
Solving Mixed-Integer SDPs
Marc Pfetsch, TU Darmstadt

based on work together with
Tristan Gally and Stefan Ulbrich

Main source: Dissertation of Tristan Gally, 2019

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 1

Mixed-Integer Semidefinite Programming

Mixed-integer semidefinite program (MISDP)

sup bT y

s.t. C −
m∑

i=1

Aiyi � 0,

yi ∈ Z ∀ i ∈ I

where Ai , C ∈ Rn×n are symmetric, b ∈ Rm, I ⊆ {1, ... , m}.

. Linear constraints, bounds, multiple blocks possible within SDP-constraint.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 2

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 3

Robust Truss Topology Design

. n nodes V ⊂ Rd

. nf free nodes Vf ⊂ V

. m possible bars E

. force f ∈ Rdf for df = d · nf

. Cross-sectional areas x ∈ Rm
+ for

bars minimizing volume
while creating a “stable” truss

. Stability is measured by the
compliance 1

2 f T u with node
displacements u.

ground structure 3x3

optimal structure

. Use uncertainty set {f ∈ Rdf : f = Qg : ‖g‖2 ≤ 1} instead of single force f .

. Instead of arbitrary cross-sections x ∈ Rm
+ restrict them to discrete set A.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 4

Robust Truss Topology Design

. n nodes V ⊂ Rd

. nf free nodes Vf ⊂ V

. m possible bars E

. force f ∈ Rdf for df = d · nf

. Cross-sectional areas x ∈ Rm
+ for

bars minimizing volume
while creating a “stable” truss

. Stability is measured by the
compliance 1

2 f T u with node
displacements u.

ground structure 3x3 optimal structure

. Use uncertainty set {f ∈ Rdf : f = Qg : ‖g‖2 ≤ 1} instead of single force f .

. Instead of arbitrary cross-sections x ∈ Rm
+ restrict them to discrete set A.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 4

Robust Truss Topology Design

. n nodes V ⊂ Rd

. nf free nodes Vf ⊂ V

. m possible bars E

. force f ∈ Rdf for df = d · nf

. Cross-sectional areas x ∈ Rm
+ for

bars minimizing volume
while creating a “stable” truss

. Stability is measured by the
compliance 1

2 f T u with node
displacements u.

ground structure 3x3 optimal structure

. Use uncertainty set {f ∈ Rdf : f = Qg : ‖g‖2 ≤ 1} instead of single force f .

. Instead of arbitrary cross-sections x ∈ Rm
+ restrict them to discrete set A.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 4

Robust Truss Topology Design

Elliptic Robust Discrete TTD [Ben-Tal/Nemirovski 1997; Mars 2013]

inf
∑
e∈E

`e

∑
a∈A

a xa
e

s.t.
(

2CmaxI QT

Q A(x)

)
� 0,∑

a∈A
xa

e ≤ 1 ∀e ∈ E ,

xa
e ∈ {0, 1} ∀e ∈ E , a ∈ A,

with bar lengths `e, upper bound Cmax on compliance and stiffness matrix

A(x) =
∑
e∈E

∑
a∈A

Ae a xa
e

for positive semidefinite, rank-one single bar stiffness matrices Ae.
CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 5

Cardinality Constrained Least Squares

. Sample points as rows of A ∈ Rm×d with measurements b1,. . . , bm ∈ R

. Find x ∈ Rd minimizing 1
2‖Ax − b‖2

2 + ρ
2‖x‖

2
2 for a regularization parameter ρ.

. Further restrict x to at most k non-zero components.

Cardinality Constrained Least Squares
[Pilanci/Wainwright/El Ghaoui 2015]

inf τ

s.t.
(

I + 1
ρ A Diag(z) A> b

b> τ

)
� 0,

d∑
j=1

zj ≤ k , z ∈ {0, 1}d .

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 6

Minimum k-Partitioning

. Given undirected graph G = (V , E), edge costs c and number of parts k ∈ N.

. Find partitioning of V into k disjoint sets V1, ... , Vk minimizing the total cost
within the parts

k∑
i=1

∑
e∈E [Vi]

c(e).

1

2

3

4

51

3

4

2

2

2 2

5

3

. Applications in, e.g., frequency planning and layout of electronic circuits.
CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 7

Minimum k-Partitioning

Minimum k -Partitioning [Eisenblätter 2001]

inf
∑

1≤i<j≤n

cij Yij

s.t. −1
k−1 J + k

k−1 Y � 0,

Yii = 1, Yij ∈ {0, 1},

where J is the all-one matrix.

Constraints on the size of the partitions can be added as

` ≤
n∑

j=1

wj Yij ≤ u ∀i ≤ n,

with wj weight of node j and ` and u bounds on total weight of each partition.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 8

Further Applications

. Computing restricted isometry constants in compressed sensing

. Optimal transmission switching problem in AC power flow

. Robustification of physical parameters in gas networks

. Subset selection for eliminating multicollinearity

. . . .

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 9

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 10

Outer Approximation / Cutting Planes

. Idea: Solve LP/MIP and enforce SDP-constraint via linear cuts

. Cutting plane approach [Kelley 1960]:
I Solve a single MIP.
I In each node add cuts to enforce nonlinear constraints and resolve LP.

. Outer Approximation [Quesada/Grossmann 1992]:
I Solve MIP (without nonlinear constraints) to optimality.
I Solve continuous relaxation for fixed integer variables.
I If objectives do not agree, update polyhedral approximation.
I Resolve MIP and continue iterating.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 11

Enforcing the SDP-Constraint

. For convex MINLP one usually uses gradient cuts

gj (x) +∇gj (x)>(x − x) ≤ 0.

. But function of smallest eigenvalue is not differentiable everywhere.

. Instead use characterization X � 0 ⇔ u>X u ≥ 0 for all u ∈ Rn

. If Z := C −
∑m

i=1 Ai y∗i 6� 0, compute eigenvector v to smallest eigenvalue.
Then

v>Z v ≥ 0

is valid and cuts off y∗.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 12

Cutting Planes: MISOCP vs. MISDP

. Cutting planes often used by solvers for mixed-integer second-order cone
problems.

. Outer approximation for SOCPs possible with polynomial number of cuts
[Ben-Tal/Nemirovski 2001].

. Outer approximation for SDPs needs exponential number of cuts
[Braun et al. 2015].

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 13

SDP-based Branch-and-Bound

. Relax integrality instead of SDP-constraint.

. Branch on y -variables.

. Need to solve a continuous SDP in each branch-and-bound node.

. Relaxations can be solved by problem-specific approaches (e.g. conic bundle
or low-rank methods) or interior-point.

. Need to satisfy convergence assumptions of SDP-solvers.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 14

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 15

Strong Duality in SDP

Dual SDP (D)

sup bT y

s.t. C −
m∑

i=1

Aiyi � 0,

y ∈ Rm.

Primal SDP (P)

inf C • X

s.t. Ai • X = bi ∀ i ≤ m,

X � 0.

where A • B = Tr(AB) =
∑

ij AijBij .

. Strong Duality holds if Slater condition holds for (P) or (D):
∃X � 0 feasible for (P) or y such that C −

∑m
i=1 Aiyi � 0 in (D).

. If Slater holds for (P), optimal objective of (D) is attained and vice versa.

. Existence of a KKT-point is guaranteed if Slater holds for both, this is assumed
by most interior-point SDP-solvers.

. Can these assumptions be lost through branching?

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 16

Strong Duality in SDP

Dual SDP (D)

sup bT y

s.t. C −
m∑

i=1

Aiyi � 0,

y ∈ Rm.

Primal SDP (P)

inf C • X

s.t. Ai • X = bi ∀ i ≤ m,

X � 0.

where A • B = Tr(AB) =
∑

ij AijBij .

. Strong Duality holds if Slater condition holds for (P) or (D):
∃X � 0 feasible for (P) or y such that C −

∑m
i=1 Aiyi � 0 in (D).

. If Slater holds for (P), optimal objective of (D) is attained and vice versa.

. Existence of a KKT-point is guaranteed if Slater holds for both, this is assumed
by most interior-point SDP-solvers.

. Can these assumptions be lost through branching?

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 16

Strong Duality in Branch-and-Bound

Theorem [Gally, P., Ulbrich 2016]

Let (D+) be the problem formed by adding a linear constraint to (D). If

. strong duality holds for (P) and (D),

. the set of optimal Z := C −
∑m

i=1 Aiyi in (D) is compact and nonempty,

. problem (D+) is feasible,

then strong duality also holds for (D+) and (P+) and the set of optimal Z for (D+) is
compact and nonempty.

. Compactness of set of optimal Z also necessary for strong duality
[Friberg 2016].

. Analogous result for adding linear constraints to (P) with set of optimal X
compact and nonempty and (P+) feasible.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 17

Slater Condition in Branch-and-Bound

Proposition [Gally, P., Ulbrich 2016]

After adding a linear constraint
∑m

i=1 aiyi ≥ c (or ≤ or =) to (D), if (P) satisfies the
Slater condition and the coefficient vector a satisfies a ∈ Range(A), for
A : Sn → Rm, X 7→ (Ai • X)i∈[m], then the Slater condition also holds for (P+).

. a ∈ Range(A) is implied by linear independence of Ai .

. Dual Slater condition is preserved after adding linear constraint to (P) (without
additional assumptions on the coefficients).

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 18

KKT-condition in Branch-and-Bound

KKT-points may get lost after branching, for example:

(D)

sup 2 y1 − y2

s.t.
(

0.5 −y1

−y1 y2

)
� 0.

(P)

inf 0.5 X11

s.t.
(

X11 1
1 1

)
� 0.

. Strictly feasible solutions given by y = (0, 0.5), X11 = 2.

. Optimal objective of 0.5 attained (only) for y = (0.5, 0.5), X11 = 1.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 19

KKT-condition in Branch-and-Bound

After branching on y2 and adding cut y2 ≤ 0:

(D+)

sup 2 y1 − y2

s.t.

 0.5 −y1 0
−y1 y2 0

0 0 −y2

 � 0,

(P+)

inf 0.5 X11

s.t.

X11 1 X13

1 X22 X23

X13 X23 X22 − 1

 � 0.

. Optimal objective 0 attained for y = (0, 0).

. Relative interior of (D+) is empty.

. (P+) still has strictly feasible solution X11 = X22 = 2, X13 = X23 = 0.

. (P+) has minimizing sequence X11 = 1/k , X22 = k , X13 = X23 = 0.

. No longer satisfies assumptions for convergence of interior-point solvers.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 20

Slater Condition in Practice

Dual Slater Primal Slater

application 3 7 infeas ? 3 7 ?

TTD 83.22 % 5.82 % 10.96 % 0.00 % 99.99 % 0.00 % 0.01 %
CLS 56.26 % 3.44 % 40.30 % 0.00 % 100.00 % 0.00 % 0.00 %
MkP 3.66 % 62.93 % 33.41 % 0.00 % 100.00 % 0.00 % 0.00 %

overall 45.89 % 25.33 % 28.78 % 0.00 % 100.00 % 0.00 % 0.00 %

run on cluster of 64-bit Intel Xeon E5-1620 CPUs running at 3.50 GHz with 32 GB RAM using SCIP-SDP 3.1.1,
SCIP 6.0.0, and MOSEK 8.1.0.54 on test set of 194 CBLIB instances

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 21

Checking Infeasibility

If interior-point solver did not converge for original formulation, solve

Feasibility Check [Mars 2013]

inf r

s.t. C −
m∑

i=1

Aiyi + I r � 0.

If optimum r∗ > 0, original problem is infeasible and node can be cut off.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 22

Handling Failure of the Dual Slater Condition

If problem is not infeasible, solve

Penalty Formulation [Benson/Ye 2008]

sup b>y − Γ r

s.t. C −
m∑

i=1

Aiyi + I r � 0,

r ≥ 0

for sufficiently large Γ to compute an upper bound.

. If optimal r∗ = 0, then solution is also optimal for original problem.

. Adds constraint Tr(X) ≤ Γ to primal problem, for large enough Γ also
preserves primal Slater condition.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 23

SDP-Solvers depending on Slater Condition

Behavior if Slater condition holds for (P) and (D)
solver default penalty bound unsucc

SDPA 90.78 % 5.50 % 0.00 % 3.73 %
DSDP 99.68 % 0.32 % 0.00 % 0.00 %
MOSEK 99.51 % 0.49 % 0.00 % 0.00 %

Behavior if Slater condition fails for (P) or (D)
solver default penalty bound unsucc

SDPA 56.15 % 1.14 % 13.00 % 29.71 %
DSDP 99.81 % 0.13 % 0.00 % 0.05 %
MOSEK 99.20 % 0.79 % 0.01 % 0.00 %

Behavior if problem is infeasible
solver default penalty bound unsucc

SDPA 46.99 % 39.46 % 4.88 % 8.67 %
DSDP 92.44 % 2.23 % 1.39 % 3.94 %
MOSEK 88.42 % 10.36 % 1.22 % 0.00 %

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 24

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 25

SCIP-SDP

. Based on SCIP framework.

. Supports both nonlinear B&B and LP-based branch-and-cut.

. Two file-readers
I CBF
I SDPA with added integrality information

. Constraint handler for SDP-constraints

. Interfaces to three SDP solvers
I DSDP
I SDPA
I MOSEK

. Two additional heuristics
I SDP-based diving, SDP-based randomized rounding

. Two additional propagators
I SDP-based OBBT, SDP-based dual fixing

. Parallelized version available as UG-MISDP.

. Supports rank 1 constraints (implemented together with Frederic Matter).

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 26

Constraint Handler

. Handles SDP-constraints in dual form

C −
m∑

i=1

Aiyi � 0.

. For branch & cut separate eigenvector cuts.

. Adds linear constraints implied by SDP-constraint during presolving (e.g.,
non-negativity of diagonal entries).
I Redundant for nonlinear branch-and-bound, but can be used by SCIP during

presolving for fixing variables.
I Still lead to speedup of 6% even for nonlinear branch-and-bound.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 27

Relaxator and SDPI

. Relaxator solves trivial relaxations (e.g., all variables fixed), otherwise calls
SDP interface (SDPI).

. Upper level SDPI does some local presolving important for SDP-solvers, e.g.,
I removing fixed variables,
I removing zero rows/columns.

. Lower level SDPI brings SDP into the form needed by the solver (e.g., primal
instead of dual SDP for MOSEK) and solves it.

. In case SDP-solver failed to converge (e.g., because of failure of constraint
qualification), upper level SDPI can apply penalty formulation and call lower
level SDPI for adjusted problem.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 28

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 29

Dual Fixing

. Extension of reduced-cost fixing to general MINLPs by [Ryoo and Sahinidis
1996] and primal MISDPs by [Helmberg 2000].

. Our approach uses conic duality and only requires feasibility.

Theorem [Gally, P., Ulbrich 2018]

. (X , W , V): Primal feasible solution, where W , V are primal variables
corresponding to variable bounds `, u in the dual,

. f : Corresponding primal objective value,

. L: Lower bound on the optimal objective value of the MISDP.
Then for every optimal solution y? of the MISDP

y?j ≤ `j +
f − L
Wjj

if `j > −∞ and y?j ≥ uj −
f − L

Vjj
if uj <∞.

. If f − L < Wjj for binary yj , then y?j = 0, if f − L < Vjj , then y?j = 1.

. 9% reduction of B&B-nodes, 23% speedup.
CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 30

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 31

Warmstarts

. MIP: Large savings by starting dual simplex from optimal basis of parent node.

. Interior-point solvers: Need X � 0 and Z := C −
∑m

i=1 Aiyi � 0 for initial point.

. Not satisfied by optimal solution of parent node, which will be on boundary.

. Infeasible-interior-point methods update Z and y separately, so Z does not
necessarily need to be updated after branching, but has to be positive definite.

⇒ Cannot easily warmstart with unadjusted solution of parent node.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 32

Warmstarting Techniques

. Starting from earlier iterates
I Proposed by [Gondzio 1998] for MIP.
I Store previous iterate, further away from optimum but still sufficiently interior.

. Convex combination with strictly feasible solution
I Due to [Helmberg and Rendl 1998]
I Convex combination with scaled identity matrix or analytic center of root node.

. Projection onto positive definite matrices
I Project onto set of matrices with λmin ≥ λ > 0.
I Can be computed explicitly from eigendecomposition.

. Rounding problems
I Proposed by [Çay, Pólik and Terlaky 2017] for MISOCP.
I Compute feasible solutions for adjusted problems by fixing eigenvectors of parent

node and optimizing over eigenvalues as LP.
I Can prove optimality/suboptimality/infeasibility by linear programming only.
I Solution still needs to be adjusted for strict feasibility.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 33

Comparison of Warmstarting Techniques

settings solved time sdpiter

no warmstart 288 117.47 18,957.04
simple warmstart 127 794.32 –
preoptgap 0.01 191 349.88 –
preoptgap 0.5 243 232.49 22,830.56
0.01 id pdsame 288 110.63 16,172.51
0.5 id pddiff 288 105.36 15,125.79
0.5 id pdsame 290 105.56 16,362.67
0.5 anacent 286 140.88 20,463.24
proj minev 0.1 285 112.74 16,277.19
roundingprob 0.5 id 282 174.83 13,952.38
roundingprob inf only 287 155.19 15,282.34

run on cluster of 64-bit Intel Xeon E5-1620 CPUs with 3.50 GHz and 32 GB RAM using SCIP-SDP 3.1.1, SCIP 6.0.0,
and SDPA 7.4.0 on test set of 194 CBLIB instances and 126 compressed sensing instances; times (and iterations) as

shifted geometric means (over instances solved by all settings except unadjusted warmstart and preoptimal)

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 34

Comparison of Warmstarting Techniques

Speedup for conv 0.01 pdsame
application solved time sdpiter

TTD −1 +22.4 +10.6
CLS 0 −9.1 −13.0
MkP +1 −16.0 −21.0
RIP 0 −9.7 −18.1

Speedup for conv 0.5 pddiff
application solved time sdpiter

TTD -1 +15.7 −10.4
CLS 0 −5.2 −4.0
MkP +1 +0.1 −9.8
RIP 0 −27.9 −31.2

Speedup for conv 0.5 pdsame
application solved time sdpiter

TTD +1 −8.7 −26.3
CLS −1 −8.7 −11.1
MkP +2 −8.6 +0.6
RIP 0 −12.6 −17.4

Speedup for projection
application solved time sdpiter

TTD −3 +10.4 −21.7
CLS −1 +0.7 −5.5
MkP +1 +5.7 +12.1
RIP 0 −17.3 −24.1

run on cluster of 64-bit Intel Xeon E5-1620 CPUs running at 3.50 GHz with 32 GB RAM using SCIP-SDP 3.1.1, SCIP 6.0.0, and SDPA 7.4.0 on test set of 194 CBLIB
instances and 126 compressed sensing instances; times (and iterations) as shifted geometric means (over instances solved by all settings except unadjusted
warmstart and preoptimal)

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 35

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 36

MISDP Solvers

Nonlinear branch-and-bound

. SCIP-SDP 3.1.1 (nonlinear branch-and-bound)
Our implementation, using SCIP as B&B-framework

. YALMIP-BNB R20180926
MATLAB toolbox for rapid prototyping

Cutting plane / outer approximation approaches

. SCIP-SDP 3.1.1 (LP-based cutting planes)

. YALMIP-CUTSDP R20180926

. Pajarito 0.5.0
I Julia implementation for mixed-integer convex including MISDP
I MIP-solver-drives version (single MIP with SDP solves for stronger cuts)

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 37

Comparison of MISDP Solvers I

0.1 1 10 100 1000 3600

0

50

100

150

200

time [s]

#
so

lv
ed

in
st

an
ce

s

SCIP-SDP (NL-BB)
SCIP-SDP (Cut-LP)
YALMIP (BNB)
YALMIP (CUTSDP)
Pajarito

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 38

Comparison of MISDP Solvers II

solver TTD CLS Mk -P Total
opt time opt time opt time opt time

SCIP-SDP (NL-BB) 57 64.4 63 94.3 69 36.4 189 60.4
SCIP-SDP (Cut-LP) 44 143.6 65 9.0 35 640.3 144 117.5
YALMIP (BNB) 52 203.0 62 132.0 68 25.2 182 88.1
YALMIP (CUTSDP) 22 1026.8 58 33.1 27 657.2 107 295.5
Pajarito 43 190.9 65 54.3 13 1503.5 121 271.2

run on 8-core Intel i7-4770 CPU with 3.4 GHz and 16GB memory over 196 instances of CBLIB; time limit of 3600
seconds, times as shifted geometric means, SDPs solved using MOSEK 8.1.0.54, MIPs/LPs using CPLEX 12.6.1; all
solvers single-threaded

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 39

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 40

Parallelization

. Based on UG framework.

. Can either parallelize on SDP or on MIP side.

. Parallel Cholesky for SDPs depends on sparsity pattern and usually only
efficient for larger SDPs.

. Solving subtrees of branch and bound tree in parallel not possible for root
node.

⇒ Use racing ramp-up in root node to decide between different settings, in
particular LP vs. SDP.

. Start a number of SCIP-SDP instances in parallel with half of them using
LP-based and the other half SDP-based settings.

. After enough nodes have been generated, decide on “best” solver and
distribute this solver’s tree.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 41

Numerical Results for Parallelization

solver / TTD CLS Mk -P Total
threads opt time opt time opt time opt time

SCIP-SDP 55 84.01 62 142.19 67 54.44 184 86.59
UG-MISDP 1 54 107.49 62 156.70 58 107.81 174 122.23
UG-MISDP 2 56 64.93 64 23.31 56 92.25 176 53.79
UG-MISDP 4 58 39.76 65 18.48 60 85.61 183 42.07
UG-MISDP 8 58 32.07 65 14.51 60 72.35 183 34.57
UG-MISDP 16 59 21.03 65 16.37 59 78.46 183 32.65
UG-MISDP 32 59 21.27 65 18.38 56 92.14 180 36.11

run on Intel Xeon E5-4650 CPUs running at 2.70 GHz with 512 GB of shared RAM; time limit of 3600 seconds, times
as shifted geometric means; using developer versions of SCIP 6.0.0, SCIP-SDP 3.1.1, UG 0.8.6, SDPs solved using
MOSEK 8.1.0.54, LPs using CPLEX 12.6.3; instances from CBLIB

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 42

Overview

1 Applications
2 Solution Methods
3 Duality in MISDPs
4 SCIP-SDP
5 Dual Fixing
6 Warmstarts
7 Comparison with other MISDP solvers
8 Parallelization
9 Conclusion & Outlook

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 43

Conclusion & Outlook

. Framework for solving general MISDPs

. Several methods help to improve performance.

. Solving SDPs is still one bottleneck, but often yields strong bounds.

. Future: follow development path for MIP-solvers for MISDP-solvers as well.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 44

SCIP-SDP is available in source code at

http://www.opt.tu-darmstadt.de/scipsdp/

Thank you for your attention!

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 45

http://www.opt.tu-darmstadt.de/scipsdp/

References

• T. Gally.
Computational Mixed-Integer Semidefinite Programming.
PhD thesis, TU Darmstadt, 2019.

• T. Gally, M. E. Pfetsch, and S. Ulbrich.
A framework for solving mixed-integer semidefinite programs.
Optimization Methods and Software, 33(3):594–632, 2018.

• S. Mars.
Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design.
PhD thesis, FAU Erlangen-Nürnberg, 2013.

• Y. Shinano, D. Rehfeldt, and T. Gally.
An easy way to build parallel state-of-the-art combinatorial optimization problem solvers:
A computational study on solving steiner tree problems and mixed integer semidefinite
programs by using ug[scip-*,*]-libraries.
In Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and
Optimization, pages 530 – 541, 2019.

CO@Work 2020 | Solving Mixed-Integer SDPs | Marc Pfetsch | 46

	Applications
	Solution Methods
	Duality in MISDPs
	SCIP-SDP
	Dual Fixing
	Warmstarts
	Comparison with other MISDP solvers
	Parallelization
	Conclusion & Outlook

