \mathbf{x}_j - oldsymbol{\pi}^t A \mathbf{x}_j$$ // no π_0 here - ▶ in words: find an extreme point $q \in Q$ with minimum \bar{c}_q and/or an extreme ray $r \in R$ with minimum \bar{c}_r - ▶ to this end, solve the *Dantzig-Wolfe pricing problem* $$egin{array}{lll} z_{\mathrm{PP}}^* &=& \min_{j \in Q \cup R} & \mathbf{c}^t \mathbf{x}_j - oldsymbol{\pi}^t A \mathbf{x}_j & \ & & \| \log \pi_0 \ & & & \| \mathbf{c}^t - oldsymbol{\pi}^t A \mathbf{x}_j & \ & & \| \log \pi_0 \ & & & \| \mathbf{c}^t - oldsymbol{\pi}^t A \mathbf{x}_j & \ & & \| \mathbf{c}^t - oldsymbol{\pi}^t A \mathbf{x}_j & \ & & \| \mathbf{c}^t - oldsymbol{\pi}^t A \mathbf{x}_j & \ & \| \mathbf{c}^t - oldsy$$ - ightharpoonup Q and R contain the extreme points/extreme rays of $\{x \ge 0 \mid Dx \ge d\}!$ - ▶ the pricing problem is again a linear program # solve it e.g., with the simplex algorithm three cases for $$\ z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \pmb{\pi}^t A) \mathbf{x} \mid \mathbf{D} \mathbf{x} \geq \mathbf{d} \right\}$$ three cases for $$\ z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \pmb{\pi}^t A) \mathbf{x} \mid \mathbf{D} \mathbf{x} \geq \mathbf{d} \right\}$$ 1. $$z_{\text{PP}}^* = -\infty$$ three cases for $$z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \mid \mathbf{D} \mathbf{x} \geq \mathbf{d} \right\}$$ 1. $z_{\mathrm{PP}}^* = -\infty \Rightarrow$ we identified an extreme ray $r^* \in R$ with $\bar{c}_{r^*} < 0 \Rightarrow$ add variable λ_{r^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{r^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{r^*} \\ 0 \end{pmatrix}$ three cases for $$z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \mid D\mathbf{x} \geq \mathbf{d} \right\}$$ - 1. $z_{\mathrm{PP}}^* = -\infty \Rightarrow$ we identified an extreme ray $r^* \in R$ with $\bar{c}_{r^*} < 0 \Rightarrow$ add variable λ_{r^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{r^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{r^*} \\ 0 \end{pmatrix}$ - 2. $-\infty < z_{\rm PP}^* \pi_0 < 0$ three cases for $$z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \mid \mathbf{D} \mathbf{x} \geq \mathbf{d} \right\}$$ - 1. $z_{\mathrm{PP}}^* = -\infty \Rightarrow$ we identified an extreme ray $r^* \in R$ with $\bar{c}_{r^*} < 0 \Rightarrow$ add variable λ_{r^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{r^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{r^*} \\ 0 \end{pmatrix}$ - 2. $-\infty < z_{\mathrm{PP}}^* \pi_0 < 0 \Rightarrow$ we identified an extreme point $q^* \in Q$ with $\bar{c}_{q^*} < 0 \Rightarrow$ add variable λ_{q^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{q^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{q^*} \\ 1 \end{pmatrix}$ three cases for $$z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \mid \mathbf{D} \mathbf{x} \geq \mathbf{d} \right\}$$ - 1. $z_{\mathrm{PP}}^* = -\infty \Rightarrow$ we identified an extreme ray $r^* \in R$ with $\bar{c}_{r^*} < 0 \Rightarrow$ add variable λ_{r^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{r^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{r^*} \\ 0 \end{pmatrix}$ - 2. $-\infty < z_{\mathrm{PP}}^* \pi_0 < 0 \Rightarrow$ we identified an extreme point $q^* \in Q$ with $\bar{c}_{q^*} < 0 \rightarrow$ add variable λ_{q^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{q^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{q^*} \\ 1 \end{pmatrix}$ - 3. $0 \le z_{\rm PP}^* \pi_0$ three cases for $$z_{\mathrm{PP}}^* = \min_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \mid \frac{D\mathbf{x}}{} \geq \mathbf{d} \right\}$$ - 1. $z_{\mathrm{PP}}^* = -\infty \Rightarrow$ we identified an extreme ray $r^* \in R$ with $\bar{c}_{r^*} < 0 \Rightarrow$ add variable λ_{r^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{r^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{r^*} \\ 0 \end{pmatrix}$ - 2. $-\infty < z_{\mathrm{PP}}^* \pi_0 < 0 \Rightarrow$ we identified an extreme point $q^* \in Q$ with $\bar{c}_{q^*} < 0 \to$ add variable λ_{q^*} to the RMP with cost $\mathbf{c}^t \mathbf{x}_{q^*}$ and column coefficients $\begin{pmatrix} A \mathbf{x}_{q^*} \\ 1 \end{pmatrix}$ - 3. $0 \le z_{\rm PP}^* \pi_0 \Rightarrow \textit{there is no } j \in Q \cup R \text{ with } \bar{c}_j < 0.$ # Projecting back to the Original Variables by construction, we can always obtain an original x solution from a master λ solution via $$\mathbf{x} = \sum_{q \in Q} \lambda_q \mathbf{x}_q + \sum_{r \in R} \lambda_r \mathbf{x}_r$$ #### **Briefly Pause** - go back to the cutting stock and vertex coloring problems - you recognize original constraints in master and pricing problems - however, not exactly, the reformulation "forgot" about rolls and colors - \rightarrow this is common and called aggregation # **Block-Angular Matrices** ▶ the classical Dantzig-Wolfe situation is $$\begin{array}{lll} \min & \mathbf{c}_1^t \mathbf{x}^1 + \mathbf{c}_2^t \mathbf{x}^2 + \dots + \mathbf{c}_K^t \mathbf{x}^K \\ \mathbf{s.t.} & A_1 \mathbf{x}^1 + A_2 \mathbf{x}^2 + \dots + A_K \mathbf{x}^K \geq \mathbf{b} \\ & D_1 \mathbf{x}^1 & \geq \mathbf{d}_1 \\ & D_2 \mathbf{x}^2 & \geq \mathbf{d}_2 \\ & & \ddots & \vdots
\\ & & D_K \mathbf{x}^K \geq \mathbf{d}_K \\ & & \mathbf{x}^1 \;, \quad \mathbf{x}^2 \;, \; \dots \;, \quad \mathbf{x}^K \geq \mathbf{0} \end{array}$$ ightharpoonup K rolls, K colors, K vehicles, K subproblems, . . . # **Block-Angular Matrices** the classical Dantzig-Wolfe situation is ## **Block-Angular Matrices** - constraints/variables of each block are separately DW reformulated - yields K pricing problems - all must report non-negative reduced cost for RMP optimality - the blocks can be identical, in which case one can aggregate them // loosely speaking, master and pricing problem use only one representative $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}\quad\cap\quad \{x\in\mathbb{Q}^n\mid Ax\geq b\}$$ "pricing problem" $$\text{``master problem''}$$ $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}\quad\cap\quad \{x\in\mathbb{Q}^n\mid Ax\geq b\}$$ "pricing problem" $$\text{``master problem''}$$ $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}\quad\cap\quad \{x\in\mathbb{Q}^n\mid Ax\geq b\}$$ "pricing problem" $$\text{``master problem''}$$ $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}\quad\cap\quad \{x\in\mathbb{Q}^n\mid Ax\geq b\}$$ "pricing problem" $$\text{``master problem''}$$ $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}\quad\cap\quad \{x\in\mathbb{Q}^n\mid Ax\geq b\}$$ "pricing problem" $$\text{"master problem"}$$ not tighter than standard LP relaxation # **Briefly Pause** ▶ but the pricing problems we have seen were *integer* programs! $$\{x\in\mathbb{Q}^n\mid Dx\geq d\}$$ \cap $\{x\in\mathbb{Q}^n\mid Ax\geq b\}$ "pricing problem" "master problem" not tighter than standard LP relaxation $$\{x \in \mathbb{Q}^n \mid Dx \ge d\} \cap \{x \in \mathbb{Q}^n \mid Ax \ge b\}$$ ▶ for integer programs: partial convexification $conv\{x \in \mathbb{Z}^n \mid Dx \geq d\}$ $$\{x \in \mathbb{Q}^n \mid Dx \ge d\} \cap \{x \in \mathbb{Q}^n \mid Ax \ge b\}$$ for integer programs: partial convexification, possibly stronger ## Do you know it? - DW reformulating a linear program leads to an equivalent linear program - → true - \rightarrow false - → it depends - DW reformulating an integer program leads to a stronger relaxation than the LP relaxation - → true - \rightarrow false - → it depends ## **Briefly Pause** - ▶ column generation relies on our ability to optimize over $conv\{x \in \mathbb{Z}^n \mid Dx \geq d\}$ - ▶ how should we choose Dx > d? - $ightarrow D\mathbf{x} \geq \mathbf{d}$ should describe a structure over which we can (easily) optimize - ightarrow convexifying $D\mathbf{x} \geq \mathbf{d}$ should improve the dual bound (well) ► find: shortest path (RCSP) from 1 to 6 - ▶ find: resource constrained shortest path (RCSP) from 1 to 6 - total traversal time must not exceed 14 units - find: resource constrained shortest path (RCSP) from 1 to 6 - ▶ total traversal time must not exceed 14 units ▶ path 1-3-5-6 is quick but expensive: cost 24, time 8 - find: resource constrained shortest path (RCSP) from 1 to 6 - total traversal time must not exceed 14 units ▶ path 1-2-4-6 is cheap but too slow: cost 3, time 18 - ▶ find: resource constrained shortest path (RCSP) from 1 to 6 - ▶ total traversal time must not exceed 14 units path 1-3-2-4-6 is optimal: cost 13, time 13 ## Integer Program for the RCSP Problem $ightharpoonup c_{ij}$ cost on arc (i,j), t_{ij} time to traverse (i,j) $$z^{\star} := \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$ $$\text{s.t.} \sum_{j:(1,j) \in A} x_{1j} = 1$$ $$\sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$ $$\sum_{i:(i,6) \in A} x_{i6} = 1$$ $$\sum_{(i,j) \in A} t_{ij} x_{ij} \le 14$$ $$x_{ij} \in \{0,1\} \quad (i,j) \in A$$ ## Integer Program for the RCSP Problem $ightharpoonup c_{ij}$ cost on arc (i,j), t_{ij} time to traverse (i,j) $$z^{\star} := \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$ $$\text{s.t.} \sum_{j:(1,j) \in A} x_{1j} = 1$$ $$\sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$ $$\sum_{i:(i,6) \in A} x_{i6} = 1$$ $$\sum_{(i,j) \in A} t_{ij} x_{ij} \le 14$$ $$x_{ij} \in \{0,1\} \quad (i,j) \in A$$ could be solved by branch-and-bound (B&B) ## Integer Program for the RCSP Problem $ightharpoonup c_{ij}$ cost on arc (i,j), t_{ij} time to traverse (i,j) $$z^{\star} := \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$ $$\text{s.t.} \sum_{j:(1,j) \in A} x_{1j} = 1$$ $$\sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$ $$\sum_{i:(i,6) \in A} x_{i6} = 1$$ $$\sum_{(i,j) \in A} t_{ij} x_{ij} \le 14$$ $$x_{ij} \in \{0,1\} \quad (i,j) \in A$$ instead: exploit embedded shortest path problem structure #### Paths vs. Arcs Formulation what remains // these constraints go into the pricing problem $$\sum_{j:(i,j)\in A} x_{ij} = 1$$ $$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$ $$\sum_{i:(i,6)\in A} x_{i6} = 1$$ $$x_{ij} \in \{0, 1\} \quad (i, j) \in A$$ defines a (particular) network flow problem fact: every flow defined on arcs decomposes into flows on paths (and cycles) #### Paths vs. Arcs Formulation the convex hull of $$\sum_{j:(i,j)\in A} x_{ij} = 1$$ $$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$ $$\sum_{i:(i,6)\in A} x_{i6} = 1$$ $$x_{ij} \in \{0, 1\} \quad (i, j) \in A$$ defines a polyhedron (in fact, a polytope) with integer vertices fact: every arc flow can be represented as convex combination of path (and cycle) flows // vertices of the above polytope are incidence vectors of 1-6-paths #### Paths vs. Arcs Formulation ▶ fact: every arc flow can be represented as convex combination of path (and cycle) flows $$x_{ij} = \sum_{p \in P} x_{pij} \lambda_p \quad (i,j) \in A$$ $$\sum_{p \in P} \lambda_p = 1 \quad \text{$/\!\!|} \text{ convexity constraint}$$ $$\lambda_p \geq 0 \quad p \in P$$ - P denotes the set of all paths from node 1 to node 6 - ▶ notation: $x_{pij} = 1$ iff arc (i, j) on path p, otherwise $x_{pij} = 0$ ## Integer Master Problem ightharpoonup now substitute for x_{ij} in our original IP $$\sum_{p \in P} \lambda_p = 1$$ $$\lambda_p \ge 0 \qquad p \in P$$ $$\sum_{p \in P} x_{pij} \lambda_p = x_{ij} \qquad (i, j) \in A$$ ## Integer Master Problem ightharpoonup now substitute for x_{ij} in our original IP $$\begin{split} z^{\star} &= \min \sum_{p \in P} (\sum_{(i,j) \in A} c_{ij} x_{pij}) \lambda_p \\ \text{s.t. } \sum_{p \in P} (\sum_{(i,j) \in A} t_{ij} x_{pij}) \lambda_p &\leq 14 \\ \sum_{p \in P} \lambda_p &= 1 \\ \lambda_p &\geq 0 \qquad p \in P \\ \sum_{p \in P} x_{pij} \lambda_p &= x_{ij} \qquad (i,j) \in A \\ x_{ij} &\in \{0,1\} \quad (i,j) \in A \end{split}$$ #### Master Problem lacktriangle now substitute for x_{ij} in our original IP and relax the integrality of x_{ij} $$\begin{split} z^{\star} &= \min \sum_{p \in P} (\sum_{(i,j) \in A} c_{ij} x_{pij}) \lambda_p \\ \text{s.t. } \sum_{p \in P} (\sum_{(i,j) \in A} t_{ij} x_{pij}) \lambda_p &\leq 14 \\ \sum_{p \in P} \lambda_p &= 1 \\ \lambda_p &\geq 0 \qquad p \in P \\ \sum_{p \in P} x_{pij} \lambda_p &= x_{ij} \qquad (i,j) \in A \\ x_{ij} &\geq 0 \qquad (i,j) \in A \end{split}$$ #### Master Problem lacktriangle now substitute for x_{ij} in our original IP and relax the integrality of x_{ij} $$\bar{z}^{\star} = \min \sum_{p \in P} (\sum_{(i,j) \in A} c_{ij} x_{pij}) \lambda_p$$ s.t. $$\sum_{p \in P} (\sum_{(i,j) \in A} t_{ij} x_{pij}) \lambda_p \le 14$$ $$\sum_{p \in P} \lambda_p = 1$$ $$\lambda_p \ge 0 \qquad p \in P$$ • we can remove the link between x_{ij} and λ_p variables #### Master Problem in general, this will have *many more* than 9 variables... ``` \min \ 3\lambda_{1246} + 14\lambda_{12456} + \ 5\lambda_{1256} + 13\lambda_{13246} + 24\lambda_{132456} + 15\lambda_{13256} + 16\lambda_{1346} + 27\lambda_{13456} + 24\lambda_{1356} s.t. 18\lambda_{1246} + 14\lambda_{12456} + 15\lambda_{1256} + 13\lambda_{13246} + 9\lambda_{132456} + 10\lambda_{13256} + 17\lambda_{1346} + 13\lambda_{13456} + 8\lambda_{1356} \le 14 \lambda_{1246} + \lambda_{12456} + \lambda_{1256} + \lambda_{13246} + \lambda_{132456} + \lambda_{13256} + \lambda_{1346} + \lambda_{13456} + \lambda_{1356} = 1 \lambda_{12456} , \lambda_{1256} , \lambda_{13246} , \lambda_{132456} , \lambda_{13256} , \lambda_{1346} , \lambda_{13456} , \lambda_{1356} \geq 0 \lambda_{1246} , ``` #### **Restricted Master Problem** in general, this will have many more than 9 variables... - the restricted master problem works with a (very small) subset of variables only - we add more variables as needed... ## Restricted Master Problem (RMP) ▶ how do we *generate* such a *column*? # Restricted Master Problem (RMP) ▶ how do we *generate* such a *column*? for a specific variable, we can compute the reduced cost: $$\bar{c}_{132456} = 24 - (\pi_1, \pi_0)^t \cdot \begin{pmatrix} 9 \\ 1 \end{pmatrix} \\ = 24 - 9\pi_1 - 1\pi_0$$ ## **Pricing Subproblem** \blacktriangleright in general, for this application, the reduced cost of variable λ_p computes as $$\bar{c}_p = \sum_{(i,j\in A)} c_{ij} x_{pij} - (\sum_{(i,j\in A)} t_{ij} x_{pij}) \pi_1 - \pi_0$$ and we are interested in the smallest possible: $$\bar{c}^* = \min \sum_{(i,j) \in A} (c_{ij} - \pi_1 t_{ij}) x_{ij} - \pi_0$$ s. t. the x_{ij} encode a feasible column ▶ If $\bar{c}^* \ge 0$ then there is *no* improving variable; ## Pricing Subproblem \triangleright in general, for this application, the reduced cost of variable λ_p computes as $$\bar{c}_p = \sum_{(i,j \in A)} c_{ij} x_{pij} - (\sum_{(i,j \in A)} t_{ij} x_{pij}) \pi_1 - \pi_0$$ and we are interested in the smallest possible: $$\overline{c}^{\star} = \min \sum_{(i,j) \in A} (c_{ij} - \pi_1 t_{ij}) x_{ij} - \pi_0$$ s. t. $$\sum_{j: (i,j) \in A} x_{1j} = 1$$ $$\sum_{j: (i,j) \in A} x_{ij} - \sum_{j: (j,i) \in A} x_{ji} = 0 \ i = 2, 3, 4, 5$$ $$\sum_{i: (i,6) \in A} x_{i6} = 1$$ $$x_{ij} > 0 \quad (i,j) \in A$$ ▶ If $\bar{c}^* > 0$ then there is *no* improving variable; # **Pricing Subproblem** for this application, this is a shortest path problem in - this is the original graph with modified costs - remember:
this was the reason for the reformulation: we wanted to exploit that we can solve shortest path problems ## Initializing the Master Problem - question: how to start? - ▶ initially, we have no feasible solution to the RMP! // maybe no variables at all - ightharpoonup one possibility: "big M approach" // there are several other ways - introduce artificial variable y_0 with "large" cost, say M = 100: $$\begin{array}{ccccc} \bar{z} = \min & 100y_0 \\ \text{s.t.} & \leq & 14 \\ & y_0 & = & 1 \\ & y_0 & \geq & 0 \end{array}$$ # Solving the Master Problem $24.6 \quad 100.00 \quad -5.39$ $y_0 = 0.22, \lambda_{1246} = 0.78$ | master solution | $ar{z}$ | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |-------------------------------------|---------|---------|---------|-----------------|------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | master solution | \bar{z} | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |--|-----------|---------|---------|-----------------|------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | | | | | | master solution | $ar{z}$ | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |--|---------|---------|---------|-----------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | | master solution | $ar{z}$ | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |--|---------|---------|---------|-----------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | | $\lambda_{1246} = \lambda_{13256} = 0.5$ | 9.0 | 30.00 | -1.50 | | | | | | master solution | $ar{z}$ | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |--|---------|---------|---------|-----------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | | $\lambda_{1246} = \lambda_{13256} = 0.5$ | 9.0 | 30.00 | -1.50 | -2.5 | 1256 | 5 | 15 | | master solution | \bar{z} | π_0 | π_1 | $ar{c}^{\star}$ | p | c_p | t_p | |---|-----------|---------|---------|-----------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | | $\lambda_{1246} = \lambda_{13256} = 0.5$ | 9.0 | 30.00 | -1.50 | -2.5 | 1256 | 5 | 15 | | $\lambda_{13256} = 0.2, \lambda_{1256} = 0.8$ | 7.0 | 35.00 | -2.00 | 0 | | | | arc flows: $x_{12} = 0.8$, $x_{13} = x_{32} = 0.2$, $x_{25} = x_{56} = 1$ remarks about the optimal RMP solution - we use 0.2 times path 13256 - we use 0.8 times path 1256, which is infeasible in the MP - ightharpoonup a lower bound on the optimal integer solution objective value is $\bar{z}=7.0$ - we would have obtained the corresponding "arc flow" solution (with the same lower bound) by solving the LP relaxation of the original IP # Do you know it? do you know why the dual bound of the reformulation is no better than the LP relaxation of the original formulation? #### Do you know it? - do you know why the dual bound of the reformulation is no better than the LP relaxation of the original formulation? - → the polyhedron corresponding to the pricing problem has integer extreme points - → solving the pricing problem in integers does not improve over the LP #### Overview - 1 Column Generation - 2 Dantzig-Wolfe Reformulation - 3 Branch-Price-and-Cut - 3.1 Cutting Planes - 3.2 Branching - 4 Dual View # Strong and Stronger - ▶ using a Dantzig-Wolfe reformulation, we may obtain a stronger relaxation - we can try to strengthen it even more by adding cutting planes # Cutting Planes on Original Variables ▶ typically, the literature is full of cutting planes in the original variables ``` \begin{array}{lll} \min & \mathbf{c}^t \mathbf{x} \\ \text{s.t.} & A\mathbf{x} & \leq & \mathbf{b} \\ & F\mathbf{x} & \leq & \mathbf{f} \\ & \mathbf{x} & \in & X \end{array} ``` #### **Cutting Planes on Original Variables** typically, the literature is full of cutting planes in the original variables $$\begin{array}{cccc} \min & \mathbf{c}^t \mathbf{x} \\ \text{s.t.} & A\mathbf{x} & \leq & \mathbf{b} \\ & F\mathbf{x} & \leq & \mathbf{f} \\ & \mathbf{x} & \in & X \end{array} \quad \text{valid inequalities with duals } \boldsymbol{\alpha}$$ DW reformulation yields (added to the master): $$\sum_{p \in P} \mathbf{f}_p \lambda_p + \sum_{r \in R} \mathbf{f}_r \lambda_r \leq \mathbf{f} \quad \text{with } \mathbf{f}_j = F \mathbf{x}_j, j \in P \cup R$$ # **Cutting Planes on Original Variables** typically, the literature is full of cutting planes in the original variables $$\begin{array}{cccc} \min & \mathbf{c}^t \mathbf{x} \\ \text{s.t.} & A \mathbf{x} & \leq & \mathbf{b} \\ & F \mathbf{x} & \leq & \mathbf{f} \\ & \mathbf{x} & \in & X \end{array} \qquad \text{valid inequalities with duals } \boldsymbol{\alpha}$$ DW reformulation yields (added to the master): $$\sum_{p \in P} \mathbf{f}_p \lambda_p + \sum_{r \in R} \mathbf{f}_r \lambda_r \ \leq \ \mathbf{f} \qquad \text{with} \ \mathbf{f}_j = F \mathbf{x}_j, \, j \in P \cup R$$ ▶ modified pricing: $\min\{\mathbf{c}^t\mathbf{x} - \boldsymbol{\pi}^t A\mathbf{x} - \boldsymbol{\alpha}^t F\mathbf{x} - \pi_0 \mid \mathbf{x} \in X\}$ #### keep in mind usually, only the subproblem's objective function is changed! ## Adding Rows and Columns works - column generation is compatible with adding cutting planes - but when the cuts are formulated in original variables, they may not be strong - better try to exploit the new variables we have in the reformulation #### **Cutting Planes on Master Variables** many applications have integer master variables, then try master problem cuts $$\begin{array}{lll} & \min & \sum_{p \in P} c_p \lambda_p + \sum_{r \in R} c_r \lambda_r \\ & \text{s.t.} & \sum_{p \in P} \mathbf{a}_p \lambda_p + \sum_{r \in R} \mathbf{a}_r \lambda_r & \leq & \mathbf{b} \\ & \sum_{p \in P} \mathbf{g}_p \lambda_p + \sum_{r \in R} \mathbf{g}_r \lambda_r & \leq & \mathbf{g} & \text{ with duals } \boldsymbol{\beta} \\ & \sum_{p \in P} \lambda_p & = & 1 \\ & \boldsymbol{\lambda} & \in & \mathbb{Z}_+^{|P| + |R|} \end{array}$$ the cuts' dual variables may have a larger impact on the pricing problem #### Example: Odd Circuit Cuts - given an undirected graph G = (V, E) - edge-coloring problem: color all edges, no adjacent edges in same color - this is a partitioning of the edges into matchings Nemhauser & Park (1991) • pricing: $\min \left\{ 1 - \sum_{e \in E} \pi_e x_e \mid \mathbf{x} \text{ matching} \right\}$ #### **Example: Odd Circuit Cuts** $\begin{array}{l} \text{let } U \subseteq V \text{ with } |U| \text{ odd} \\ \text{induce an } \textit{odd circuit } C \\ \text{we need at least three} \\ \text{matchings to cover } C \end{array}$ $$\textit{odd circuit cut:} \quad \sum_{j \in J} g(a(\mathbf{x})) \lambda_j \ = \ \sum_{j \in J: j \cap C \neq \emptyset} \lambda_j \ \geq \ 3 \quad [\beta_C]$$ - we introduce an additional binary variable $y := g(a(\mathbf{x})) := 1$ iff \mathbf{x} intersects C - and modify the pricing problem: $$\min \left\{ 1 - \sum_{e \in E} \pi_e x_e - \beta_C \mathbf{y} \mid \mathbf{y} \le \sum_{e \in C} x_e, \ \mathbf{x} \ \text{matching}, \ \mathbf{y} \in \{0, 1\} \right\}$$ # Reminder: We want to solve an *Integer* Program original problem: $$\begin{array}{lll} \min & \mathbf{c}^t\mathbf{x} \\ \text{s.t.} & A\mathbf{x} & \leq & \mathbf{b} \\ & \mathbf{x} & \in & X \end{array}$$ $$X = \{\mathbf{x} \in \mathbb{Z}_+^n \mid D\mathbf{x} \leq \mathbf{d}\}$$ ## So far we only solved Linear Programs - the algorithm to solve integer programs is the LP based B&C algorithm - branch-and-price(-and-cut) means solving the LP relaxation in each node of the B&C tree by column generation - we solved the root node so far #### Dichotomic Branching on Original Variables the DW reformulation gave us the integer master problem $$z_{\text{IMP}}^* = \min \quad \sum_{q \in Q} c_q \lambda_q + \sum_{r \in R} c_r \lambda_r$$ $$\text{s.t.} \quad \sum_{q \in Q} \mathbf{a}_q \lambda_q + \sum_{r \in R} \mathbf{a}_r \lambda_r \ge \mathbf{b}$$ $$\sum_{q \in Q} \lambda_q = 1$$ $$\lambda_q \geq 0 \quad q \in Q$$ $$\lambda_r \ge 0 \quad r \in R$$ $$\mathbf{x} = \sum_{q \in Q} \mathbf{x}_q \lambda_q + \sum_{r \in R} \mathbf{x}_r \lambda_r$$ $$\mathbf{x} \in \mathbb{Z}_+^n$$ # Dichotomic Branching on Original Variables - ightharpoonup when $\mathbf{x}=\mathbf{x}^*\in\mathbb{Z}^n_+$ we are done - ightharpoonup otherwise, there is an x_i with $x_i^* \notin \mathbb{Z}_+$ - reate two branches via $x_i \leq \lfloor x_i^* \rfloor$ and $x_i \geq \lceil x_i^* \rceil$ this is called *dichotomic branching* - there are two options for doing so # imposing the branching constraints in the master or in the pricing - both options can be combined ▶ these ideas date back to Desrosiers, Soumis, Desrochers (1984) #
Branching on Original Variables: In the Master - ▶ we only consider the down branch; the up branch is analogous / also called left branch - we impose $x_i \leq \lfloor x_i^* \rfloor$ in the master problem by adding the constraint $$\sum_{q \in Q} x_{qi} \lambda_q + \sum_{r \in R} x_{ri} \lambda_r \le \lfloor x_i^* \rfloor \qquad [\alpha_i]$$ where x_{ji} is the *i*-th coordinate of \mathbf{x}_j , $j \in Q \cup R$ # this is like formulating a cutting plane on original variables # Branching on Original Variables: In the Master - ▶ we only consider the down branch; the up branch is analogous # also called left branch - we impose $x_i \leq \lfloor x_i^* \rfloor$ in the master problem by adding the constraint $$\sum_{q \in Q} x_{qi} \lambda_q + \sum_{r \in R} x_{ri} \lambda_r \le \lfloor x_i^* \rfloor \qquad [\alpha_i]$$ where x_{ji} is the *i*-th coordinate of \mathbf{x}_j , $j \in Q \cup R$ $/\!\!/$ this is like formulating a cutting plane on original variables \blacktriangleright we already know how to respect the dual α_i in the pricing: $$\begin{array}{cccc} \min & (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} - \alpha_i x_i \\ \text{s.t.} & D\mathbf{x} & \geq & \mathbf{d} \\ & \mathbf{x} & \in & \mathbb{Z}_+^n \end{array}$$ # Branching on Original Variables: In the Pricing alternatively, impose the branching constraint in the pricing $$\begin{array}{cccc} \min & (\mathbf{c}^t - \boldsymbol{\pi}^t A) \mathbf{x} \\ \text{s.t.} & D\mathbf{x} & \geq & \mathbf{d} \\ & x_i & \leq & \lfloor x_i^* \rfloor \\ & \mathbf{x} & \in & \mathbb{Z}_+^n \end{array}$$ - ▶ in this variant, we additionally need to forbid master variables that contradict the branching decision: - remove all variables λ_j from RMP with $x_{ji} > \lfloor x_i^* \rfloor$ - ▶ this is implemented by imposing a *local bound* $\lambda_j \leq 0$ ## Pros and Cons of the two Options - branching constraints in the pricing or in the master? - 1. $\min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X), \ x_i \leq \lfloor x_i^* \rfloor\} \leq \min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X \cap \{\mathbf{x} \mid x_i \leq \lfloor x_i^* \rfloor\})\}$ "convexifying the branching constraints is potentially stronger" #### Pros and Cons of the two Options - branching constraints in the pricing or in the master? - 1. $\min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X), \ x_i \leq \lfloor x_i^* \rfloor\} \leq \min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X \cap \{\mathbf{x} \mid x_i \leq \lfloor x_i^* \rfloor\})\}$ "convexifying the branching constraints is potentially stronger" - 2. the subproblem character *may* change by imposing bounds on variables, potentially making it harder to solve ## Pros and Cons of the two Options - branching constraints in the pricing or in the master? - 1. $\min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X), \ x_i \leq \lfloor x_i^* \rfloor\} \leq \min\{\mathbf{c}^t\mathbf{x} \mid A\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \in \operatorname{conv}(X \cap \{\mathbf{x} \mid x_i \leq \lfloor x_i^* \rfloor\})\}$ "convexifying the branching constraints is potentially stronger" - 2. the subproblem character *may* change by imposing bounds on variables, potentially making it harder to solve - 3. by imposing bounds on subproblem variables, we are enabled to generate points in the interior of conv(X); this is potentially necessary in *integer* problems # Dichotomic Branching on Master Variables branching on master variables $\lambda_j = \lambda_j^* \notin \mathbb{Z}$ is not advisable. why? # Dichotomic Branching on Master Variables - ▶ branching on master variables $\lambda_j = \lambda_j^* \notin \mathbb{Z}$ is not advisable. why? - 1. this may be wrong! // even though in binary programs. we are safe - 2. the resulting tree is *unbalanced*: $\lambda_j \leq \lfloor \lambda^* \rfloor$ forbids almost nothing; $\lambda_j \geq \lceil \lambda^* \rceil$ enforces much - 3. a down branch $\lambda_j \leq \lfloor \lambda^* \rfloor$ can be very hard to respect in the pricing problem: how to avoid re-generating λ_j ? #### Our RCSPP Example Continued let us revisit the resource constrained shortest path example the solution we obtained for the root node is fractional in the original variables # **Branching on Fractional Arcs** branch on fractional *arc* variables, like $x_{12} = 0.8$ # Branching on Fractional Arcs branch on fractional *arc* variables, like $x_{12} = 0.8$ branch $x_{12} = 0$ - ightharpoonup in subproblem: arc (1,2) is removed from graph - ▶ in RMP: variables λ_{1246} and λ_{1256} must be eliminated; re-optimization will give $y_0 > 0$, i.e., infeasible RMP # Branching on Fractional Arcs branch on fractional *arc* variables, like $x_{12} = 0.8$ branch $x_{12} = 1$ - ightharpoonup in subproblem: arcs (1,3) and (3,2) are removed - ▶ in RMP: eliminate master variables corresponding to paths containing these arcs ## Much more on Branching... - when all your pricing problems are different, branching on original variables works well - in particular when pricing problems are aggregated, different proposals available - check specialized branching rules for set partitioning master Ryan, Foster (1981) ### Overview - 1 Column Generation - 2 Dantzig-Wolfe Reformulation - 3 Branch-Price-and-Cut - 4 Dual View #### The Dual Point of View #### **Row Generation** remember the DW master problem $$\begin{split} & \min \quad \sum_{p \in P} c_p \lambda_p \quad + \ \sum_{r \in R} c_r \lambda_r \\ & \text{s.t.} \quad \sum_{p \in P} \mathbf{a}_p \lambda_p \quad + \ \sum_{r \in R} \mathbf{a}_r \lambda_r \geq \mathbf{b} \quad [\pi] \\ & \qquad \qquad \sum_{p \in P} \lambda_p \qquad \qquad = 1 \quad [\pi_0] \\ & \qquad \qquad \lambda_p \geq 0 \qquad \qquad \forall p \in P \\ & \qquad \qquad \lambda_r \geq 0 \qquad \qquad \forall r \in R. \end{split}$$ #### **Row Generation** this is its dual: $$\begin{array}{lll} \max & \mathbf{b}^t \boldsymbol{\pi} & + \ \pi_0 \\ & \text{s.t.} & \mathbf{a}_p^t \boldsymbol{\pi} & + \ \pi_0 \leq c_p & [\lambda_p] & \forall p \in P \\ & \mathbf{a}_r^t \boldsymbol{\pi} & \leq c_r & [\lambda_r] & \forall r \in R \\ & \boldsymbol{\pi} \geq \mathbf{0}, \ \pi_0 \in \mathbb{R}. \end{array}$$ - ▶ negative reduced cost in primal ↔ violated constraint in dual - column generation in the primal is row generation in the dual # Lagrangian Relaxation we (still!) wish to solve the *original* integer program: $$z_{IP} = \min \quad \mathbf{c}^t \mathbf{x}$$ s.t. $A\mathbf{x} \geq \mathbf{b}$ $D\mathbf{x} \geq \mathbf{d}$ $\mathbf{x} \in \mathbb{Z}_+^n$ # Lagrangian Relaxation • we (still!) wish to solve the *original* integer program: $$z_{IP} = \min \quad \mathbf{c}^t \mathbf{x}$$ s.t. $A\mathbf{x} \geq \mathbf{b}$ $D\mathbf{x} \geq \mathbf{d}$ $\mathbf{x} \in \mathbb{Z}_+^n$ relax complicating constraints, penalize their violation in objective function: $$\min_{x \in \mathbb{Z}_{+}^{n}} \{ \mathbf{c}^{t} \mathbf{x} + \mathbf{\pi}^{t} (\mathbf{b} - A\mathbf{x}) \mid D\mathbf{x} \ge \mathbf{d} \}$$ ▶ this gives a lower bound $L(\pi) \le z_{IP}$ for every $\pi \ge 0$ ## Lagrangian Dual Problem we are interested in the best (largest) such *Lagrangian bound* $$\max_{\boldsymbol{\pi} \geq \mathbf{0}} L(\boldsymbol{\pi}) = \max_{\boldsymbol{\pi} \geq \mathbf{0}} \min_{x \in \mathbb{Z}_+^n} \{ \mathbf{c}^t \mathbf{x} + \boldsymbol{\pi}^t (\mathbf{b} - A\mathbf{x}) \mid D\mathbf{x} \geq \mathbf{d} \}$$ - a lot is known about the Lagrangian dual function $L(\pi)$ - one typically maximizes it using a *subgradient algorithm* // but we don't need this here ## Lagrangian Bound in Column Generation assume π is a dual solution to our Dantzig-Wolfe RMP $$L(\boldsymbol{\pi}) = \min_{x \in \mathbb{Z}_{+}^{n}} \{ \mathbf{c}^{t} \mathbf{x} + \boldsymbol{\pi}^{t} (\mathbf{b} - A\mathbf{x}) \mid D\mathbf{x} \ge \mathbf{d} \}$$ $$= \min_{x \in \mathbb{Z}_{+}^{n}} \{ \boldsymbol{\pi}^{t} \mathbf{b} + (\mathbf{c}^{t} - \boldsymbol{\pi}^{t} A) \mathbf{x} \mid D\mathbf{x} \ge \mathbf{d} \}$$ $$= \boldsymbol{\pi}^{t} \mathbf{b} + \min_{x \in \mathbb{Z}_{+}^{n}} \{ (\mathbf{c}^{t} - \boldsymbol{\pi}^{t} A) \mathbf{x} \mid D\mathbf{x} \ge \mathbf{d} \}$$ - we cannot help it: column generation produces dual bounds - the Lagrangian bound computes as optimum of the RMP plus the optima of the pricing problems ### **Development of Bounds** ## **Development of Bounds** - the bounds close at MP optimality - → Lagrangian relaxation and DW reformulation are equivalent - ightarrow optimal π from MP maximizes Lagrangian dual function ## Dual Bounds: RCSPP Example Revisited | master solution | $z_{ m RMP}$ | π_0 | π_1 | $z_{ m SP}$ | p | c_p | t_p | |---|--------------|---------|---------|-------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | | $\lambda_{1246} = \lambda_{13256} = 0.5$ | 9.0 | 30.00 | -1.50 | -2.5 | 1256 | 5 | 15 | | $\lambda_{13256} = 0.2, \lambda_{1256} = 0.8$ | 7.0 | 35.00 | -2.00 | 0 | | | | ## Dual Bounds: RCSPP Example Revisited | master solution | $z_{ m RMP}$ | π_0 | π_1 | $z_{ m SP}$ | p | c_p | t_p | |---|--------------|---------|---------|-------------|-------|-------|-------| | $y_0 = 1$ | 100.0 | 100.00 | 0.00 | -97.0 | 1246 | 3 | 18 | | $y_0 = 0.22, \lambda_{1246} = 0.78$ | 24.6 | 100.00 | -5.39 | -32.9 | 1356 | 24 | 8 | | $\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$ | 11.4 | 40.80 | -2.10 | -4.8 | 13256 | 15 | 10 | |
$\lambda_{1246} = \lambda_{13256} = 0.5$ | 9.0 | 30.00 | -1.50 | -2.5 | 1256 | 5 | 15 | | $\lambda_{13256} = 0.2, \lambda_{1256} = 0.8$ | 7.0 | 35.00 | -2.00 | 0 | | | | - ▶ we could have stopped *before* the last pricing (which can be costly!): - $ightharpoonup z_{RMP} + z_{SP} = 9.0 2.5 = 6.5 \text{ and } \lceil 6.5 \rceil = 7.0$ - when the optimum is integer one can stop as soon as $\lceil LB \rceil = UB$ for a lower bound LB and an upper bound UB on $z_{\rm MP}$ #### Where to start? OPERATIONS RESEARCH 1505 0030-364X | 17505 1526-5463 | 05 | 5306 | 1007 #### Selected Topics in Column Generation #### Marco E. Lübbecke Technische Universität Berlin, Institut für Mathematik, Sekr. MA 6-1, Straße des 17. Juni 136 D.10623 Berlin, Germany, in Jushberkoff math technelin de #### Jacques Desrosiers HEC Montréal and GERAD, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 2A7, incurses destrosiers @ bec. ca Duttig Wolfe decomposition and column generation, deviced for linear programs, in a success story in large-scale interpretage programming. We conflict and relate the approaches, and survey mainly recest contributions, not yet found in text-books. We emphasize the growing understanding of the data point of view, which has bought considerable progress to the column generation theory and practice. It immuned careful infinistrations, suphisticated solution techniques for the restricted master problem and sulprofilein, as well as better overall performance. Thus, the dual perspective is an ever recurrent concess to our "selected loutes." Subject classifications: integer programming: column generation, Dantzig-Wolfe decomposition, Lagrangian relaxation, branch-and-bound: linear programming: large scale systems. Area of review: Optimization. History: Received December 2002; revision received March 2004; accepted October 2004. #### BRANCH-PRICE-AND-CUT ALGORITHMS JACQUES DESROSIERS HEC Montréal and GERAD, Chemin de la Côte-Sainte-Catherine, Montréal Québec, MARCO E. LÜBBECKE Fachbereich Mathematik, Technische Universität Darmstadt, Darmstadt, Germany Canada Decompositions and reformulations of mixed integer programs are classical approaches to obtaining stronger relaxations and reduce symmetry. These often entail the dynamic problem and its extended reformulation, as first used in Desrosiers et al. [2]. There are very successful applications of branch-and-price in industry isse Desrosiers and Lübbecke [3], and also the section titled "Vehicle Routing and Scheduling" in this encyclopedia) and also to generic combinatorial optimization problems like bin packing and the cutting stock problem [4], graph coloring [5], machine scheduling [6], the p--median problem [7], the generalized assignment problem [8], and many others. The method today is an indispensable part of the interer proreamming todolow. #### COLUMN GENERATION Consider the following integer master prob- #### Chapter 1 #### A PRIMER IN COLUMN GENERATION Jacques Desrosiers #### Abstract We give a didactic introduction to the use of the column generation technique in linear and in particular in integer programming. We touch on both, the relevant basic theory and more advanced ideas which help in solving large scale practical problems. Our discussion includes embedding Dantzig-Wolfe decomposition and Lagrangian relaxation within a branch-and-bound framework, deriving natural branching and cutting rules by means of a so-called compact formulation, and understanding and influencing the behavior of the dual variables during column generation. Most concepts are illustrated via a small example. We close with a discussion of the classical cutting stock problem and some suggestions for further readine. #### COLUMN GENERATION MARCO E. LÜBBECKE Fachbereich Mathematik, Technische Universität Darmstadt, Darmstadt Germany $$v(MP) := \min \sum_{j \in J} \mathbf{c}_j \lambda_j$$ subject to $\sum_{j \in J} \mathbf{a}_j \lambda_j \ge \mathbf{b}$ $\lambda_i \ge 0, j \in J,$ (1) Column generation is a classical technique to solve a mathematical program by iteratively adding the variables of the model with |J| = n variables and m constraints. In many applications, n is exponential in m and working with Equation (1) explicitly is not an option because of its sheer size. Instead, con- ### Some Practical Advise - avoid solving the pricing problem exactly, use heuristics if you can - avoid solving the pricing problem exactly, use heuristics if you can - avoid solving the pricing problem exactly, use heuristics if you can - generate many columns per iteration, possibly also good for integer solutions - if you have many pricing problems, don't call all of them in each iteration - monitor the Lagrangian (or other) dual bound, branch early when duality gap is small - try using subgradient methods when the master re-optimization is costly - try stabilizing dual variables (plot their development if you have issues) - apply cutting planes, ideally in master variables # Take-Away - lacktriangle usually: problem ightarrow model ightarrow algorithm ightarrow implementation - ► CG/B&P is *not* (only) about an algorithm - → CG/B&P enables us to think different models. - this may lead to a different understanding of the problem - configurations, combinations, selections, sequences, . . .