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The mother of all deterministic optimization problems
[Lee, 2008]

min f (x)
s.t. gi (x) � 0 i = 1; : : : ; m

x 2 X
xj 2 Z j = 1; : : : ; p
lj � xj � uj j = 1; : : : ; p

(MINLP)

X � Rn polyhedral.

f and gi : X ! R, i = 1; : : : ; m,
continuous, di�erentiable.
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"Well solved" subproblems

Nonlinear Programming (NLP)

p = 0 : local optima. + f and gi convex) global optima.

Mixed-Integer linear programming (MILP)

f linear, m = 0, p > 0

4 ©2015 IBM Corporation



IBM Analytics

The complexity issue

Theorem ([Jeroslow, 1973])
The problem of minimizing a linear form over quadratic constraints in integer
variables is not computable by a recursive function.

Theorem ([De Loera et al., 2006])
The problem of minimizing a linear function over polynomialconstraints in at
most 10 integer variables is not computable by a recursive function.
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The complexity issue

Theorem ([Jeroslow, 1973])
The problem of minimizing a linear form over quadratic constraints in integer
variables is not computable by a recursive function.

Theorem ([De Loera et al., 2006])
The problem of minimizing a linear function over polynomialconstraints in at
most 10 integer variables is not computable by a recursive function.

There is no algorithm to solve (MINLP) ...
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The complexity issue

Theorem ([Jeroslow, 1973])
The problem of minimizing a linear form over quadratic constraints in integer
variables is not computable by a recursive function.

Theorem ([De Loera et al., 2006])
The problem of minimizing a linear function over polynomialconstraints in at
most 10 integer variables is not computable by a recursive function.

There is no algorithm to solve (MINLP) ...

... even with 10 variables.
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MINLP

min f (x)
s.t. gi (x) � 0 i = 1; : : : ; m

x 2 X
xj 2 Z j = 1; : : : ; p
lj � xj � uj j = 1; : : : ; p

(PNLM)

To be solvable in general, lj , uj �nite .
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Two main classes of MINLP

Mixed Integer Convex Program
Assume that the continuous relaxation is a convex optimization problem.

f is a convex function.

gi are convex functions.

Mixed Integer Nonlinear Program (or Global Optimization)
Don't assume any convexity onf or gi .

Continuous relaxation is NP-hard to solve in general.

Remark: iflj and uj are �nite integers, variablexj can be seen as a
continuous variable satisfying:

(xj � lj )(xj � lj � 1)::::(xj � uj ) = 0
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A special class of convex MINLP: MISOCP

min cT x
xT Qk x + aT

k x � a0
k k = 1; : : : ; m;

Ax = b;
xj 2 Z j = 1; : : : ; p:

(MIQCP)

Where all quadratic constraints can be represented assecond order cones(or
Lorentz cone):

Ld := f (x; x0) 2 Rd+ 1 :
dX

i = 1

x2
i � x2

0 ; x0 � 0g:

(Ld de�nes the (d + 1)-dimensional second order cone.)
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A Lorentz cone

It is convex!
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Second order cone representability

Through simple algebra can be represented as second order cones:

Second order cones:
P d

i= 1 x2
i � x2

0 ; with x0 � 0

Rotated second order cones:
P d

i= 2 x2
i � x0x1; with x0; x1 � 0

Simple convex quadratic constraints:

xT Qx + aT x � a0; with Q � 0

or more complicated...

jjxT Qx + aT xjj � cT x + b; with Q � 0

(the �rst three should be recognized by most solvers, the last one not.)

Many non-linear constraints can be formulated as second order cones but
modeling may be very far from obvious.
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MISOCP

min cT x
(xJi ; xhi ) 2 Ldi i = 1; : : : ; m
Ax = b;
xj 2 Z j = 1; : : : ; p:

(MISOCP)

MINLP's where all nonlinear constraints are SOC
Continuous relaxation solved e�ciently by interior points.

convex MINLP algorithms work with some added technicality due to
non-di�erentiability [Drewes, 2009, Drewes and Ulbrich, 2012].

Supported by most MIP solvers (all the ones you saw these 2 weeks).
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MISOCP Applications

Application SOC Integer
Portfolio optimiza-
tion

Risk, utility, robust-
ness

number of assets,
min investment

[Bienstock, 1996, Bonami and Lejeune, 2009, Vielma et al., 2008]
Truss topology opti-
mization

Physical forces Cross section of bars

[Achtziger and Stolpe, 2006]
Networks with delays Delay as function of

tra�c
Path, �ows

[Boorstyn and Frank, 1977, Ameur and Ouorou, 2006]
Location with
stochastic services

Demands location model

[Elhedhli, 2006]
TSP with neighbor-
hoods (Robotics)

De�nition of ngbh. TSP

[Gentilini et al., 2013]
Many more... see for eg. http://cblib.zib.de .
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Mixed Integer Convex Programming Applications (not
MISOCP)

Application nonlinear discrete
Chemical plant design Chemical reactions what to install
[Duran and Grossmann, 1986, Flores-Tlacuahuac and Biegler, 2007]
Block Layout Design Spatial constraints what to layout
[Castillo et al., 2005]
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Mixed Integer Nonlinear Programming Applications

Application nonlinear discrete
Petrochemical Blending, pooling �
[Haverly, 1978]
Gaz/Water networks you know from last week
[Koch et al., 2015, Bragalli et al., 2011]
Nuclear Reactor reloading reactions What to reload
[Quist et al., 1999]
Airplane trajectories aerodynamics waypoints, colisions
[Ca�eri and Durand, 2013, Soler et al., 2013]
Mixed Integer Optimal control DE discrete controls
[Sager, 2005, 2012]
Countless more . . . . . .
see for example[Belotti et al., 2013b]
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Agenda

Part I: The Basic Algorithms.
The Convex Case

Main Algorithmic Approaches
Glimpse of Computations
Glimpse of MISOCP

Steps into Non-Convexity.
Non-convex MIQP
Basic Setup of a Spatial Branch-and-Bound.
Generalizing.
Glimpse of solvers, Libraries, Performance:S. Vigerske.

Part II: Selected Advanced (or not) Topics.
A most simple MINLP.
MILP vs. Non-Convex QPs.
Everything can go wrong easily.
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Part I

The Basic Algorithms
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The Basic Algorithms

Section 1

The convex case
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The mixed integer convex program

min cT x
s.t. gi (x) � 0 i = 1; : : : ; m

x 2 X
xj 2 Z j = 1; : : : ; p

(MICP)

gi : X ! R, i = 1; : : : ; m, convex, di�erentiable.

Assume linear objective. If necessary, add var� 2 R and min� with
f (x) � � a constraint.
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Main Algorithms for solving (MICP)

x y

z

Fundamental property is convexity of the continuous relaxation, which can be
e�ciently solved.

1 NLP Branch-and-bound[Gupta and Ravindran, 1985].

2 Outer Approximation Algorithm[Duran and Grossmann, 1986]. Builds an
MILP equivalent of (MICP)

3 LP/NLP branch-and-cut[Quesada and Grossmann, 1992].
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NLP based branch-and-bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.
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NLP based branch-and-bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.
integer
feasible

fathomed
by
bound

infeasible
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NLP based branch-and-bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.

Prune byinfeasibility, boundsand integer
feasibility.

integer
feasible

fathomed
by
bound

infeasible
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NLP based branch-and-bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.

Prune byinfeasibility, boundsand integer
feasibility.

Main issues
Warm-starting of NLP solves.

Stability of NLP solvers.

Di�culty of reusing MILP technologies.

integer
feasible

fathomed
by
bound

infeasible
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Outer Approximation[Duran and Grossmann, 1986]

min cT x

s.t.

gi (x) � 0 i = 1; : : : ; m;

xj 2 Z; j = 1; : : : ; p:

Idea: Take �rst-order approximations of constraints at di�erent points and
build an equivalent MILP.
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Outer Approximation[Duran and Grossmann, 1986]

min cT x

s.t.

gi (x) � 0 i = 1; : : : ; m;

xj 2 Z; j = 1; : : : ; p:

Idea: Take �rst-order approximations of constraints at di�erent points and
build an equivalent MILP.

min cT x

s.t.

gi (xk ) + r gi (xk )T (x � xk ) � 0 i = 1; : : : ; m; k = 1; : : : ; K

xj 2 Z; j = 1; : : : ; p:
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Outer approximation constraints

Let F := f x : x 2 X : gi (x) � 0g
(gi : Rn ! R convex. )
Outer approximation constraint in �x:

r gj ( �x)T (x � �x) + gj ( �x) � gj (x) � 0:

(valid for F by convexity of gj and de�ni-
tion of F.)
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Outer approximation constraints

Let F := f x : x 2 X : gi (x) � 0g
(gi : Rn ! R convex. )
Outer approximation constraint in �x:

r gj ( �x)T (x � �x) + gj ( �x) � gj (x) � 0:

(valid for F by convexity of gj and de�ni-
tion of F.)

If g(�x) = 0 tangent to feasible
region.

If g(�x) < 0 non-tight constraint.

If g(�x) > 0 non-tight constraint
cutting o� �x.
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Subproblems

Givenx̂ 2 Rp:

�xed NLP (NLP(x̂))
min cT x

s.t.

gi (x) � 0; i = 1; : : : ; m

x 2 X ; (NLP(x̂))

xj = x̂j ; j = 1; : : : ; p:

If x̂ 2 Zp, and feasible: gives an upper
bound.

�xed feasibility subproblem

min
mX

i = 1

wi maxf 0; gi (x)g

s.t.

x 2 X ; (NLPF(x̂))

xj = x̂j ; j = 1; : : : ; p
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Subproblems

Givenx̂ 2 Rp:

�xed NLP (NLP(x̂))
min cT x

s.t.

gi (x) � 0; i = 1; : : : ; m

x 2 X ; (NLP(x̂))

xj = x̂j ; j = 1; : : : ; p:

If x̂ 2 Zp, and feasible: gives an upper
bound.

�xed feasibility subproblem

min
mX

i = 1

wi maxf 0; gi (x)g

s.t.

x 2 X ; (NLPF(x̂))

xj = x̂j ; j = 1; : : : ; p

Remark If (NLP(̂x)) is infeasible, NLP software will typically return a solution
to (NLPF(x̂)). By abuse, always say solution to (NLP(x̂))
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Equivalent MILP formulation of convex MINLP

For eachx̂k 2 K = Proj1;:::; p(X ) \ Zp, let xk be an optimal solution to
(NLP(x̂)).

Theorem ([Duran and Grossmann, 1986])
If X 6= ; , f and g are convex, continuously di�erentiable, and a constraint
quali�cation holds for eachxk then

min cT x

gi (xk ) + r gi (xk )T (x � xk ) � 0 i = 1; : : : ; m; x̂k 2 K ;

x 2 X ; xj 2 Z; j = 1; : : : ; p:

has the same optimal value as(MICP).
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

min cT x

s.t.

gi (x0) + r gi (x0)T (x � x0) � 0;
i = 1; : : : ; m;

; (OA(K))

x 2 X ; xj 2 Z; j = 1; : : : ; p:

Wherex0 is the solution to the continuous relaxation:
minf cT x : x 2 X ; gi (x) � 0; i = 1; : : : ; mg
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

Enrich iteratively the set of linearizationsK.

min cT x

s.t.

gi (xk ) + r gi (xk )T (x � xk ) � 0;
i = 1; : : : ; m;

x̂k 2 K
; (OA(K))

x 2 X ; xj 2 Z; j = 1; : : : ; p:

Wherex̂k is a solution to (OA(K)) and, for k = 1; : : : ; jKj , xk is the solution
to (NLP(x̂)).
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

Enrich iteratively the set of linearizationsK.

Convergence
At each iteration:

(OA(K)) gives a lower bound,

If feasible, (NLP(̂x)) gives an upper bound.

The OA Theorem guarantees that the two bounds converge in �nite # of
iterations.
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Outer-Approximation Decomposition Algorithm

0. Initialize.
zU  + 1 : zL  �1 : Let x0 be the optimal solution of continuous
relaxation.
K  

�
x0

	
: Choose a convergence tolerance� .

1. Terminate?
Is zU � zL < � or (OA(K)) infeasible? If sozU is � � optimal.

2. Lower Bound
Let zMP (K ) be the optimal value of OA(K) and (x̂) its optimal solution.
zL  zMP (K )

3. NLP Solve
Solve (NLP(̂x)).
Let x i be the optimal (or minimally infeasible) solution.

4. Upper Bound?
Is x i feasible for (MINLP)? If so,zU  min(zU ; f (x i )) .

5. Re�ne
K  K [ f x i g and i  i + 1.
Go to 1.
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LP/NLP Branch-and-bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by
branch-and-bound.
At each integer feasiblenode:

integer
feasi-
ble
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LP/NLP Branch-and-bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by
branch-and-bound.
At each integer feasiblenode:

1 solve (NLP(̂x)), and enrich the set of
linearizations.

2 Resolve the LP relaxation of the node with the
new cuts.

3 Repeat as long as node is integer feasible.
integer
feasi-
ble
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LP/NLP Branch-and-bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by
branch-and-bound.
At each integer feasiblenode:

1 solve (NLP(̂x)), and enrich the set of
linearizations.

2 Resolve the LP relaxation of the node with the
new cuts.

3 Repeat as long as node is integer feasible.

Never prune by integer feasibility.
integer
feasi-
ble
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Solvers for Mixed Integer Convex Programs

Solver Reference Algorithm(s)
Dicopt OA
MINLP_BB [Ley�er, 1998] NLP BB
SBB [Bussieck and Drud, 2001] NLP BB
� -ECP [Westerlund and Lundqvist, 2005] ECP (variant of OA)
Bonmin [Bonami et al., 2008] NLP BB, OA, LP/NLP
FilMINT [Abhishek et al., 2010] LP/NLP
KNITRO [Byrd et al., 2006] NLP BB, LP/NLP
SCIP [Vigerske, 2012] LP/NLP
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Comparison of solvers in GAMS[Vigerske, 2013]
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Comparison of solvers in GAMS[Vigerske, 2013]
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Notes on results with Bonmin

Bonmin's OA using CPLEX seems the best algorithm overall.
It is also the simplest: a loop calling CPLEX (MILP) and Ipopt (NLP)
alternatively as black boxes.
Improves with CPLEX.

Bonmin's Hyb is in the pack of relatively good solvers
own variant of LP/NLP BB.
Reuse CBC infrastructure, LP solver, Cuts, MIP presolve.
Improves at a slower pace.

Bonmin's BB clearly behind.
pure NLP based branch-and-bound. Doesn't reuse much from Cbc.
Everything speci�cally tailored.
Better implementation exists that should be on par with Hyb.

Bonmin's OA using CBC seems the worst algorithm overall.

30 ©2015 IBM Corporation



IBM Analytics

Notes on results with Bonmin

Bonmin's OA using CPLEX seems the best algorithmoverall.
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The MIQCP/MISOCP solver in CPLEX

Implements the two main algorithms:

A branch-and-bound based on the continuous SOCP solver (barrier).

An outer approximation branch-and-cut algorithm.

Choice is controled by the parameterCPXPARAM_MIP_Strategy_MIQCPStrat.
Default is trying to decide which of the two algorithms to runin a �clever� way.

History of MIQCP with CPLEX
class p algorithm V. (Year)
Convex QCP 0 barrier 9.0 (2003)
convex MIQCP > 0 barrier based B&B 9.0 (2003)
� � Outer approximation B&C 11.0 (2007)
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A comparison of OA and SOCP-BB in CPLEX 12.6.11
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Advanced algorithms for convex case (non exhaustive
references)

Preprocessing/Modeling:
separability [Hijazi et al., 14]
perspective formulations[Frangioni and Gentile, 2006, Günlük and
Linderoth, 2008]
propagation [Vigerske, 2012]

Node relaxations/Branching:
QP Delaxations in strong-branching[Bonami et al., 2013]
QP Divings [Mahajan et al., 2012]

Primal Heuristics:
Feasibility Pumps[Bonami et al., 2009],
Undercover[Berthold and Gleixner, 2013]

Cuts:
Disjunctive Cuts [K�l�nc et al., 2011, Bonami, 2011].
Conic Cuts for Conic Crogramming[Andersen and Jensen, 2013, Belotti
et al., 2013a, K�l�nç-Karzan and Y�ld�z, 2015, Modaresi et al., 2015]
(among others)
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The Basic Algorithms

Section 2

Steps into non-convexity
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(MI)QP

min
1
2

xT Qx + cT x

s:t :

Ax = b

xj 2 Z j = 1; : : : ; p

l � x � u

(MIQP)

(with Q symmetric),
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(MI)QP

min
1
2

xT Qx + cT x

s:t :

Ax = b

xj 2 Z j = 1; : : : ; p

l � x � u

(MIQP)

(with Q symmetric),

History of MIQP with CPLEX
class p Q algorithm V. (Year)
Convex QP 0 � 0 barrier 4.0 (1995)
� � � QP simplex 8.0 (2002)
convex MIQP > 0 � 0 B&B 8.0 (2002)
nonconvex QP 0 6� 0 barrier (local) 12.3 (2011)
� � � spatial B&B (global) 12.6 (2013)
nonconvex MIQP > 0 6� 0 spatial B&B (global) 12.6 (2013)
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Example

Let G = ( N; E) be a graph andQ be the incidence matrix ofG. The optimal
value of:

max
1
2

xT Qx

s:t :
X

xj = 1

x � 0:

is 1
2

�
1 � 1

� (G)

�
where� (G) is the clique number ofG [Motzkin and Straus,

1965],

) QP is NP-hard

More generally QPs on the simplex (general Q) can be solved by a
nonlinear maximum clique algorithm[Scozzari and Tardella, 2008].
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Local solver of nonconvex QP in CPLEX

Primal Dual Interior Point Algorithm.

Solves to alocal optima: there exists no better solution in a non-empty
neigborhood.

Not enabled by default, ifQ is inde�nite CPLEX will return
CPXERR_Q_NOT_POS_DEF.

Activated by setting the optionoptimality target to 2 (or
CPX_OPTIMALITYTARGET_FIRSTORDER).

Own implementation of inde�nite factorization.
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Global (MI)QP in CPLEX

Activated by settingoptimality target to 3 (or
CPX_OPTIMALITYTARGET_OPTIMALGLOBAL).

Note: previous versions could already solve some nonconvexMIQPs (pure
0-1 QPs, convex after presolve...)

Notes on complexity

Checking if a feasible solution is not a local minimum is coNP-Complete.

Checking if a nonconvex QP is unbounded is NP-complete.

Spatial B&B

Establish a convex (easily solvable) relaxation.

Establish branching rules on solutions of this relaxation.

38 ©2015 IBM Corporation



IBM Analytics

Elementary relaxations: Secant Approximation

The convex hull relaxations of a a squarex2
1

x1

y

x1 = l1 x1 = u1

f y � x2
1 g
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a a squarex2
1

x1 = l1 x1 = u1

Secant approximation
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a a squarex2
1

x2
1 � y+

ii := ( l1 + u1)x1 � l1u1
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single productx1x2 [McCormick, 1976]

x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single productx1x2 [McCormick, 1976]

x1x2 � y �
12 := max

(
u2x1 + u1x2 � u1u2

l2x1 + l1x2 � l1l2

)

x1x2 � y+
12 := min

(
u2x1 + l1x2 � l1u2

l2x1 + u1x2 � u1l2

) x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single productx1x2 [McCormick, 1976]

x1x2 � y �
12 := max

(
u2x1 + u1x2 � u1u2

l2x1 + l1x2 � l1l2

)

x1x2 � y+
12 := min

(
u2x1 + l1x2 � l1u2

l2x1 + u1x2 � u1l2

) x1

x2

x1x2

Depending on the sign ofqij we only needy+ or y � .

For simplicity, we assume we put all in the remainder.
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Q-space reformulation and relaxation

Let Q = P + ~Q with P the diagonal psdmatrix containingqii > 0.

min
1
2

xT Px +
1
2

xT ~Qx + cT x

s:t :

Ax = b

xj 2 Z j = 1; : : : ; p

l � x � u

(MIQP)
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Q-space reformulation and relaxation

Let Q = P + ~Q with P the diagonal psd matrix containingqii > 0.

Add oneyij = xi xj variable for each non-zero entryqij of ~Q.

min
1
2

xT Px +
1
2

h~Q; Y i + cT x

s:t :

Ax = b

xj 2 Z j = 1; : : : ; p

Y = xxT

l � x � u

(MIQP)

( hQ; Y i =
P

i ;j qij yij )
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Q-space reformulation and relaxation

Let Q = P + ~Q with P the diagonal psd matrix containingqii > 0.

Add oneyij = xi xj variable for each non-zero entryqij of ~Q.

Relaxyij = xi xj using McCormick and Secant approximations.

min
1
2

xT Px +
1
2

h~Q; Y i + cT x

s:t :

Ax = b

xj 2 Z j = 1; : : : ; p

y �
ij � yij � y+

ij

yii � y+
ii

l � x � u

(q-MIQP)
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Factorizations ofQ

Our block inde�nite decomposition:M and B such thatM 2-block
triangular andB 2-blocks diagonal withQ = M T BM

ReformulatexT Qx using additional variablesz so that zT Dz = xT Bx
and D diagonal. LetL, D give the spectral decomposition ofB, z = L� ,
� = Mx.

(For simplicity assumez = Lx gives the system we want)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to getz = Lx and zT Dz = xT Qx and do the same steps
as before (but more simple)....

min
1
2

zT Dz + cT x

s:t :

Ax = b; Lx = z

xj 2 Z j = 1; : : : ; p

l � x � u

(MIQP)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to getz = Lx and zT Dz = xT Qx and do the same steps
as before (but more simple)....

Let D = D+ � D � with D � diagonal psd matrices.

min
1
2

(zT D+ z � zT D � z) + cT x

s:t :

Ax = b; Lx = z

xj 2 Z j = 1; : : : ; p

l � x � u

(MIQP)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to getz = Lx and zT Dz = xT Qx and do the same steps
as before (but more simple)....

Let D = D+ � D � with D � diagonal psd matrices.
Add yii � z2 variable for each non-zero ofD � .

min
1
2

zT D+ z �
nX

i = 1

dii

2
yii + cT x

s:t :

Ax = b; Lx = z

xj 2 Z j = 1; : : : ; p

yii � z2
i

l � x � u

(MIQP)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to getz = Lx and zT Dz = xT Qx and do the same steps
as before (but more simple)....

Let D = D+ � D � with D � diagonal psd matrices.
Add yii � z2 variable for each non-zero ofD � .
Infer �nite bounds, l z , uz for z and relaxyii � z2

i using Secant
approximations.

min
1
2

zT D+ z �
nX

i = 1

dii

2
yii + cT x

s:t :

Ax = b; Lx = z

xj 2 Z j = 1; : : : ; p

yii � y+
ii

l � x � u; l z � z � uz

(ev-MIQP)
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Notes on the two relaxations

The steps are almost the same.
If Q is diagonal the two relaxations are identical.
In general they are not comparable.
If Q � 0, EV-space is better itpreserves convexity.
Q-space gives a surpisingly good approximation[Luedtke et al., 2012]
show that, if Q has a 0 diagonal, for the box QP:
minf xT Qx : 0 � x � 1g:

if Q � 0 the approximation is within a factor 2:
if Q 6� 0 the approximation is within a factor of# nnz in Q (conjecture it
is better)
Many ways to do di�erent splittings of Q for eg. with SDP [Billionnet
et al., 2012].

CPLEX strategy

By default, uses EV-space if problem looks almost convex.

Can be controled with parameter.
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Branching

Let (x; y) be the solution of the chosen QP relaxation after
presolve/cutting. And assumexj 2 Z, j = 1; : : : ; p.
If 9y ij 6= x i x j , (x; y) is not a solution of the problem and we need to
branch.
Pick such an indexi , choose a value� between li + ui

2 and x i .
Branch by changing the bound to� and updating all Secant and
McCormick approximations involving this bound.

x1

x2

x1x2
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Branching

Let (x; y) be the solution of the chosen QP relaxation after
presolve/cutting. And assumexj 2 Z, j = 1; : : : ; p.
If 9y ij 6= x i x j , (x; y) is not a solution of the problem and we need to
branch.
Pick such an indexi , choose a value� between li + ui

2 and x i .
Branch by changing the bound to� and updating all Secant and
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x1 = �
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Going beyond QP

An Optimistic outlook

GLOMIQO[Misener and Floudas, 2013]a solver for non-convex MIQCQP
was released in 03/2012.

ANTIGONE[Misener and Floudas, 2014]generalized to MINLP was
released in 06/2013.

Both solvers improved the state of the art.

Development done by one (very good) student!

Apparently GLOMIQO! ANTIGONE was not that hard.

The basic of a spatial branch-and-bound remains the same butof course a lot
more of technicalities.
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Factorable functions

g(x) is factorable if it can constructed as a �nite recursive composition of
functions from a �nite setf � 1; : : : ; � k g whose arguments are either variables,
constants or other factorable functions.

The usual (minimal) set ofatomic functionsis composed of:
� 1(x) = ln(x), � 2(x) = ex , � 3(x; y) = x + y, � 4(x; y) = xy,
� 5(x; � ) = x� .
For eg.,f (x) =

p
x1x2 + ln(x2) can be factorized into:

f (x) = x3 + x4 = � 3(x3; x4)

x3 =
p

x5 = � 5(x5;
1
2

)

x4 = ln(x2) = � 1(x2)

x5 = x1x2 = � 4(x1; x2)

Factorizations are not unique (for eg. the functionx2
1 x2 + ln(x1x2

2 )
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Expression trees

Expression trees are not trees but Directed Acyclic Graphs!

Basic data structure to store functions in (MI)NLP
solvers. Used for:

Constructing relaxations,

Propagating bounds (forward/backwards),

Computing derivatives,

. . .

Modelling languages (GAMS, AMPL,. . . )
have API to access Exp. Tree

+

p

+

x1 x2

ln

Figure: Expression tree for
f (x) =

p
x1x2 + ln(x2)
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Factorable programming relaxation

Assume all functionsf and g are factorable. Adding appropriately many
variables, reformulate (MINLP) as

min xn+ q

s.t. xk = � k (x) k = n + 1; n + 2; : : : ; n + q
x 2 X
xj 2 Z j = 1; : : : ; p
lj � xj � uj j = 1; : : : ; n + q

Now building a convex relaxation is just a matter of knowing how to relax
all constraintsxk = � k (x) ) Convex Envelopes.

Build a library of convex relaxations for all atomic functions.

Richer library) more powerful/general solver.
(For QP we just needed the functionsxi xj and x2

i )
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Making it work

�The factorable relaxation is the worst form of
relaxation, except for all the others.�

Build rich set of atomic functions) Try to retain as muchglobal
information as possible.

Recognize convex parts of problem[Vigerske, 2012].

Elaborate tight convex envelopes[Misener and Floudas, 2014].

Simplify expression trees.
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Making it work

�The factorable relaxation is the worst form of
relaxation, except for all the others.�

Build rich set of atomic functions) Try to retain as muchglobal
information as possible.

Recognize convex parts of problem[Vigerske, 2012].

Elaborate tight convex envelopes[Misener and Floudas, 2014].

Simplify expression trees.

There are other forms of relaxation...
for eg sum-of-squares[Lasserre, 2009]
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Other essential ingredients

[Tawarmalani and Sahinidis, 2002, Vigerske, 2012, Misenerand Floudas, 2014]

Use NLP solver for getting/improving incumbents.

Linearize completely parts of the problem involving binaryvariables.
Quality of any convex relaxation depends on tight bounds) aggressive
propagations/bound tightening:

Propagate bounds forward/backward in Exp. Tree[Messine, 2004].
Optimality based [Gleixner and Weltge, 2013].

Add cutting plane techniques:
Reformulation Linearisation Technique[Sherali and Adams, 1999].
Mutlilinear terms of high order[Meyer and Floudas, 2005].
Disjunctive [Saxena et al., 2010, Belotti, 2012].
SDP based.

Branching rules[Belotti et al., 2009].

Heuristics[Berthold and Gleixner, 2013, Berthold, 2014]
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Part II

Selected Advanced (or not) Topics
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Selected Advanced (or not) Topics

Section 3

A most simple MINLP
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A simple MINLP

Consider the following convex MINLP:

min
P n

i= 1 i � xi

s.t.
P n

i= 1

�
xi � 1

2

� 2
� n� 1

4
x 2 Zn

(1)

x
y

z

Exercise
Find the optimum or prove that (1) is infeasible or unbounded.

How many nodes, would a simple branch-and-bound take to solve (1)?

How many linear approximations would an Outer Approximation
approach need?
You can use your favourite solver to help with the answers

ZIMPL+SCIP is �ne.
No need to take largen (10 to 20 is �ne).
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Answers

Consider the following convex MINLP:

min
P n

i= 1 i � xi

s.t.
P n

i= 1

�
xi � 1

2

� 2
� n� 1

4
� 10 � x � 10; x 2 Zn

(1)

x
y

z

(1) is infeasible:
The ball is too small to contain integer points.
It is large enough to touch every edge of the hypercube.

A basic branch-and-bound would take at least 2n+ 1 nodes.

We need at least 2n linear outer approximations to prove infeasibility.
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Solving (1) with OA cuts

No OA constraint can cut 2
vertices of the hypercube.

If an inequality cuts two points,
it cuts the segment joining
them.
The ball has a non-empty
intersection with every segment
joining two vertices.
Remember that an outer
approximation is only a tangent
to the ball.

x y

z

What did the solvers tell?
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A few years ago

CPLEX 12.4 SCIP 2.0.1 B-OA B-Hyb
n 2n nodes nodes OA it. nodes
10 1,024 2,047 720 1,105 11,156
15 32,768 65,535 31,993 . . . 947,014
20 1,048,576 2,097,151 1,216,354 . . . . . .
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A few years ago

CPLEX 12.4 SCIP 2.0.1 B-OA B-Hyb
n 2n nodes nodes OA it. nodes
10 1,024 2,047 720 1,105 11,156
15 32,768 65,535 31,993 . . . 947,014
20 1,048,576 2,097,151 1,216,354 . . . . . .

Remark
Problem is trivial if variables are 0� 1: replacex2

i by xi , the
contradiction n

4 � n� 1
4 follows.

58 ©2015 IBM Corporation



IBM Analytics

A few years ago

CPLEX 12.4 SCIP 2.0.1 B-OA B-Hyb
n 2n nodes nodes OA it. nodes
10 1,024 2,047 720 1,105 11,156
15 32,768 65,535 31,993 . . . 947,014
20 1,048,576 2,097,151 1,216,354 . . . . . .

Remark
Problem is trivial if variables are 0� 1: replacex2

i by xi , the
contradiction n

4 � n� 1
4 follows.

SCIP� 2:1 and CPLEX� 12:6:1 solve it in a blink.
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Solving the problem by presolve/propagation

An easy way to deduce infeasibility is to compute the component-wise
maximum of the left-hand-side of the constraint:

nX

i = 1

min

( �
xi �

1
2

� 2

: xi 2 Z

)

Each optimization problem is one dimensional and can be easily solved:

min

( �
xi �

1
2

� 2

: xi 2 Z

)

=
1
4

Summing up we get that:

nX

i = 1

min

( �
xi �

1
2

� 2

: xi 2 Z

)

=
n
4

>
n � 1

4
:

A contradiction, therefore (1) is infeasible.
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Twisting our example

The following model should be complicated enough to pass presolve
untouched:

min
P 2n

i= 1 i � xi
P n

i= 1(100x2
2i + 100x2

2i � 1 � 4x2i x2i � 1 � 98x2i � 98x2i � 1) � � 1

� 10 � x � 10; x 2 Z2n

(2)

Exercise
Try to write a model with ZIMPL and solve it with a solver of yourchoice
(SCIP is �ne).

How many nodes, does it take?

No need to take largen, around 10 is �ne.

Note that the dimension of the problem is 2n.
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A recipe for solving (2) better with OA

We consider a speci�c class of MINLPs:

min cT x
s.t. gi (x) � 0 i = 1; : : : ; m

x 2 X
xj 2 Z j = 1; : : : ; p
l � x � u

(sMINLP)

For i = 1; : : : ; m, gi : X ! R are convex separable:

gi (x) =
nX

j = 1

gij (xj )

with gij : [lj ; uj ] ! R convex.
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Disaggregated formulation

Introduce one variableyij for each elementary function:

min cT x

s.t.
nP

j = 1
yij � 0 i = 1; : : : ; m;

gij (xj ) � yij
i = 1; : : : ; m;
j = 1; : : : ; n;

x 2 X ;
xi 2 Z i = 1; : : : ; p;
l � x � u:

(sMINLP� )
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Application to (1)
Extended formulation of (1)

min cT x

s.t.
nX

i = 1

yi � (n � 1)=4

(xi � 0:5)2 � yi i = 1; : : : ; n

x 2 Zn:
(3)

x
y

z

Its outer approximation

min cT x

s.t.
nX

i = 1

yi � (n � 1)=4

2
�
xk

i � 0:5
�

(xi � xk
i ) +

�
xk

i � 0:5
� 2

� yi
i = 1; : : : ; n
k = 1; : : : ; K

x 2 Zn
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Application to (1)
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nX
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x 2 Zn:
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yi � (n � 1)=4
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�
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�
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�
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Application to (1)

Extended formulation of (1)

min cT x

s.t.
nX

i = 1

yi � (n � 1)=4

(xi � 0:5)2 � yi i = 1; : : : ; n

x 2 Zn:
(3)

Its outer approximation

min cT x

s.t.
nX

i = 1

yi � (n � 1)=4

2
�
xk

i � 0:5
�

(xi � xk
i ) +

�
xk

i � 0:5
� 2

� yi
i = 1; : : : ; n
k = 1; : : : ; K

x 2 Zn

2 points su�ce to make it infeasiblex1 = 0 andx2 = 1:

� xi + 0:25 � yi i = 1; : : : ; n

xi � 0:75+ � yi i = 1; : : : ; n
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Application to (2)

min
P 2n

i= 1 i � xi
P n

i= 1(100x2
2i + 100x2

2i � 1 � 4x2i x2i � 1 � 98x2i � 98x2i � 1) � � 1

� 10 � x � 10; x 2 Z2n

Exercise
Try to write a disagregated version with ZIMPL and solve it with a solver
of your choice (SCIP is �ne).

How many nodes, does it take?
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Application to (2): Solution

We need to get to from

nX

i = 1

(100x2
2i + 100x2

2i � 1 � 4x2i x2i � 1 � 98x2i � 98x2i � 1) � � 1

to something of the form:
P n

i= 1(� z2i + � z2i � 1 � 98x2i � 98x2i � 1) � � 1

y2
i � zi

yi = 
 T
i x:

How do we �nd �; � and
 ?
Spectral decompostion:

�
100 � 2
� 2 100

�
=

�
� 1 1
� 1 � 1

� �
51 0
0 49

� �
� 1 1
� 1 � 1

�

� = 51; � = 49; 
 2i = ( � 1; 1); 
 2i � 1 = ( � 1; � 1)
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Experimental Illustration

In the standard benchmark for MICP, out of> 100 instances, 8 are not
directly separable.
Constructing separated formulations on a subset of 47 instances gives a
3x speed up:[Hijazi et al., 14].
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Similar technique developped in Baron for compositions of convex functions
[Tawarmalani and Sahinidis, 2004].
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Disaggregation of Second Order cones

In standard form the nonlinear constraint describing the second order cone is
not convex separable:

nX

i = 1

x2
i � x2

0

Trick [Vielma et al., 2015], divide the constraint byx0 � 0 to get a convex
separable constraint:

nX

i = 1

x2
i

x0
� x0:

Now introducey1; : : : ; yn and rewrite as:

nX

i = 1

yi � x0

x2
i � x0yi
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Going further with cutting plane

[Cornuéjols and Li, 2001]showed that
the empty ball in dimensionn hassplit
rank n
) Practically unsolvable using any
known cutting plane technique.

Instead the of the disaggregated
formulation has (simple) split rank 1.
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Going further with cutting plane

[Cornuéjols and Li, 2001]showed that
the empty ball in dimensionn hassplit
rank n
) Practically unsolvable using any
known cutting plane technique.

Instead the of the disaggregated
formulation has (simple) split rank 1.

xi � 0 xi � 1

yi � 1
4

� xi + 0:25 � yi i = 1; : : : ; n

xi � 0:75+ � yi i = 1; : : : ; n

xi � 0 OR xi � 1

9
>=

>;
) yi � 0:25
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Split Relaxation

ConsiderC and M := C \ (Zp � Rn� p).
Let � 2 Zp � f 0gn� p, � 0 2 Z and

C(�;� 0 ) := conv
�

C\
��

x : � T x � � 0
	

[

�
x : � T x � � 0 + 1

	�
�

:

(clearly M � C(�;� 0 ) � C).
x1

x2

x1 = 0 x1 = 1

C

M
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Split Relaxation

ConsiderC and M := C \ (Zp � Rn� p).
Let � 2 Zp � f 0gn� p, � 0 2 Z and

C(�;� 0 ) := conv
�

C\
��

x : � T x � � 0
	

[

�
x : � T x � � 0 + 1

	�
�

:

(clearly M � C(�;� 0 ) � C).

In the remainder,̂x is the point to separate,
� = ek , x̂k 2]0; 1[ (k � p), and � 0 = 0

C(�;� 0 )

x̂� T x = �
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MILP case

Consider a polyhedronP := f x : Ax = b; x � 0g

Cut Generation LP[Balas, 1979, Balas et al., 1993]
x̂ 2 P is separated fromP(ek ;0) using the LP:

min� T x̂ � �

s:t : :

� = uT A � u0ek ; � = vT A + v0ek ;

� = uT b; � = vT b + v0;
� 2 Rn; � 2 R; u; v 2 Rm; u0; v0 2 R+

(CGLP)

If x̂ 62P(ek ;0) , � T x � � cuts x̂; otherwise produces certi�cate that̂x 2 P(ek ;0)

with x0 2 P \ f xk = 0g, x1 2 P \ f xk = 1g such that x̂ = x̂k x1 + ( 1 � x̂k )x0.
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Statement in picture

If x̂ is not in the split relaxation we get a cut.
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Statement in picture

If x̂ is in the split relaxation we get a certi�cate in the form of two pointsx0,
x1.
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MILP case (primal view)

Membership LP[Bonami, 2012]
x̂ 2 P wih 0 < x̂k < 1 also inP(ek ;0) if 9 x0 2 P \ f xk = 0g and
x1 2 P \ f xk = 1g with x̂ = x̂k x1 + ( 1 � x̂k )x0, or if

max yk

s.t.

Ay = bx̂k

0 � y � x̂;

y 2 Rn:

(MLP)

has a solution withyk = x̂k otherwise can deduce a cut from dual optimal
solution.
(Hint y

x̂k
is x1, x̂ � y

1� x̂k
is x0).

75 ©2015 IBM Corporation



IBM Analytics

Generalization to MICPs

Using the primal view

Generalizing (MLP) to nonlinear convex constraints is relatively simple
[Bonami, 2011].

But Nonlinear programming duality is not the same as LP!

Using the dual view

Generalizing CGLP is possible but poses many numerical/technical
challenges[Ceria and Soares, 1999, Stubbs and Mehrotra, 1999].

As long as we generate a linear cut, it can be obtained from linear outer
approximations[Bonami et al., 2012].

The linear case can be used within a cut generation framework[K�l�nc
et al., 2011].
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Sketch of an algorithm

Only solve LPs,

Dynamic generation of additional OA
constraints.

compact formulation using MLP,

x̂

� T x � � 0 � T x � � 0 + 1
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In CPLEX

Propagation of conic constraints (12.6.1).

Cone disaggregation for MISOCP (12.6.2).

Lift-and-project cuts for MISOCP (12.6.2).

Redesigned heuristic choice of most promising algorithm (12.6.2).

Improved OA Cuts (12.6.2).
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The e�ect on our ellipse

min
P 2n

i= 1 i � xi
P n

i= 1(100x2
2i + 100x2

2i � 1 � 4x2i x2i � 1 � 98x2i � 98x2i � 1) � � 1

x 2 Z2n

(2)

results on 12 threads with 12.6.1, 12.6.22, 12.6.2-- (no lift-and-project
cuts) and 12.6.2++ (aggressive lift-and-project cuts), 3 hours time limit

12.6.1 12.6.2-- 12.6.2 12.6.2++
n nodes nodes nodes nodes
5 2,261 2,045 2,045 1,825
10 2,097,151 1,914,797 29 1
15 > 23,125,426 > 146,604,478 7,769 1

(Largest model solved in 2.2 sec by 12.6.2, in 5.5 sec by 12.6.2++.)

2Default results can be very sensitive to objective function
79 ©2015 IBM Corporation



IBM Analytics

The e�ect on our ellipse

min
P 2n

i= 1 i � xi
P n

i= 1(100x2
2i + 100x2

2i � 1 � 4x2i x2i � 1 � 98x2i � 98x2i � 1) � � 1

x 2 Z2n

(2)

results on 12 threads with 12.6.1, 12.6.22, 12.6.2-- (no lift-and-project
cuts) and 12.6.2++ (aggressive lift-and-project cuts), 3 hours time limit

12.6.1 12.6.2-- 12.6.2 12.6.2++
n nodes nodes nodes nodes
5 2,261 2,045 2,045 1,825
10 2,097,151 1,914,797 29 1
15 > 23,125,426 > 146,604,478 7,769 1

(Largest model solved in 2.2 sec by 12.6.2, in 5.5 sec by 12.6.2++.)

Similar results previously observed by[K�l�nç, 2011]

Original Disaggregated
n root gap sol time root gap sol time

Batch 10 58.40 376.2 68.77 58.7
Markowitz 10 0.00 > 10 800 98.07 1 262
SLay 14 68.50 36 86.08 5.0
u�quad 15 10.85 784 96.25 145

2Default results can be very sensitive to objective function
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CPLEX12.6.1 vs12.6.2

0
0:2
0:4
0:6
0:8
1:0

> 0 sec
231 Models

> 1 sec
149 Models

� 2:86 � 5:0

CPLEX test bed

CPLEX 12.6.1: 62 time limits

CPLEX 12.6.2: 38 time limits

0
0:2
0:4
0:6
0:8
1:0

> 0 sec
66 Models

> 1 sec
46 Models

� 3:57 � 6:25

CBLIB

CPLEX 12.6.1: 17 time limits

CPLEX 12.6.2: 8 time limits
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A comparison of OA and SOCP-BB in CPLEX 12.6.23
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1262_miqcpstrat_0
1262_miqcpstrat_1
1262_miqcpstrat_2

Default strategy picked

OA 186 times

SOCP-BB 4 times

55 models identical with
both

To be perfect should have
picked

2 more models with OA

9 more models with
SOCP-BB

3245 models solved by at least one method and failed by none.
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Reminder of CPLEX 12.6.14
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OA 113 times

SOCP-BB 46 times

56 models identical with
both

To be perfect should have
picked

14 more models with OA

36 more models with
SOCP-BB

4225 models solved by at least one method and failed by none.
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Selected Advanced (or not) Topics

Section 4

MILP vs. Non-Convex QP
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Box QP

We consider the box constrained QP:

max
1
2

xT Qx + cT x

s:t :

0 � x � 1

(box-QP)

Bounds 0 and 1 are without loss of generality (every box QP canbe
scaled to those bounds).

Academic interest[Vandenbussche and Nemhauser, 2005, Burer and
Vandenbussche, 2009, Chen and Burer, 2012]

Also some applications[Moré and Toraldo, 1989](usually huge size).
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The HP Property

Consider a box-QP:
max

1
2

xT Qx + cT x

s:t :

0 � x � 1

(box-QP)

If qii � 0 then in an optimal solutionxi 2 f 0; 1g.

Proof
In dimension 1 ??
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The HP Property

Consider a box-QP:
max

1
2

xT Qx + cT x

s:t :

0 � x � 1

(box-QP)

If qii � 0 then in an optimal solutionxi 2 f 0; 1g.

Proof
In dimension 1 maxqx2 + ax + c overx 2 [0; 1] and with q � 0 has its
optimal solution at one end of the interval[0; 1].
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The HP Property

Consider a box-QP:
max

1
2

xT Qx + cT x

s:t :

0 � x � 1

(box-QP)

If qii � 0 then in an optimal solutionxi 2 f 0; 1g.

Proof
In dimension 1 maxqx2 + ax + c overx 2 [0; 1] and with q � 0 has its
optimal solution at one end of the interval[0; 1].
In dimensionn. Supposeqii � 0 and �x with �x1 2]0; 1[.
Consider the 1-d optimization problem where all variables are �xed to their
value in �x exceptx1.
This problem has optimal solution in eitherx1 = 0 or x1 = 1, so we get a
better solution (of course it is feasible since there are no constraints).
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Why would that be useful?

Consider a box-QP with allqii � 0 then it has the same optimal solution as:

max
x2f 0;1g

1
2

xT Qx + cT x (bin-QP)

Hands on with ZIMPL
Try to build a random box-QP and solve it as a continuous problem and {0-1}
problem.

You can generate a random matrix with� 0 diagonal with:

param Q [<i,j> in N*N] := if i != j then random (-10,10)
else random (-10, 0) end;

ZIMPL doesn't support quadratic objective (/ ?!) you need to put it as a
constraint.

No need to make it largen = 30 more than �ne.

Can solve with SCIP.

Be careful with computers,
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Solving bin-QP

Assume thatQ is without diagonal term (Qii = 0, i = 1; : : : ; n), and consider
the set

conv
�
(x; Y ) 2 Y Q : x 2 [0; 1]n

�
= conv

�
(x; Y ) 2 Y Q : x 2 f 0; 1gn�

:

This set is called Boolean Quadratic Polytope (BQP)[Padberg, 1989].

It is also equivalent to the Max-Cut polytope[Barahona and Mahjoub,
1986].

An important class of facets are triangle inequalities and odd-hole
inequalities.

Those inequalities are all the Chátal-Gomory cuts for the continuous
relaxation[O. Günlük et al., 2015].

They are also 0� 1=2 CG cuts for which modern solvers have good
heuristic separators.
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bin-QP as a relaxation of box-QP

Given a box-QP (with possibly� 0 diagonal coe�cients) construct a bin-QP
with sameQ but except 0 on the diagonal.

Gives a relaxation of box-QP.

Valid cuts for one are valid for the other.

In particular we are interested in the 0� 1=2 CG cuts.

Any non-convex QP works after removing all constraints but bounds.

Related Global Optimization approaches
Studying directly the feasible set of (box-QP) with 0 diagonal

The McCormick formula give the convex hull of 2-d box-QP sets.

[Meyer and Floudas, 2005]give closed form formula for 3-d box-QP sets.

Exploit closed form formula for set with up to 6 variables[Misener and
Floudas, 2013].
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Nonconvex (MI)QP CPLEX12.6.1 vs12.6.2

0
0:2
0:4
0:6
0:8
1:0

> 0 sec
395 Models

> 1 sec
134 Models

� 1:47 � 2:33

CPLEX test bed

CPLEX 12.6.1: 270 time limits

CPLEX 12.6.2: 262 time limits

0
0:2
0:4
0:6
0:8
1:0

> 0 sec
79 Models

> 1 sec
152 Models

� 68 � 152

Box QP

CPLEX 12.6.1: 55 time limits

CPLEX 12.6.2: 19 time limits
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Selected Advanced (or not) Topics

Section 5

Everything can go wrong...
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No need to be big to go wrong

Consider the following non-convex QP:
min x2 � y2

s:t :

� 1 � x � y � 1

x; y 2 R

Questions

Find the optimal solution, or prove that the problem is either infeasible or
unbounded.

Encouragements to try with a solver to see what happens (evenif the
answer looks obvious).
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Answer

The problem is a relaxation of: minf x2 � y2 : x � y = 1; x; y 2 Rg. We show
that his problem is unbounded the result follows.

Basic algebrax2 � y2 = ( x � y)(x + y) with x � y = 1 changes objective to
x + y.

Now eliminatey usingy = x � 1 and obtain minf 2x � 1 : x 2 Rg which is
unbounded.
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What happened in the solver?

In an MILP withrational data
If the continuous relaxation is unbounded then

If there is an integer feasible solution) unbounded.

If there is no integer feasible solution) infeasible.

In an MINLP
It can happen that relaxation is unbounded but problem is bounded.

Note that here we don't have integer variables but still deciding if a QP is
unbounded is NP-hard.

[Hu et al., 2012]propose an algorithm to detect correcty unbounded QPs.

Most solvers, will continue optimization even with an unbounded
relaxation.

CPLEX tries to detect unbounded models. If relaxation is unbounded but
can't decide that problem is also, stops withRELAXATION_UNBOUNDED.
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Conclusion

MINLP is still very challenging.

Some signi�cant applications solved but many still out of reach.

According to Stefan the MINLP accelerates at a rate of 1:96=year (more
than MILP's 1:8!).

Conjecture: 25 years from now MINLPs will be solved 2:024� 107 faster
than today.

To get there we need:

more applications:
www.minlp.org ,

more benchmark instances:
www.gamsworld.org/minlp/minlplib2/html/

more clever people:
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