Implementation and Use Cases of a Commercial Decomposition Solver

CO@Work Summer School 2020

Philipp M. Christophel and Matt Galati Scientific Computing, R&D, SAS Institute Inc.

Outline

- A Quick Overview of DECOMP
- Implementation Challenges
- Use Cases
 - The Optimal Wedding Seat Assignment
 - The Kidney Exchange Problem
 - ATM Cash Management
- Conclusions

Optimization with SAS

- SAS Optimization includes
 - LP, QP, NLP, MILP, constraint programming, black-box, network algorithms, and the algebraic modeling language OPTMODEL
- Callable on SAS Viya from SAS, Python, Lua, Java, R, and REST API
- Also available: sasoptpy, a modeling package for Python

What is DECOMP?

- SAS DECOMP is the first/only commercial, generalized and automated branch-and-price solver
 - Automated Dantzig-Wolfe decomposition
 - User defined or automatic detection of blocks

$$\begin{pmatrix} D^1 & & & \\ & D^2 & & \\ & & \ddots & \\ & & D^K \\ A^1 & A^2 & \cdots & A^K \end{pmatrix}$$

Singly-bordered block-diagonal form (SBDF)

$$\begin{pmatrix} D^{1} & & & & F^{1} \\ & D^{2} & & & F^{2} \\ & & \ddots & & \vdots \\ & & D^{K} & F^{K} \\ A^{1} & A^{2} & \cdots & A^{K} & G \end{pmatrix}$$

Doubly-bordered block-diagonal form (DBDF)

A Real-world Example in Pictures

A Real-world Example in Pictures

A Real-world Example

Branch-and-cut

```
NOTE: The presolved problem has 52638 variables, 3215 constraints, and 131250 constraint coefficients.
                               BestInteger
                                                   BestBound
               Active Sols
                                                                 Gap
                                                                        Time
                                6151.1464478
                                               8590.4503506
                                                               28.40%
                                                                            0
-- snip --
                                               7045.9724210
                                 6151.1466160
                                                                          782
-- snip --
                173251
                                 6871.8766247
                                               7044.1201668
                                                               2.45%
                                                                         3599
NOTE: Real time limit reached.
```

Branch-and-price: DECOMP

NOTE: The problem has a decomposable structure with 610 blocks.

The largest block covers 0.2488% of the constraints in the problem.

NOTE: The decomposition subproblems cover 52638 (100%) variables and 3207 (99.75%) constraints.

					(,,,			(,	
It	er	Best	Master	Best	t LP	IP	CPU	Real	
		Bound	Objective	Intege:	r Gap	Gap	Time	Time	
		7963.9759	6467.2136	6467.213	6 18.79%	18.79%	13	8	
	2	7267.7239	6467.2136	6467.213	6 11.01%	11.01%	26	13	
	3	7147.9955	6878.4375	6467.213	6 3.77%	9.52%	51	21	
	5	6986.1299	6960.5400	6960.5400	0.37%	0.37%	74	30	
	6	6986.1299	6965.5335	6965.533	5 0.29%	0.29%	84	33	
	7	6972.3310	6972.3309	6972.3309	9 0.00%	0.00%	87	34	
	Node	Active	Sols	Best	Best	Gap	CPU	Real	
			In	nteger	Bound	T	ime	Time	
	0	0	9 6972	2.3309 6972	2.3310	0.00%	87	34	

 ${\tt NOTE:}$ The Decomposition algorithm time is $34.61~{\tt seconds.}$

NOTE: Optimal within relative gap.

Branch-and-cut vs. DECOMP

- Some non-obvious differences
 - Progress report
 - Parallelization
 - Symmetry
- Direct comparison of branch-and-cut and automatic DECOMP
 - 85% of the time branch-and-cut wins
 - If DECOMP works well it crushes branch-and-cut
- Automatically choosing which solver to use is non-trivial
- By default, the SAS MILP solver uses DECOMP under the hood

Implementation Challenges: LP Reliability

- Both branch-and-cut and DECOMP make heavy use of (simplex) LP solvers
- Branch-and-cut
 - Mostly relies on warm-started dual simplex solves and the occasional primal simplex solve
 - The LPs solved mostly differ in the bounds of the problem, but the matrix is mostly the original problems matrix (plus cuts)
- DECOMP
 - Uses the primal simplex a lot more (when warm-starting after adding columns)
 - The LPs solved contain results of previous solves as coefficients in the matrix which can lead to all kinds of numerical trouble
- DECOMP stress tests the simplex solver implementations!

Implementation Challenges: Block Detection

User-defined blocks

```
for{t in TABLES} do;
   TableSizeCon[t].block = t;
   for{<g,h> in GUEST_PAIRS}
        TableMeasureCon[t,g,h].block = t;
end;
solve with milp / decomp=(method=user);
```

- Special structures
 - Network structure
 - Connected components
 - Set partitioning structure

Automatic Detection of Blocks

- Automatic detection methods
 - APC
 - Fixed number of blocks
 - Based on graph partitioning of a bipartite graph
 - Cevdet Aykanat, Ali Pinar, and Ümit V. Çatalyürek: *Permuting Sparse Rectangular Matrices into Block-Diagonal Form*, SIAM Journal on Scientific Computing, 2004, Vol. 25, No. 6.
 - KEE
 - Flexible number of blocks
 - Approach based on modularity and community detection
 - Minimize border area while maximizing a quality function for the diagonal
 - Taghi Khaniyev, Samir Elhedhli, Fatih Safa Erenay: *Structure Detection in Mixed-Integer Programs*, INFORMS Journal on Computing, 2018, Vol. 30, No. 3.

Use Case: The Optimal Wedding Seat Assignment

See the blog post here:

https://blogs.sas.com/content/operations/2014/11/10/do-you-have-an-uncle-louie-optimal-wedding-seat-assignments/

Ryan-Foster Branching:

https://go.documentation.sas.com/?docsetId=casmopt&docsetTarget =casmopt decomp details06.htm&docsetVersion=8.5&locale=en

METHOD=SET or manually setting the blocks with METHOD=USER

```
for{t in TABLES} do;
   TableSizeCon[t].block = t;
   for{<g,h> in GUEST_PAIRS}
        TableMeasureCon[t,g,h].block = t;
end;
solve with milp / decomp=(method=user);
```


Use Case: The Kidney Exchange Problem

- See the blog post here
 https://blogs.sas.com/content/operations/2015/02/06/the-kidney-exchange-problem/
- See the documentation example here
 https://go.documentation.sas.com/?docsetId=casmopt&docsetTarget
 =casmopt decomp examples22.htm&docsetVersion=8.5&locale=en
- Sometimes the PRESOLVER= option needs to be adjusted to maintain problem structure
- Static column generation can sometimes be the better choice

See the blog post here

https://blogs.sas.com/content/forecasting/2015/01/24/atm-replenishment-forecasting-optimization/

• See the documentation example

https://go.documentation.sas.com/?docsetId=casmopt&docsetTarget = casmopt decomp examples13.htm&docsetVersion=8.5&locale=en

And here

https://go.documentation.sas.com/?docsetId=casmopt&docsetTarget =casmopt decomp examples21.htm&docsetVersion=8.5&locale=en

- Transactional data for the past 3 months
- Forecasting problem: estimate hourly demand for each ATM for the next month
- Optimization problem: determine at which hours to replenish each ATM over the next month to minimize/avoid cashouts

Objective	Baseline	Optimized
Cashout Events	391	15
Number of Replenishments	11,424	9,828

- 2-hour runtimes, well within overnight requirements
- Significantly increased customer satisfaction
- Projected annual savings of USD 1.4 million

Conclusions

- Decomposition is not just an academic topic!
- Real-world problems today are solved using advanced optimization techniques
- More can be done when the technology is easier to use and quicker to utilize
- Making advanced optimization techniques accessible to a broad range of customers opens up opportunities

Thank you for your attention!

philipp.christophel@sas.com

sas.com

