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The MIP solver‘s backbone
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Reminder: Branch&Bound
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LP-based Branch&Bound (colorful picture)

1. Abort Criterion 3. Solve relaxation 5. Feasibility Check
2. Node selection 4. Bounding 6. Branching
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LP-based Branch&Bound (colorful picture)

1. Abort Criterion 3. Solve relaxation 5. Feasibility Check

2. Node selection 4. Bounding 6. Variable selection

Two main decisions:

» Node selection
« Might be important to find good solutions early
« When optimum is found: just a matter of traversal order

* Variable selection
+ Bad selection might duplicate search effort
- at every level....
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Strong branching and pseudo-costs
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Strong branching (Applegate et al 1995)

Typical goal: Improve dual bound

« Perform an explicit look-ahead by solving all possible descendants of the current node.

image source: Gerald Gamrath



Strong branching (Applegate et al 1995)

» Effective w.r.t. number of nodes, expensive w.r.t. time

 Strong branching might:
* Fix variable, when one side is infeasible
+ Detect infeasibility, when both sides are infeasible
* Find feasible solutions

Speeding strong branching up:
» Only for some candidates, stop if you do not make enough improvement
« Limit number of simplex iterations

* Special case: One iteration = Driebeek penalties (Driebeek 1966)
+ Can be efficiently computed by ratio test
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Strong branching + domain propagation (Gamrath 2014)

« Some strong branching LPs further restricted by domain propagation
+ Add branching bound - perform “default” domain propagation = solve LP

* Better predictions, more fixings

» Only domain propagation, no LP:

 Branching by probing
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Pseudo-costs (Bénichou 1971)

 Strong branching: A-priori observation, pseudo-costs: a-posteriori
» Estimate for objective gain based on past branching observations.

» Objective gain per unit fractionality:
computed from fractionalities fj‘,fj+and

differences Al ,AT in LP values

» Pseudo-costs lPJ-‘,‘P]-*:average unit gain taken

. T
over all nodes that branched on same variable

=z = i

= N

A

R
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Pseudo-cost branching

. . . . - _ _ +_ + +
Estimated increase of objective Ar= YA =Y
based on current fractionalities fj‘,fj+

Core of most state-of-the-art branching schemes

Gets better and better during the search

[l +1

Values might show a large variance

Attributes all change to the last branching
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Reliability branching (Achterberg et al 2005)

Pseudo-cost branching gets better and better during the search
« Most important branchings are made in the beginning

Standard approach: Pseudo-cost branching with strong branching initalization

Even better: consider variable unreliable, as long as there are less than k strong branches
« Typical values for k: 4-8

y: o ojam (10 obs)
« k might depend on variance of pseudo-cost values

T o @ o oo wo ae o o a (16 ObS)

Should a strong branch that hit the iteration limit
be considered reliable?

Should we reconsider strong branching when some
subproblem behaves ,differently”?
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Quiz time

« Pseudo-costs are an
a) Underestimator for the objective change when pivoting
b) Underestimator of the objective change when relaxing a constraint
c) Estimate of the objective change when branching

« Strong Branching is very competitive w.r.t. the
a) Running time
b)  Number of nodes

c) Primal-dual integral
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Hybrid Branching

FICO © 2019 Fair Isaac Corporation. Confidential. This presentation is provided for the recipient
4 only and cannot be reproduced or shared without Fair Isaac Corporation’s express consent 36



Inference branching

X1 +x =1
X1 +x3+ x4 <1
* Inference branching: X1 +z >3
« Average number of implied bound reductions z €Ly
- History based xi € 10,1}
» Captures combinatorial structure
* Estimates tightening of subproblems x :g/c\o x1=0=x=1
=z >3
» Analogy to pseudo-cost values in MIP S}err(_) =2

One value for upwards branch, one for downwards

Initialization: probing (= strong branching) O/C\;l . =0
_ =
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VSIDS branching (Moskewicz et al 2001)

Conflict analysis:
* Learn additional constraints which trigger infeasibility

* Important for feasibility problems

 VSIDS branching:
» Variable which appears in highest number of (conflict) clauses
 Branch towards infeasibility
 Prefer “recent” conflicts: exponentially decreasing importance
« Works particularly well for feasibility problems
« State-of-the-art in SAT solving
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Hybrid branching (Achterberg and Berthold 2009)

Reliability (MIP) Inference (CP) VSIDS (SAT)

| Hybrid E’;ranching

Additional tie-breakers: number of pruned subproblems, variable counts in Farkas proofs, ...

Scaling: divide each value by average over all variables

Use a weighted sum of all criteria

Or: Use a leveled filtering approach. First filter leaves 100 candidates, second filter 10,...

FICO



A cloud of solutions (Berthold & Salvagnin 2013)

 Often many optimal LP solutions (an optimal polyhedron)
« “The” optimal LP solution is more or less random

* Idea: exploit knowledge of multiple (a cloud of) LP optima

How do we get extra optimal solutions?

Restrict LP to optimal face ¢ o

Feasibility pump objective (pump-reduce)

min/max each variable (OBBT) x; € [0.4,1]
X9 € [0,1]

- Intervals instead of single values
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Cloud-based pseudo-costs

» Pseudo-cost update

+ AT
qj - |—Xj*]_xj*

» Pseudo-cost-based estimation

A =X X)

Lemma

ceb
.. better: {7 = FaET

.better: A*

V(X — )

Let x* be an optimal solution of the LP relaxation at a given
branch-and-bound node and [x/] < /; < X/ < u; < [X;

1. for fixed AT and AY, it holds that > and &>

respectively;

2. for fixed wf and IIJ;,

respectively.
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it holds that A" < A and A < A,
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Cloud-based strong branching

Benefit of cloud intervals:

* Fractional variable gets integral in cloud point: one LP spared!
 Cloud branching acts as a filter

« New fractional variables = new candidates (one side known)

 Use 3-partition of branching candidates

Similar idea: Non-chimerical branching (Fischetti & Monaci 2012)

 Use values from other strong branches to compute underestimators

FICO



Branching score

Most branching rules yield two values: One for down-, one for up-branch

need to combine them to a single value

usually: convex sum

* score(x; ) = Amax{s; ,s;} + (1 — 1) min{s;", s;'}
* traditionally A = 6

* includes minimum and maximum as extreme cases

better: multiplication
* score(x; ) =max{s; ,s;'} - min{s; , s/}

» computational results: 10% faster
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Branching on general disjunctions

WT;ESWO \/ WT:EZWO+1

with (m,m9) € Z™ X Z, and m; = 0 for all i ¢ T.

* potentially better branching decisions
 choosing the best candidate computationally much more expensive

* No generic scheme improving the overall MIP performance
« Xpress branches on general disjunctions in some cases
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Branching on multi-aggregated variables (Gamrath et al 2015)

Some variables get multi-aggregated in presolving x; = g + z a;Xx;
jEs

multi-aggregated variables not part of presolved problem
» not used as branching candidates

branch on corresponding general disjunctions
 extend variable-based branching by these disjunctions

> aju > {Zaﬂjw \/ D o, < ‘LZ%@J

JjES jes JjES jes

represents decisions in original problem

moderately enlarged candidate set
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Quiz time

 Strong Branching + Pseudocost Branching =
a) Cloud Branching
b) Reliability Branching
c) Inference Branching

 Cloud branching makes use of ——
a) Multiple LP optima
b) Multiple integer solutions
c) A combination of LP optima and integer solutions

46
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Node Selection
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Considerations

Goals:
 Improve primal bound to enable pruning

« Keep computational effort small
« Prefer children over siblings over others

* Improve global dual bound

* Ramp-up
* For parallelization
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What do typical branching trees look like?
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image source: Thorsten Koch
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Node Selection Rules

Basic rules

* Depth first search (DFS) = early feasible solutions
« Most of the time, MIP solvers do DFS

* Breadth first search (BFS) - diversification, ramp-up
* Best bound search (BBS) - improve dual bound

* Best estimate search (BES) = improve primal bound

Combinations:
« BBS or BES with plunging
» Hybrid BES/BBS / Interleaved BES/BBS
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UCT node selection (Sabharwal et al 2012)

Inspired by Monte-Carlo tree search
+ Chess, games, balancing exploration and exploitation

Upper Confidence intervals applied to Trees

+ ,Which path to choose" s; = E; + c-2

vj

- Ej: estimate, v, parent visits, v;: child visits, c: balancing

image source: pexels.com

 Estimate permanently updated, average dual bound in subtree

Quickly gets expensive, only apply to first few nodes




Quiz time

« Most of the times, a MIP solver will select as next node
a) A child or sibling of the current node
b) A node close to the root
c) A node with the best dual bound

« W.r.t. running time, node selection empirically has
a) Alarger impact than the branching rule
b) A smallerimpact than the branching rule
c) About the same impact as the branching rule
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Thank You!

Timo Berthold




