From Planning to Operations: The Ever-Shrinking Optimization Time Horizon

Deriving Benefit from Increased Solver Power

- Revisit previously shelved applications
- Build bigger, more accurate models
 - Example: Recent supply-chain model with 10 million constraints, 19 million variables (solve in 1.5 hours)
- Optimize "globally", over entities that were previously treated separately
- Move from the traditional Operations Research domain of planning to (real-time) operations: Business execution

Planning versus Execution

- Planning (traditional OR application)
 - Data is typically aggregated
 - Accuracy issues can often be finessed
 - Decision cycles months or years
 - Emphasis of what-if analysis and decision "support"

Execution

- Data must be accurate
- Decision cycles can be seconds to minutes
- Solutions computed by software are often implemented as is

Planning versus Execution

Planning

- Pros
 - Easier to explain, control, use (run by experts)
- Cons
 - Business impact is often obscured
 - Hard to maintain

Execution

- Cons
 - Harder to explain and control (not run by experts)
- Pros
 - Direct business impact can be significant
 - System maintenance you have no choice

Three Success Stories

Tales from the cutting edge

Ann Bixby, Brian Downs & Mike Self, Interfaces, Vol. 36, No. 1, January-February 2006, pp 69-86

The dance of the thirty-ton trucks

Karla Hoffman & Martin Durbin, *Operations Research*, Vol. 56, No. 1, January-February 2008, pp. 3-19

Short-interval production-line scheduling for front-end semiconductor Fabs

Robert Bixby, Rich Burda, Dave Miller & Steve Roberts, *Proceedings of ASMC* 2006, pp. 148-154

Remarks

- Each of these applications uses optimization
 - Linear and Mixed-Integer Programming
- I verified that all of these applications really are being used.
- Question: Did increased solving power really made a difference? Could we have done this 5-10 years ago?

Tales from the Cutting Edge: A Scheduling and Capable-to-Promise Application for Swift & Company

— BEEF CUTS— Where They Come From

National Cattlemen's Beef Association 444 North Michigan Avenue Chicago, Illinois 60611 (312) 467-5520

21-500

^{*} Beef primals that feature cuts lowest in fat.

Beef Disaggregation

The problem

- 5 meat processing plants
- Carcass inventory at each plant at shift start must be processed by shift end. Cut into 7 primals, USDA graded, "disaggregated" into pieces, and packaged.
- This process must be scheduled, taking into account existing orders and current forecast.
- Schedule must interact with the sales process.

A Carcass Disaggregation Tree

What Drove the Application

The process

- The schedule decides for each carcass a full disaggregation and packaging plan.
- When you take an order, you would like to know what you are "capable" of supplying, not just what's in the schedule. This requires "moving up the tree": HUMANS can't do it – not during a sales call!

• The result

Lost sales, unfulfilled orders, dissatisfied customers.

Beef Disaggregation

- ☐ Started as 1 million variable "textbook" LP model.
 - After one year of model reductions (many very complex), the model was reduced to meet memory and resolve-time limits (< 10 seconds)
- ☐ The Environment:
 - 300 queries and commits (LPs) handled per hour by each model
 - A total of 45 models are running fully automated handling queries and commits 24 hours per day
- ☐ The savings:
 - \$13 million/year (determined by internal benefits study)
 - Inventory sold increased from 10% to 80%
 - Most important: Business changed fundamentally

A Model Instance – LP

□ Resolve-time requirement: <10 seconds

 Model sizes: 250,000 constraints and 300,000 variables

 □ Query solve: Resolve from advanced basis with a small number of added rows and columns

 CPLEX 9.0 (2004)
 CPLEX 5.0 (1997)
 Secs
 CPLEX 1.0 (1988)

 □ Machine speed adjustment:

Was increased solving power essential to this application?

– CPLEX 5.0 (1997 PC -- 20x slower)24 secs

The Dance of the 30-Ton Trucks: Real-time dispatching of concrete trucks for Virginia Concrete

Concrete Delivery

- The Background
 - Virginia Concrete is a part of Florida Rock.
 - They deliver 500-700 loads per day to 150 customers, a total of 5000-6000 cubic yards of concrete per day.
 - Deliveries occur from 10 plants with 125-150 trucks.
- A key characteristic of the business
 - 90% of orders change before being delivered → The delivery schedule is always out-of-date.
- The key driver for this application
 - The recognition that GPS provided a potentially very valuable technology for their business.
 - The result: A major program to introduce GPS technology and the necessary IT infrastructure.

The Optimization Solution

- Developing the solution
 - The initial expectation: Based upon experience, heuristics were expected to be the only viable approach.
 - The plan: Being aware of the advances in LP/MIP technology, at least give it a try.

The Model Structure: A space-time network

The Optimization Solution

- The characteristics of the solution
 - The key business benefits:
 - Employee retention through reduced stress on dispatchers.
 - A fundamental change from Truck-Based to Demand-Based dispatching.
 - The key OR modeling contribution: Dealing with infeasibilities.

The Decision Support Tool

The Decision Support Tool

Return on Investment

Benefits

- Eliminated employee retention problems
- Quality of schedule less dependent on dispatchers
- Schedule is now DEMAND-based rather than TRUCK-based (estimated savings of \$750,000/year)
- Florida Rock is expanding and promoting this application
 - Now being deployed company wide (10x increase in trucks and plants)
 - FR is promoting industry wide as scheduling best practice

Model Instances

- **☐** Model sizes:
 - Next-Day Planner: 25000 cons, 200000 vars (2000 binary)
 Time Window to solve = 2 hours (4 hours accepted)
 - Real-Time Dispatcher: 10000 cons, 75000 vars (300 binary)
 Time Window to solve = 15 seconds (30 seconds accepted)
- ☐ Summary: Where LP/MIP technology progress made a difference:
 - A. Dual simplex algorithm
 - B. Heuristics in MIP
- Next-Day Planner LPs Solving the Root:

CPLEX 1.0 (1988) primal >40 hrs

CPLEX 3.0 (1994) dual 18 mins

CPLEX 9.0 (2004) dual 12 mins

Model Instances

Next-Day Planner MIPs – 2 hour window

Algorithm	Mean Time	First Solution
CPLEX 5.0 (1997)	5.1 hrs	4.1 hrs
CPLEX 8.1 (2003)	0.8 hrs	0.2 hrs

Real-Time Dispatching MIPs – 15 second window

Time Limit	15 secs	30 secs	60 secs
CPLEX 5.0	no feasibles	20% feasible	80% feasible
CPLEX 8.1 gaps	10.3%	1.5%	0.05%

Short-Interval Detailed Production Scheduling in 300mm Semiconductor Manufacturing

Robert Bixby

Other contributors to this work:

Vincent Gosselin (ILOG)
Rich Burda (IBM), Dave Miller (IBM)
Ed Rothberg (Gurobi Optimization)

Overview

- Semiconductor manufacturing background
- The scheduling problem
- ILOG Fab scheduling solution
- Benefits resulting from implementing ILOG solution

Semiconductor History

- 1947 Transistor invented
 - Bardeen, Brattin, Shockley at Bell Labs
- 1958 Integrated circuit introduced circuits on a single, planar substrate
 - Kilby (TI), Noyce (Fairchild)
- 1960s 90s Manufacturing processes revolutionized
 - 1964: Gordon Moore (Fairchild) predicted device density would double every
 18 months
 - Rapid price drops began in mid sixties
- 1990 Present: Focus on production issues
 - Automation
 - Cost control
 - Process control and efficiency

Semiconductor Manufacturing

The Semiconductor "Supply Chain"

Step 1: Chip Specification

Customer (e.g. cell phone or car manufacturer) provides high-level device requirements

Step 2: Detailed Chip Design

(Korte's group on Bonn)

Step 3: Chip Manufacture

This part is the focus of today's talk

Step 4: Assembly-Test

Wafers are cut up into individual chips, tested, and packaged

The Semiconductor "Supply Chain"

Step 1: Chip Specification

Customer (e.g. cell phone or car manufacturer) provides high-level device requirements

Step 2: Detailed Chip Design

This is the Bonn part

Step 3: Chip Manufacture

This step is the focus of today's talk.
Chips are manufactured in so-call
FABS.

Step 4: Assembly-Test

Wafers are cut up into individual chips, tested, and packaged

Key Fab Performance Metrics

A brief Tutorial

Little's Law

Throughput = WIP / Cycle-Time

WIP = Work in Progress

Cycle Time = Wait time + Actual processing time

= Total processing time

The Holy Grail: Reducing Cycle Time

Silicon Wafers

Some facts:

- 300 mm wafers current state-ofthe-art
- 500+ chips (dies) per wafer
- Process may require over 500 steps in 50 or more "layers"
- Wafers are processed in lots of 1-25 wafers
- Takes 1-3 months to process a lot

A Re-entrant Fabrication Process

Main fab processes

The Scheduling Problem

Building 323 – IBM's 300 mm Fab

East Fishkill, New York

- Opened Summer 2002
- Cost \$4-\$5 billion
- Fully automated production environment
- All lots are dispatched to tools without human intervention

15,000 dispatches per day

Current Industry Dispatching Solution

(Real Time)

- "Rule Based" Heuristics
- "Opportunistic Scavenging"
 - Step 1: Tool announces that it needs work
 - Step 2: Dispatching system looks at queue of immediately available lots
 - Step 3:
 - Lots sorted by priorities, due dates, ...
 - Rules of thumb applied to select from the sorted list
 - Real time checking is the dispatch feasible?
 - Lot is dispatched

An Example

Tools & Recipes

Raw process time = 2 hours / lot

Candidate Lots

Arrival times from previous step

- For each process step, which tool should process each lot?
- For each tool, in what sequence should the lots be processed?

An Example

• Tool 1 utilization = 4/12 = 25%

An Example

- Lot #8 cycle time = 6 hours (37% improvement)
- Tool 1 utilization = 8/8.5 = 94% (73% improvement)

Advantages of Scheduling

- Advantages of scheduling vs. rules-based dispatch are well understood
 - Rules cannot see across tools
 - Rules have limited upstream vision
 - Optimization automatically adjusts to changing business conditions

Conclusion: Scheduling is better than Dispatching

Scheduling: Why not Sooner?

- Fab-wide problem is too complex
 - Complex precedence constraints
 - Re-entrant flows
- Optimization was too slow
 - Any computed schedule is out-of-date within minutes
 - Somehow schedules need to be rapidly updated

Solution Approach: Tool Level Scheduling

Generate an optimized schedule in a timely manner

- 100s of process tools
- 100s of process steps
- Re-entrant process flows
- 1000s of lots
- Aur Frou process flows
 - Opt nal teps
 - ■Vari∎ble ■cipe times
 - Minutes to hours
- Variables process sizes
 - Batch to single wafer
 - Variable transport times
- Jnp dictable tool failures
- Hot lets & Q-Times
- roduct processing
- Reti les
- Set-ups
- Local policies (RM, phase-in, skip-lots, etc.)

ILOG Scheduling Solution

ILOG Proposed Solution: Key Ideas

- 1. One optimization engine for each one of the 6 process area (removes most precedence constraints)
- Individual optimization engines based upon a detailed tool model and a certain "decomposition":
 - MIP does assignment of lots to tools
 - Constraint programming heuristics produce detailed sequencing and timing
- 3. Result of optimization: A shift-length (8 12 hour horizon) schedule for each tool in the given process area
 - Schedule is recomputed every 5 minutes!!
- 4. Finally: the resulting detailed schedules are used to produce recommended dispatches

ILOG Solution: One Scheduler for each Area

- Diffusion
 - Rules do a bad job managing batching & process time windows
- Photolithography
 - Most expensive tools: Fab bottleneck
- Etch
- Thin Film
- Chemical Mechanical Polishing (CMP)
- Implant

ILOG Solution: One Scheduler for each Area

- Diffusion (most complex tool set)
 - Rules do a bad job managing batching & process time windows
- Photolithography
 - Most expensive tools: Fab bottleneck
- Etch
- Thin Film
- Chemical Mechanical Polishing (CMP)
- Implant

Diffusion Scheduling Engine

FURNACE

OBJECTIVES

- Priority weighted throughput
- Batch-size weighted throughput
- Bay moves

SOFT CONSTRAINTS

- Time fence: lots and batches
- Urgent lots (Including QTimes)
- Training (sequences avoiding setups)
- Idle time
- HARD CONSTRAINTS
- Structural
- Tool capacity (time based)
- Min <= Batch Size <= Max
- Buffer capacity
- Wet capacity

Diffusion Area – Dynamic Batching

Batch size: 1 or 2 lots

Lot Assignment Instance - MIP

CPLEX 5.0 (1997): 24000 var, 33000 cons, 4000 GIs

```
CPLEX Error 1001: Out of memory.

Error termination, no integer solution.

Current MIP best bound = -3.9084392492e+02 (gap is infinite)

Solution time = 16520.82 sec. Iterations = 24359727 Nodes = 854226
```

CPLEX 9.0:

```
Node Left Objective IInf Best Integer Best Node ItCnt Gap
     0
          0 393.2257 1322
                                      393.2257 4853
                              Cuts: 703 8483 (mostly Gomory cuts)
            366.4625 1185
                             348.3725 366.3402 28464 5.2% 16 seconds
* 720+ 672
* 1314+ 1092
                             354.8399 366.3359 43629 3.2% 25 seconds
* 3060+ 2623
                             355.9241 366.2938 94792 2.9% 59 seconds
* 4000+ 2770
                             357.6452 366.2146 127312 2.4% 80 seconds
* 6056 4400
                              357.9718 365.7744 220862 2.2% 137 seconds
```

```
Time limit exceeded, integer feasible: Objective = 3.5797175137e+02 Current MIP best bound = 3.6560278193e+02 (gap = 7.63103, 2.13\%) Solution time = 180.01 sec. Iterations = 309099 Nodes = 7841 (6124)
```

Data Flow: Integration With Existing IT Systems

- Load data from MES and other factory systems data sources
- Data checked
- 3. Candidate lots selected
- 4. Data mapped to scheduling engine objects
- 5. Parameters and previous schedules loaded
- 6. Engine data checked
- 7. New schedule created
- 8. Schedule checked
- 9. Schedule saved
- 10. Schedule mapped to MES
- 11. Schedule converted to dispatch recommendations and published

Running Time:

- a.One full cycle takes 5 minutes
- b. Schedule computation takes only 20 seconds

Benefits

Improved Fab Performance Metrics

■ IBM B323 / Diffusion Area

Results vs. Baseline	FRN	WET
Throughput	8.6%	6.9%
Cycle Time	-25.3%	-8.2%
Hot Lot Cycle Time	-15.4%	-17.9%

Bixby, R., Burda, R., and D. Miller, *Short-Interval Detailed Production Scheduling in 300mm Semiconductor Manufacturing Using Mixed Integer and Constraint Programming*, ASMC 2006.

ROI is substantial

- Diffusion + Photo achieved Fab-wide 6% cycle time reduction
 - Value of 300 mm wafer: \$4,000
 - Base 20,000 wafers/month throughput and 6% cycle time reduction means 1200/wafers increased throughput
 - 12 m/y x 1200 w/m x \$4,000/w ~= \$60M/y revenue
 - 25-50% profitability/wafer
 - ROI: \$15M-\$30M/year

Additional References

- Running in 14 first-tier Fabs in Asia and US
 - 200 mm and 300 mm
 - 300 mm is where the solution brings the most value
 - Types of Fabs
 - Memory
 - TFT/LCD

Other Examples

Other Examples

- ADAC (Konrad-Zuse Zentrum, Berlin)
 - German AAA. 1600 vehicles, 5000 contractors, 20 second response time, installed on 2 of 5 control centers.
- Sabre Trip Shopping (Sabre Decision Technologies)
 - Constraint programming + MIP set covering. 200 millisecond response time for optimization, designed for 6000 optimization threads to coexist.

Other Examples

- UAV Trajectory Planning (Northrop Grumman)
 - Unmanned Aerial Vehicle obstacle and threat avoidance algorithm. Embedded in real-time operating system. Several hundred variables and constraints, < 1 second solution times.

Conclusion

- This is an exciting time to be an operationsresearch specialist
 - Data access, model representation, and solution technology advances (the focus of this talk) have enabled whole new application domains
- The emergence of execution-level applications offer the promise of making optimization a mainstream management tool for achieving competitive advantage.

Thank you