

FICO₆

Branching

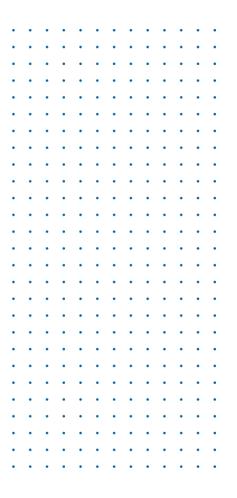
The MIP solver's backbone

Timo Berthold

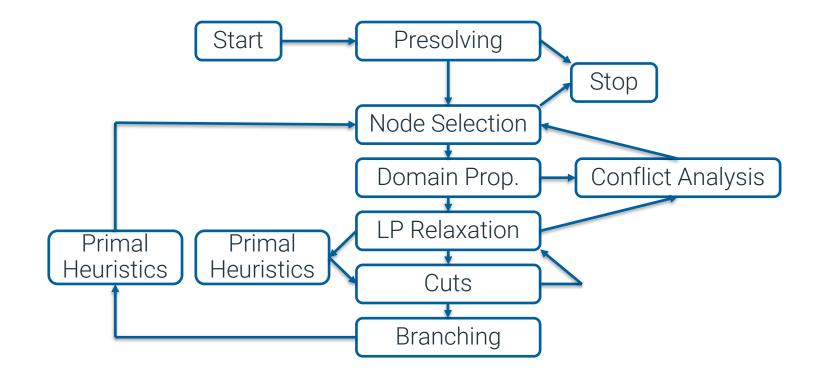
Agenda

• Branching

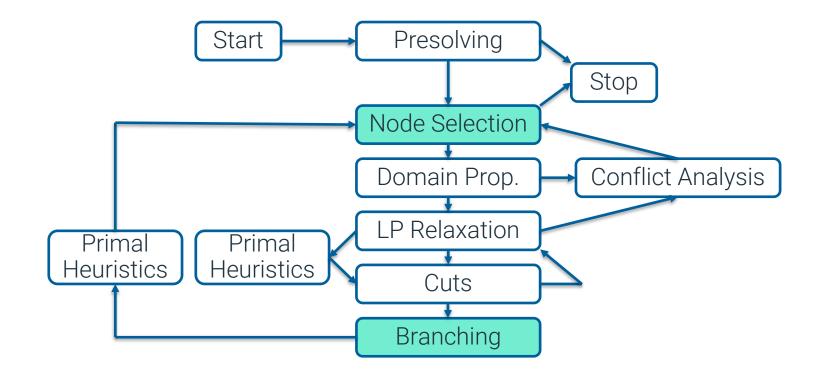
- Strong Branching, pseudo-costs, reliability
- Hybrid Branching, Cloud branching
- Node selection



MIP Solver Flowchart



MIP Solver Flowchart

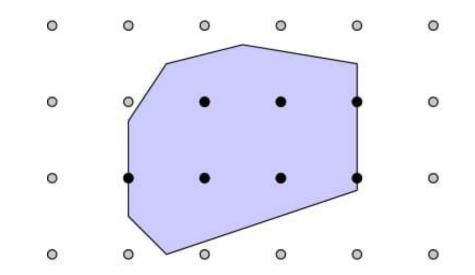


Reminder: Branch&Bound

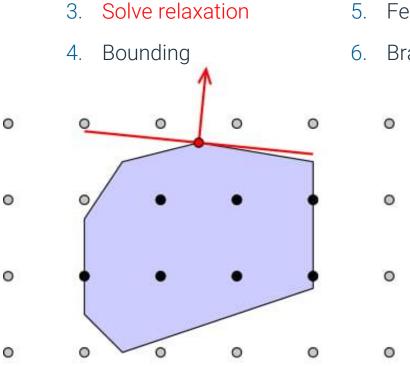
- 1. Abort Criterion
- 2. Node selection

4. Bounding

- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection



- 5. Feasibility Check
- 6. Branching

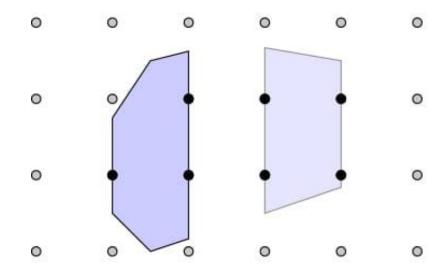
- Abort Criterion 3. Solve relaxation 2. Node selection Bounding 4.
- 5. Feasibility Check
 - Branching 6.

1.

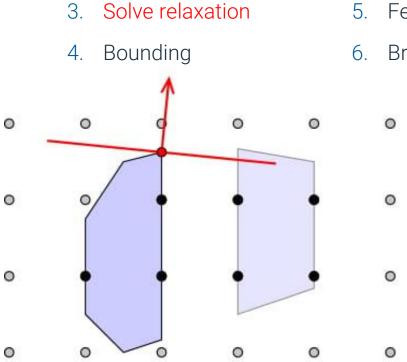
- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching

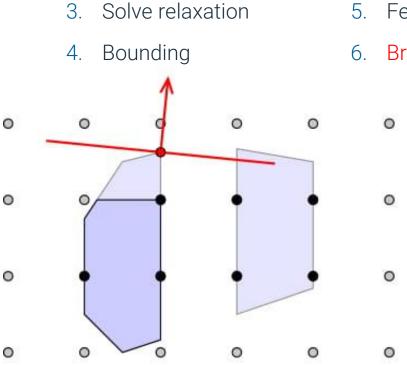


- 1. Abort Criterion
- 2. Node selection



- 5. Feasibility Check
- 6. Branching

- 1. Abort Criterion
- 2. Node selection

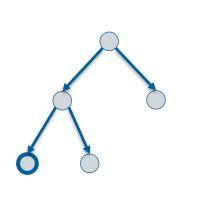


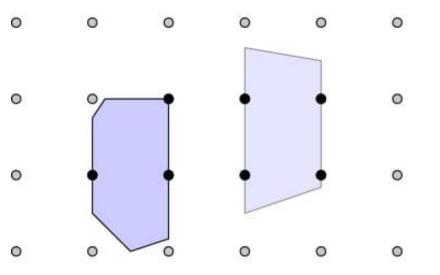
- 5. Feasibility Check
- 6. Branching

- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching

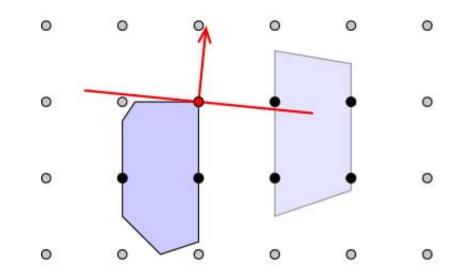




- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

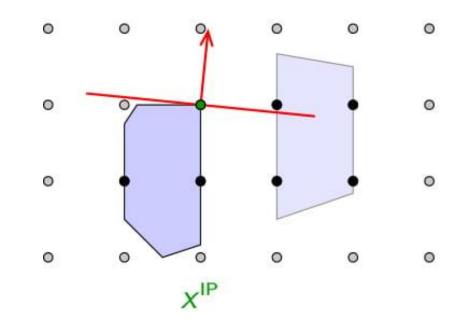
- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

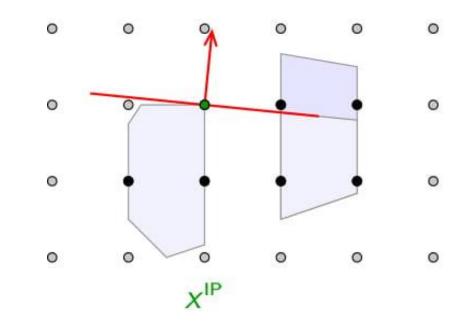
- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

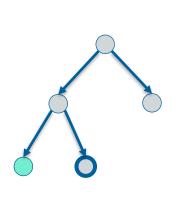
- 5. Feasibility Check
- 6. Branching

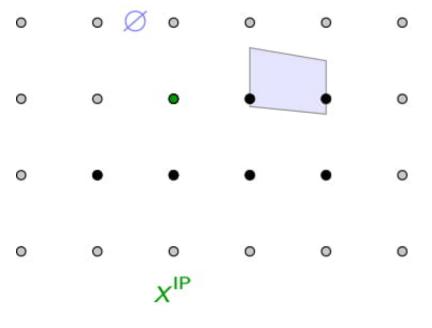


- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching

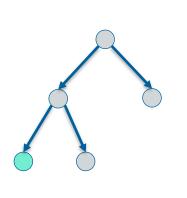


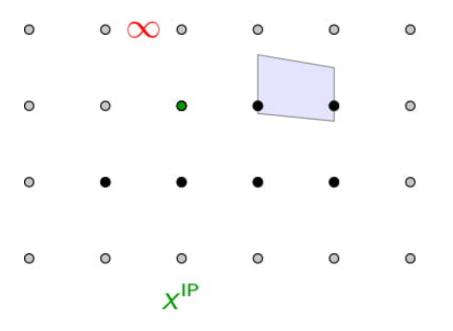


- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching

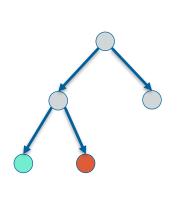


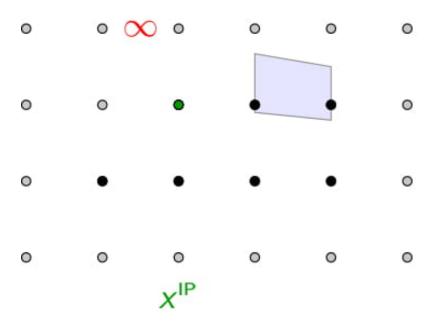


- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching

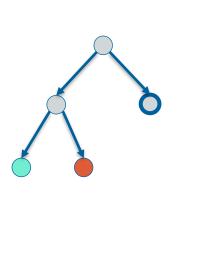


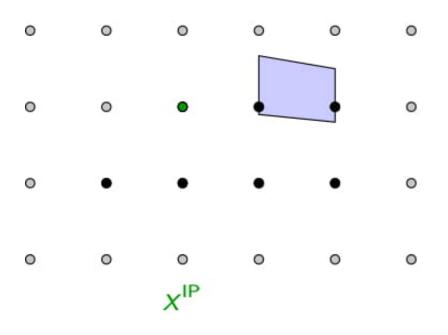


- 1. Abort Criterion
- 2. Node selection

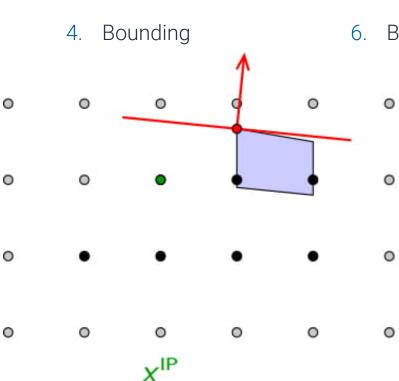
- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching





- 1. Abort Criterion
- 2. Node selection



3. Solve relaxation

- 5. Feasibility Check
- 6. Branching

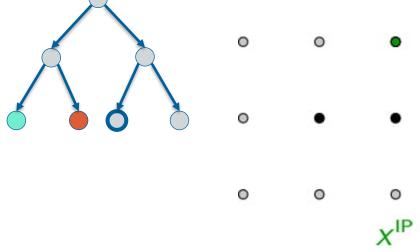
- Abort Criterion 3. Solve relaxation Node selection Bounding 2. 4. 6. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 - 5. Feasibility Check
 - Branching

1.

- Abort Criterion 1.
- 2. Node selection

	3. Sc	3. Solve relaxation				Feas
	4. Bo	ounding			6.	Bran
0	0	0	0	0		0
0	0	•	•	-		0
0	•	•	•	•		0
0	0	0	0	0		0

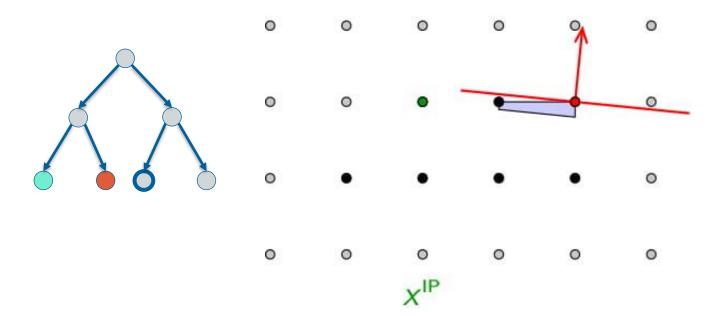
- sibility Check F
- nching



- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

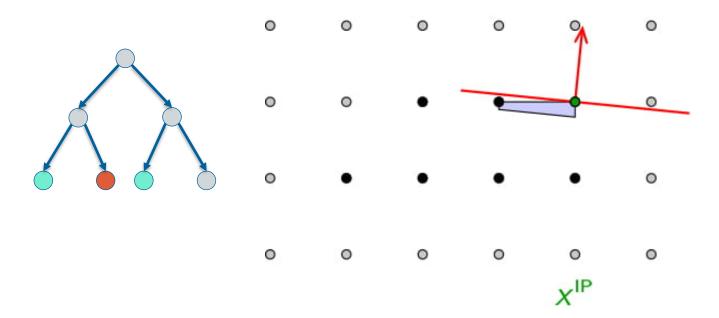
- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

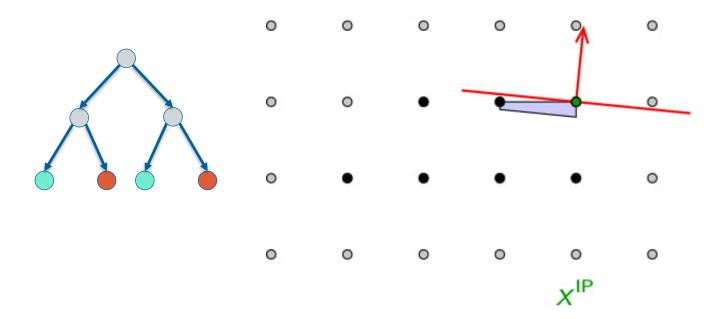
- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection

- 3. Solve relaxation
- 4. Bounding

- 5. Feasibility Check
- 6. Branching



- 1. Abort Criterion
- 2. Node selection
- Two main decisions:
- Node selection
 - Might be important to find good solutions early
 - When optimum is found: just a matter of traversal order
- Variable selection
 - Bad selection might duplicate search effort
 - at every level....

- 3. Solve relaxation
- 4. Bounding

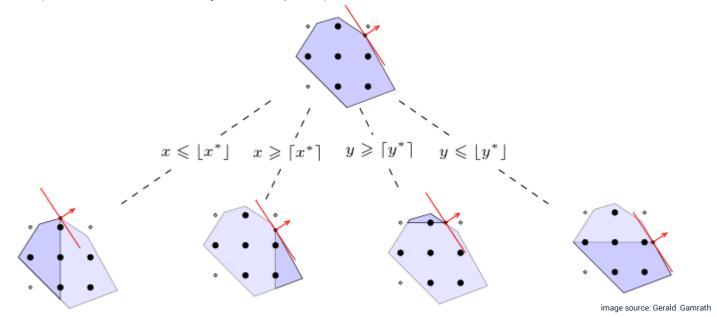
- 5. Feasibility Check
- 6. Variable selection

Strong branching and pseudo-costs

Strong branching (Applegate et al 1995)

Typical goal: Improve dual bound

• Perform an explicit look-ahead by solving all possible descendants of the current node.



Strong branching (Applegate et al 1995)

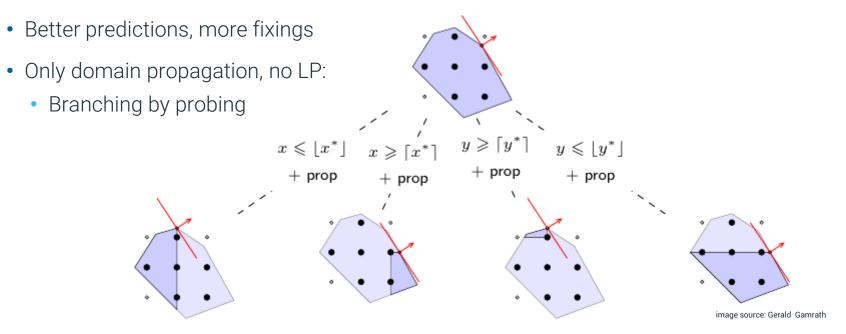
- Effective w.r.t. number of nodes, expensive w.r.t. time
- Strong branching might:
 - Fix variable, when one side is infeasible
 - Detect infeasibility, when both sides are infeasible
 - Find feasible solutions

Speeding strong branching up:

- Only for some candidates, stop if you do not make enough improvement
- Limit number of simplex iterations
- Special case: One iteration \rightarrow Driebeek penalties (Driebeek 1966)
 - Can be efficiently computed by ratio test

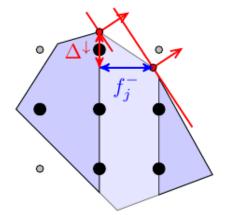
Strong branching + domain propagation (Gamrath 2014)

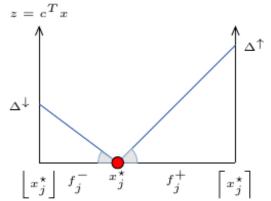
- Some strong branching LPs further restricted by domain propagation
 - Add branching bound \rightarrow perform "default" domain propagation \rightarrow solve LP



Pseudo-costs (Bénichou 1971)

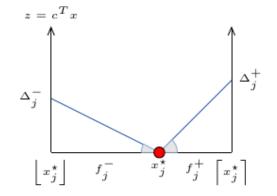
- Strong branching: A-priori observation, pseudo-costs: a-posteriori
- Estimate for objective gain based on past branching observations.
- Objective gain per unit fractionality: computed from fractionalities f_j^-, f_j^+ and differences $\Delta^{\downarrow}, \Delta^{\uparrow}$ in LP values
- Pseudo-costs Ψ_j^- , Ψ_j^+ :average unit gain taken over all nodes that branched on same variable





Pseudo-cost branching

- Estimated increase of objective $\Delta_j^- = f_j^- \Psi_j^-$, $\Delta_j^+ = f_j^+ \Psi_j^+$ based on current fractionalities f_j^- , f_j^+
- Core of most state-of-the-art branching schemes
- Gets better and better during the search
- Values might show a large variance
- Attributes all change to the last branching



Reliability branching (Achterberg et al 2005)

- Pseudo-cost branching gets better and better during the search
 - Most important branchings are made in the beginning
- Standard approach: Pseudo-cost branching with strong branching initalization
- Even better: consider variable unreliable, as long as there are less than k strong branches
 - Typical values for k: 4-8
 - k might depend on variance of pseudo-cost values
- Should a strong branch that hit the iteration limit be considered reliable?
- Should we reconsider strong branching when some subproblem behaves "differently"?

Quiz time

- Pseudo-costs are an
 - a) Underestimator for the objective change when pivoting
 - b) Underestimator of the objective change when relaxing a constraint
 - c) Estimate of the objective change when branching
- Strong Branching is very competitive w.r.t. the
 - a) Running time
 - b) Number of nodes
 - c) Primal-dual integral

Quiz time

- Pseudo-costs are an
 - a) Underestimator for the objective change when pivoting
 - b) Underestimator of the objective change when relaxing a constraint
 - c) Estimate of the objective change when branching
- Strong Branching is very competitive w.r.t. the
 - a) Running time
 - b) Number of nodes
 - c) Primal-dual integral

Hybrid Branching

Inference branching

- Inference branching:
 - Average number of implied bound reductions
 - History based
 - Captures combinatorial structure
 - Estimates tightening of subproblems
- Analogy to pseudo-cost values in MIP
- One value for upwards branch, one for downwards
- Initialization: probing (≈ strong branching)

$$x_{1} + x_{2} = 1$$

$$x_{1} + x_{3} + x_{4} \le 1$$

$$x_{1} + z \ge 3$$

$$z \in \mathbb{Z}_{+}$$

$$x_{i} \in \{0, 1\}$$

$$x_{1} = 0 \Rightarrow x_{2} = 1$$

$$\Rightarrow z \ge 3$$

$$s_{j}^{infer}(-) = 2$$

$$x_{1} = 1 \Rightarrow x_{2} = 0$$

$$\Rightarrow x_{3} = 0$$

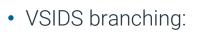
$$\Rightarrow x_{4} = 0$$

= 3

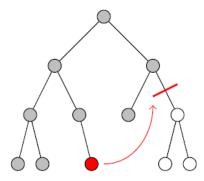
VSIDS branching (Moskewicz et al 2001)

Conflict analysis:

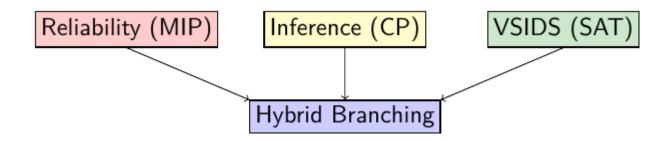
- Learn additional constraints which trigger infeasibility
- Important for feasibility problems



- Variable which appears in highest number of (conflict) clauses
 - Branch towards infeasibility
- Prefer "recent" conflicts: exponentially decreasing importance
- Works particularly well for feasibility problems
- State-of-the-art in SAT solving



Hybrid branching (Achterberg and Berthold 2009)



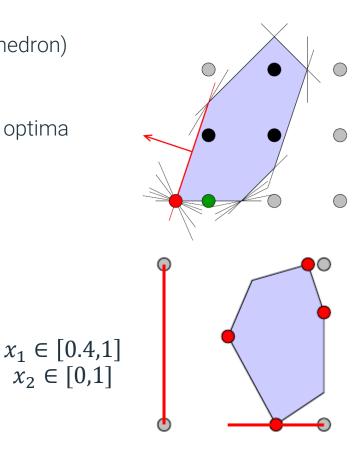
- Additional tie-breakers: number of pruned subproblems, variable counts in Farkas proofs, ...
- Scaling: divide each value by average over all variables
- Use a weighted sum of all criteria
- Or: Use a leveled filtering approach. First filter leaves 100 candidates, second filter 10,...

A cloud of solutions (Berthold & Salvagnin 2013)

- Often many optimal LP solutions (an optimal polyhedron)
- "The" optimal LP solution is more or less random
- Idea: exploit knowledge of multiple (a cloud of) LP optima

How do we get extra optimal solutions?

- Restrict LP to optimal face
- Feasibility pump objective (pump-reduce)
- min/max each variable (OBBT)
- \rightarrow Intervals instead of single values



Cloud-based pseudo-costs

• Pseudo-cost update

$$\varsigma_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - x_j^{\star}} \dots$$
 better: $\tilde{\varsigma}_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - u_j}$

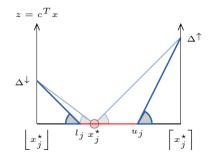
Pseudo-cost-based estimation

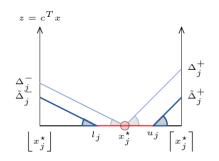
$$\Delta_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - x_j^\star) \quad \dots \text{ better: } \tilde{\Delta}_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - u_j)$$

Lemma

Let x^* be an optimal solution of the LP relaxation at a given branch-and-bound node and $\lfloor x_j^* \rfloor \leq l_j \leq x_j^* \leq u_j \leq \lceil x_j^* \rceil$. Then

- 1. for fixed Δ^{\uparrow} and Δ^{\downarrow} , it holds that $\tilde{\varsigma}_{j}^{+} \geq \varsigma_{j}^{+}$ and $\tilde{\varsigma}_{j}^{-} \geq \varsigma_{j}^{-}$, respectively;
- 2. for fixed Ψ_j^+ and Ψ_j^- , it holds that $\tilde{\Delta}_j^+ \leq \Delta_j^+$ and $\tilde{\Delta}_j^- \leq \Delta_j^-$, respectively.





Cloud-based strong branching

Benefit of cloud intervals:

- Fractional variable gets integral in cloud point: one LP spared!
- Cloud branching acts as a filter
- New fractional variables \rightarrow new candidates (one side known)
- Use 3-partition of branching candidates

Similar idea: Non-chimerical branching (Fischetti & Monaci 2012)

• Use values from other strong branches to compute underestimators

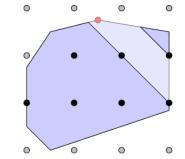
Branching score

- Most branching rules yield two values: One for down-, one for up-branch
- need to combine them to a single value
- usually: convex sum
 - score(x_j) = $\lambda \max\{s_j^-, s_j^+\} + (1 \lambda) \min\{s_j^-, s_j^+\}$
 - traditionally $\lambda = 6$
 - includes minimum and maximum as extreme cases
- better: multiplication
 - score(x_j) = max{ s_j^- , s_j^+ } · min{ s_j^- , s_j^+ }
 - computational results: 10% faster

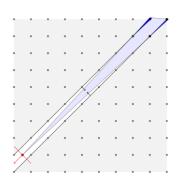
Branching on general disjunctions

$$\pi^T x \le \pi_0 \quad \bigvee \quad \pi^T x \ge \pi_0 + 1$$

with $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$, and $\pi_i = 0$ for all $i \notin \mathcal{I}$.



- potentially better branching decisions
- choosing the best candidate computationally much more expensive
- no generic scheme improving the overall MIP performance
 - Xpress branches on general disjunctions in some cases



Branching on multi-aggregated variables (Gamrath et al 2015)

- Some variables get multi-aggregated in presolving $x_j = \beta + \sum_{i \in S} \alpha_i x_i$
- multi-aggregated variables not part of presolved problem
 - not used as branching candidates
- branch on corresponding general disjunctions
 - extend variable-based branching by these disjunctions

$$\sum_{j \in \mathcal{S}} \alpha_j x_j \ge \left[\sum_{j \in \mathcal{S}} \alpha_j \tilde{x}_j \right] \quad \bigvee \quad \sum_{j \in \mathcal{S}} \alpha_j x_j \le \left\lfloor \sum_{j \in \mathcal{S}} \alpha_j \tilde{x}_j \right\rfloor$$

- represents decisions in original problem
- moderately enlarged candidate set

Quiz time

- Strong Branching + Pseudocost Branching =
 - a) Cloud Branching
 - b) Reliability Branching
 - c) Inference Branching
- Cloud branching makes use of
 - a) Multiple LP optima
 - b) Multiple integer solutions
 - c) A combination of LP optima and integer solutions

Quiz time

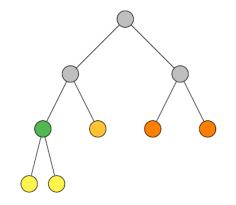
- Strong Branching + Pseudocost Branching =
 - a) Cloud Branching
 - b) Reliability Branching
 - c) Inference Branching
- Cloud branching makes use of
 - a) Multiple LP optima
 - b) Multiple integer solutions
 - c) A combination of LP optima and integer solutions

Node Selection

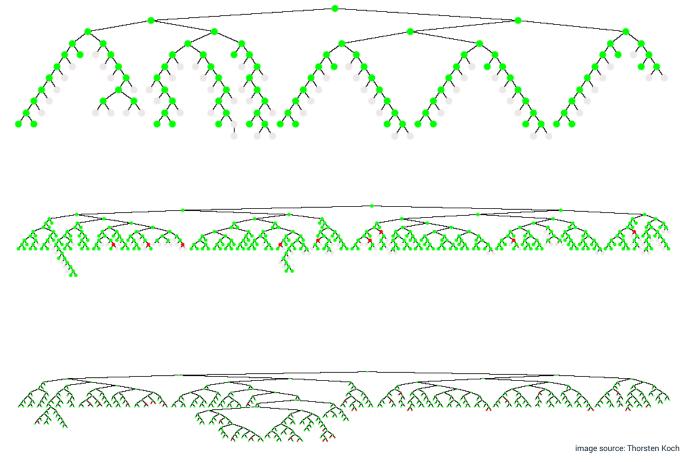
Considerations

Goals:

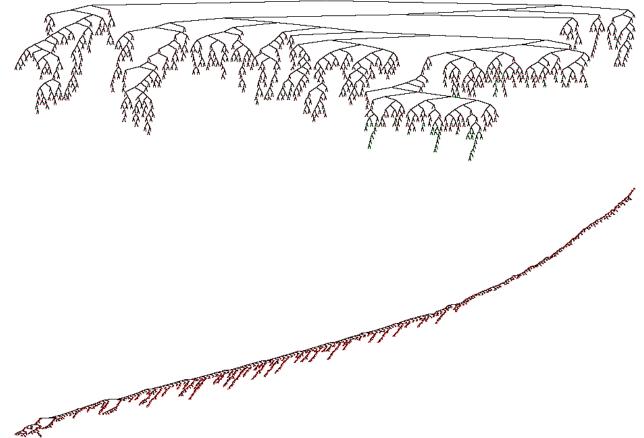
- Improve primal bound to enable pruning
- Keep computational effort small
 - Prefer children over siblings over others
- Improve global dual bound
- Ramp-up
 - For parallelization



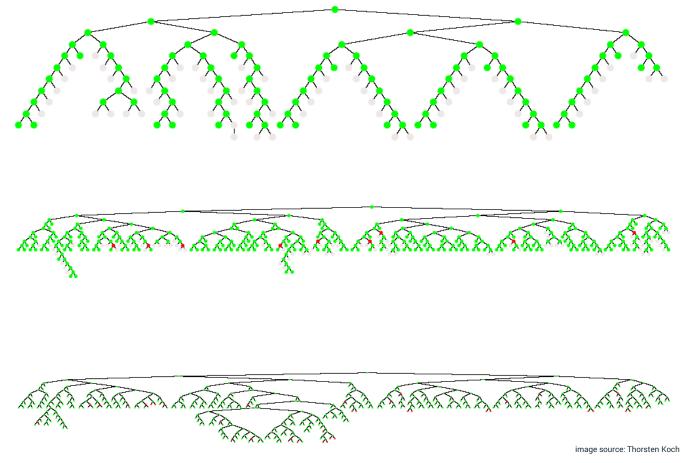
What do typical branching trees look like?



What do typical branching trees look like?



What do typical branching trees look like?



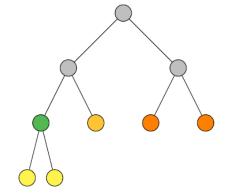
Node Selection Rules

Basic rules

- Depth first search (DFS) \rightarrow early feasible solutions
 - Most of the time, MIP solvers do DFS
- Breadth first search (BFS) \rightarrow diversification, ramp-up
- Best bound search (BBS) \rightarrow improve dual bound
- Best estimate search (BES) ightarrow improve primal bound

Combinations:

- BBS or BES with plunging
- Hybrid BES/BBS / Interleaved BES/BBS



UCT node selection (Sabharwal et al 2012)

- Inspired by Monte-Carlo tree search
 - Chess, games, balancing exploration and exploitation
- Upper Confidence intervals applied to Trees
- "Which path to choose": $s_j = E_j + c \frac{v_p}{v_j}$
 - E_j : estimate, v_p : parent visits, v_j : child visits, c: balancing
 - Estimate permanently updated, average dual bound in subtree
- Quickly gets expensive, only apply to first few nodes

image source: pexels.com

Quiz time

- Most of the times, a MIP solver will select as next node
 - a) A child or sibling of the current node
 - b) A node close to the root
 - c) A node with the best dual bound
- W.r.t. running time, node selection empirically has
 - a) A larger impact than the branching rule
 - b) A smaller impact than the branching rule
 - c) About the same impact as the branching rule

Quiz time

- Most of the times, a MIP solver will select as next node
 - a) A child or sibling of the current node
 - b) A node close to the root
 - c) A node with the best dual bound
- W.r.t. running time, node selection empirically has
 - a) A larger impact than the branching rule
 - b) A smaller impact than the branching rule
 - c) About the same impact as the branching rule

FICO₈

Thank You!

Timo Berthold