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Introduction

• About this lecture

• What is mixed-integer nonlinear programming

• Solving a mixed-integer optimisation problem

• What is special about nonlinear problems
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About This Lecture

Goals of the lecture:

• Introduce the viewers to the key concepts of mixed-integer nonlinear
programming

• Explain the basics of MINLP solution methods

• Share some practical tips

It is assumed that the viewers are familiar with the following:

• Basic notions of optimisation: optimisation problem, feasible set, objective
function, feasible and optimal solutions

• Basic notions of mixed-integer linear programming: mixed-integer linear
program, integer variables, continuous relaxation

• MILP branch-and-bound: branching and bounding, primal and dual
bounds, optimality gap, pruning, cutting planes
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Mixed-Integer Nonlinear Programs

min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ [`i , ui ] ∀i ∈ [n]

xi ∈ Z ∀i ∈ I ⊆ [n]

The nonlinear part: functions gk ∈ C 1([`, u],R):
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Examples of Nonlinearities

• Variable fraction p ∈ [0, 1] of variable quantity q: qp. Example: water
treatment unit

• AC power flow - nonlinear function of voltage magnitudes and angles

pij = gijv
2
i − gijvivj cos(θij) + bijvivj sin(θij)

• Distance constraints

(x − x0)2 + (y − y0)2 ≤ R

• etc.
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Solving a Mixed-Integer Optimisation Problem

Two major tasks:

1. Finding and improving feasible solutions (primal side)
• Ensure feasibility, sacrifice optimality
• Important for practical applications

2. Proving optimality (dual side)
• Ensure optimality, sacrifice feasibility
• Necessary in order to actually solve the problem

Connected by:

3. Strategy
• Ensure convergence
• Divide: branching, decompositions, ...
• Put together all components
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Nonlinearity Brings New Challenges

• More numerical issues
• NLP solvers are less efficient and reliable than LP solvers

1. Finding feasible solutions
• Feasible solutions must also satisfy nonlinear constraints
• If nonconvex: fixing integer variables and solving the NLP can produce local

optima

2. Proving optimality
• NLP or LP relaxations?
• If nonconvex: continuous relaxation no longer provides a lower bound
• ”Convenient” descriptions of the feasible set are important

3. Strategy
• Need to account for all of the above
• Warmstart for NLP is much less efficient than for LP

→
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Introduction: Recap

• What is an MINLP problem? What do constraints, variables, objective
look like?

• Solving an MINLP can be roughly divided into two major tasks. What are
they and how are they connected?

• Adding ”nonlinear” to ”mixed-integer” makes the problem even more
difficult. How does this affect different parts of the solution process?
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Finding Feasible Solutions
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Primal Heuristics

The goal of primal heuristics is to find solutions that are:

• feasible (satisfying all constraints) and

• good quality (solutions with lower objective value are preferable).

The best of solutions found so far is referred to as best feasible or incumbent.
It provides an upper bound on the optimal value.

Common theme in primal heuristics: restrict the problem to obtain a
subproblem for which a feasible solution can be found.

Nonconvex: NLP subproblems are usually solved to local optimality.

• Local optima are still feasible solutions

• Not finding the global optimum affects the quality of upper bounds



Introduction Finding Feasible Solutions Proving Optimality Strategy MINLP in SCIP Practical Topics

Primal Heuristics for MINLPs

NLP local search
� Fix integer variables to values at

reference point; solve the NLP.
� Reference point: integer feasible

solution of the LP relaxation.
min

Undercover
� Fix some variables so that the

subproblem is linear and solve the MIP.

Sub-MINLP
� Search around promising solutions.
� The region is restricted by additional
constraints and/or fixing variables.
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Proving Optimality
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Proving Optimality

• Using relaxations for finding lower bounds

• Relaxations for convex MINLPs

• Managing cuts: initial cuts and dynamically added cuts

• Relaxations for nonconvex MINLPs

• How to strengthen the relaxations
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Finding Lower Bounds: Relaxations

Key task: describe the feasible set in a convenient way.
Requirement: the relaxed problem should be efficiently solvable to global
optimality.

It is preferable to have relaxations that are:

• Convex: NLP solutions are globally optimal, infeasibility detection is
reliable

• Linear: solving is more efficient, good for warmstarting

and to avoid:

• Very large numbers of constraints and variables

• Bad numerics

Let F be the feasible set. We look for a relaxation: a set R such that F ⊆ R
which satisfies some of the above.
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Relaxations for Convex MINLPs

• Relax integrality

→

• Replace the nonlinear set with a linear outer approximation

• Linear outer approximation + relax integrality → LP relaxation
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Outer Approximating Convex Constraints

A linear inequality ax ≤ b is valid if x ∈ F ⇒ ax ≤ b (such inequalities are
called cutting planes, or cuts)

Given constraint g(x) ≤ 0 (g convex, differentiable) and a reference point x̂ ,
one can build:

Gradient cuts (Kelley):
g(x̂) +∇g(x̂)(x − x̂) ≤ 0

Projected cuts: same, but move x̂ to the
boundary of F
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Which Cuts to Add?

There are infinitely many possible cuts, how to choose them?

Initial cuts

• Added before the first LP relaxation is solved

• Reference points chosen based on feasible set only

Separation

• Reference point is a relaxation solution x̂ /∈ F

• Valid inequalities ax ≤ b violated by x̂ : ax̂ > b

• Thus x̂ is separated from F

Cut selection: choose from violated cuts using various criteria for cut
”usefulness”.
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Convex Relaxations for Nonconvex MINLPs

Only relaxing integrality no longer provides a lower bound, and gradient cuts
might no longer be valid ⇒ construct a convex relaxation.

The best relaxation is conv(F ): convex hull of F , i.e. the smallest convex set
containing F . In general, cannot be constructed explicitly.

Therefore:

• Relax sets given by individual constraints: gk(x) ≤ 0

↑
• Find convex underestimators g cv

k of functions gk :
g cv
k (x) ≤ gk(x) ∀x ∈ [l , u]

↑
• Find and combine relaxations of simple functions

Examples of simple functions: x2, xk ,
√
x , xy , etc.

Exercise: write the tightest possible convex underestimators for −x2 and x3,
given x ∈ [−1, 1] (hint: for x3, you need more than one function for each
estimator).
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Combining Relaxations

Find underestimator for g(x) = φ(ψ1(x), . . . , ψp(x)), where functions φ and ψj

are ”simple”, i.e. can be convexified directly.

• McCormick relaxations for factorable functions: piecewise continuous
relaxations utilising convex and concave envelopes of φ and ψj .

• Auxiliary variable method: introduce variables yj = ψj(x). Then
g(x) = φ(y1, . . . , yp). Enables individual handling of each function.
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Linear Relaxations for Nonconvex MINLPs

Gradient cuts might no longer be valid!

• If possible, directly construct linear
underestimators for nonconvex functions
• Secants for concave functions
• McCormick envelopes for bilinear products
• etc.
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• Construct gradient cuts for a convex relaxation
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Impact of Variable Bounds

Tighter bounds ⇒ tighter relaxations.

Example: McCormick relaxation of a bilinear product relation z = xy :

z ≤ xuy + xy l − xuy l

z ≤ x ly + xyu − x lyu

z ≥ x ly + xy l − x ly l

z ≥ xuy + xyu − xuyu

(x , y) ∈ [−1, 2]× [−2, 2] (x , y) ∈ [0, 1]× [−1, 1]

Tighter bounds obtained from:

• Branching

• Specialised bound tightening techniques (see linked materials)
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Strengthening Relaxations: Using More Constraints

More constraints ⇒ tighter relaxations.

Example: perspective cuts. Use an additional constraint that requires x to be
semicontinuous.

g(x) ≤ 0, lz ≤ x ≤ uz
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Proving Optimality: Recap

• What are relaxations used for? What are some common types of
relaxations?

• What are gradient cuts and when can they be applied?

• What is a convex hull and what is its practical significance?

• Auxiliary variable method: how does it reformulate a function
g(x) = φ(ψ1(x), . . . , ψp(x)) and what it is used for.

• How can relaxations of nonconvex problems be strengthened?
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Strategy
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Strategy

• Goal: bring together the primal and dual side, i.e. find the
optimal solution and prove that it is optimal

• A brief overview of algorithms for convex MINLPs

• A closer look at spatial branch and bound
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Algorithms for Convex MINLP: Overview

MIP

NLP

Outer Approximation:

• Solve MIP relaxations and NLP subproblems

• Add cuts at solutions of NLP subproblems

• Uses the equivalence of MINLP to MILP (see
notes)

MIP

Extended Cutting Planes:

• Solve MIP relaxations

• Add cuts at solutions of MIP relaxations

Branch and Bound:

• Generalisation of MILP B&B

• The continuous relaxation is nonlinear (but
convex)

• Different choices between LP and NLP relaxations
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Algorithms for Nonconvex MINLP: Spatial Branching

Branching on variables in violated nonconvex constraints, because
variable bounds determine the convex relaxation, e.g.,

x2 ≤ `2 +
u2 − `2

u − ` (x − `) ∀x ∈ [`, u].
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Spatial Branch and Bound

• Solve a relaxation → lower bound

• Run heuristics to look for feasible
solutions → upper bound

• Branch on a suitable variable

• Discard parts of the tree that are
infeasible or where lower bound >
best known upper bound

• Repeat until gap is below given
tolerance

Smaller domains → improved relaxations → improved bounds.
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Strategy: Recap

• There are several different approaches to solving convex MINLPs.

• In addition to branching to enforce integrality, what other type of
branching does spatial B&B employ?

• Can you recall the main steps of the spatial B&B algorithm?
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MINLP in SCIP
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MINLP in SCIP

• SCIP implements LP-based spatial B&B

• Convex relaxations are constructed via the auxiliary variable method

• The handling of nonlinear constraints is based on expression graphs
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Expression Trees

Algebraic structure of nonlinear constraints is stored in one directed acyclic graph:

• nodes: variables, operations, constraints

• arcs: flow of computation

Operators:

• variable index, constant

• +, −, ∗, ÷
• ·2,

√
·, ·p (p ∈ R), ·n (n ∈ Z),

x 7→ x |x |p−1 (p > 1)

• exp, log

• min, max, abs

• ∑
,
∏

, affine-linear, quadratic, signomial

• (user)

Additional constraint handlers: quadratic,
abspower (x 7→ x|x|p−1, p > 1), SOC

log(x)2 + 2 log(x)y + y2

+

·2

log

x

×

2

·2

y

[−∞, 4]

[1, 4]

[1, 4]
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Reformulation (During Presolve)

Goal: reformulate constraints such that only elementary cases (convex, concave,
odd power, quadratic) remain. Implements the auxiliary variable method.

Example:

g(x) =
√

exp(x2
1 ) ln(x2)

Reformulation:

g =
√
y1

y1 = y2y3

y2 = exp(y4)

y3 = ln(x2)

y4 = x2
1

0.0

0.5
1.0

1.5
2.0

1.01.52.0 0

2

4

6

Introduces new variables and new constraints.
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Practical Topics
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Impact of Modelling

If you know your problem structure - use it!

Example: x and y contained in circle of radius c if z = 1 and are both zero if
z = 0.

One could model this as:

x2 + y 2 ≤ cz

x , y ∈ R, z ∈ {0, 1}

Or as:

x2 + y 2 ≤ cz2

x , y ∈ R, z ∈ {0, 1}

These describe the same feasible set (z2 = z if z ∈ {0, 1}). But the second
formulation leads to a tighter continuous relaxation (z2 < z if z ∈ (0, 1)).
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How to Experiment

• Performance variability
• Significant changes in performance caused by small changes in

model/algorithm
• Occurs in MILP, but tends to be even more pronounced in MINLP

• Obtaining more reliable results
• If possible and makes sense, use large and heterogeneous testsets
• Take advantage of performance variability: model permutations (reordering

variables and constraints) can help against random effects (in SCIP, this is
controlled by a parameter)

• Using solver statistics
• Information on tree nodes, primal and dual bounds, effects of solver

components
• Helpful for finding bottlenecks

• Isolating feature effects
• Turn off some components to get rid of some random effects...
• or to analyse interaction: some component might make the feature

redundant, etc.
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