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Comparing Formulations

Two comparisons are most interesting to us:

▶ showing that two formulations are equivalent; and

▶ showing that one formulation dominates the other with respect to
linear relaxation.

The first of these tells us that if we solve the same instance with two
equivalent models, we will get the same answer from both models.

The second tells us which model is likely to be faster.
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Equivalent Formulations

To show that two formulations are equivalent, we must show:

1. that there exists a bijective mapping from one feasible region to the
other; and

2. that the optimal solutions from both models will be the same point
or region.
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Dominant Formulations

To show that formulation A dominates formulation B, we must show for
the linear relaxation:

▶ that no part of the feasible region (of the LP) for A steps outside the
feasible region (of the LP) for B; and

▶ that some part of the feasible region (of the LP) for A is strictly
inside the feasible region (of the LP) for B.

Burt, Maher, Witzig – Modelling 4 / 50



Good Formulations

Simple approaches that are likely to obtain a good formulation include:

▶ finding a compact formulation with respect to number of
integer/binary variables, and constraints;

▶ tightening the linear relaxation.

However, this is not the whole picture, and these suggestions are not
guaranteed to give fast models.
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Study: Travelling Salesman Problem

Recall the classical combinatorial optimisation problem introduced in
Martin Grötschel’s lecture on linear and mixed integer linear programming.
Here, we consider the assymetric version of that problem.

Definition (Travelling Salesman Problem)

Given a weighted di-graph, D = (V,A), where each node i ∈ V
corresponds to a city and each arc (i, j) corresponds to paths between i
and j. Let cij be the arc weights representing the distance between i and
j, such that cij = cji ∀ (i, j) ∈ A. Find a tour of minimal cost that visits
each city exactly once.
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TSP: A compact formulation

MTZ : min
∑

(i,j)∈A

ci,jxi,j

s.t. x(δ+(i)) = 1 ∀ i ∈ V, (out-degree)

x(δ−(i)) = 1 ∀ i ∈ V, (in-degree)

ui − uj + (|V | − 1)xi,j ≤ |V | − 2 ∀ i ̸= j, j > 1, (sub-tour elim)

ui−1 ≤ ui ∀ i ∈ V \{1},

....
xi,j ∈ {0, 1} ∀ (i, j) ∈ A,

ui ∈ Z+ ∀ i ∈ V.

This is one of the most compact formulations of the TSP. However, it is
generally not used because it has a loose linear relaxation.
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TSP: A tight formulation

DFJ : min
∑

(i,j)∈A

ci,jxi,j

s.t. x(δ+(i)) = 1 ∀ i ∈ V, (out-degree)

x(δ−(i)) = 1 ∀ i ∈ V, (in-degree)

x(A(W )) ≤ |W | − 1 ∀ ∅ ⊊ W ⊊ V, (sub-tour elim)

....
xi,j ∈ {0, 1} ∀ (i, j) ∈ A.

This formulation has a tighter linear relaxation than MTZ.

However, this formulation has exponentially many subtour elimination
constraints, since we must search the power set of V . The model is not
compact, and suffers computationally from this flaw if the complete model
is explicitly given to a solver.
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Study: Travelling Salesman Problem

The best way to use the DFJ formulation is to avoid writing the complete
model explicitly.

We will look at how to do this, and implement it, in the lecture and
exercise on constraint integer programming by Ambros Gleixner, Gregor
Hendel and Felipe Serrano.
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Good Formulations

The algorithms that solve mathematical programming problems are
complex. Some heuristics within the algorithms may work better on less
compact formulations.

For example:

▶ Primal Heuristics search for feasible solutions.

▶ Polishing Heuristics search for improved solutions from incumbent
solutions (e.g., using local search)

▶ Cut Generator Heuristics will search for particular structure.

Martin Grötschel introduced us to the power of cuts in the lecture on
Basics of Polyhedral Theory.

In the lecture on Integer Programming, Tobias Achterberg will discuss
some of these heuristics.

However, as a general rule, using the guidelines on the previous slide is a
good start.
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The Equitable Coach Problem: base formulation

Consider the equitable coach time allocation problem where we wish to
determine the time each player can spend on the field. Let us define the
variables as follows:

xr,i [integer] is the amount of time [minutes] r plays in position i;

ϵ+r [continuous] is the number of minutes player r plays above the
average;

ϵ−r [continuous] is the number of minutes player r plays below the
average.

R is the set of players;

N is the set of positions;

T is the total number of game minutes.

Burt, Maher, Witzig – Modelling 21 / 50



The Equitable Coach Problem: base formulation

ECPt : min
∑
r

(
ϵ+r + ϵ−r

)
∑
r

xr,i = T ∀ i ∈ N, (1)∑
i

xr,i −
∑
i,r′

xr′,i

|R|
= ϵ+r − ϵ−r ∀ r ∈ R, (2)

....
xr,i ∈ Z≥0 ∀r ∈ R, i ∈ N, t ∈ T,

ϵ+r , ϵ
−
r ∈ R≥0.

This model has |R||N |+ 2|R| variables and |N |+ |R| constraints.
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The Equitable Coach Problem: noncompact

Consider the equitable coach time allocation problem where we wish to
determine the time each player can spend on the field. Let us define the
variables as follows:

xr,i,t [binary] is 1 if player r plays in position i in minute t;

ϵ+r [continuous] is the number of minutes player r plays above the
average;

ϵ−r [continuous] is the number of minutes player r plays below the
average.

R is the set of players;

N is the set of positions;

T is the total number of game minutes.
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The Equitable Coach Problem: noncompact

ncECPt : min
∑
r

(
ϵ+r + ϵ−r

)
∑
t,r

xr,i,t = Mi ∀ i ∈ N, (3)

∑
t,i

xr,i,t −
∑
t,i,r′

xr′,i,t

|R|
≤ ϵ+r ∀ r ∈ R, (4)

∑
t,i,r′

xr′,i,t

|R|
−

∑
t,i

xr,i,t ≤ ϵ−r ∀ r ∈ R, (5)

....
xr,i,t ∈ [0, 1] ∀r ∈ R, i ∈ N, t ∈ T,

ϵ+r , ϵ
−
r ∈ R≥0.

This model has |R||N ||T |+ 2|R| variables and |N |+ 2|R| constraints.
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ncECPt and ECPt Equivalence

Proposition

ECPt and ncECPt are equivalent models.

Proof.
Since xr,i ∈ Z≥0,

∑
t xr,i,t = xr,i. With this substitution, it is clear that

constraint (1) is equivalent to constraint (3). Using the substitution into
constraints (4) and (5) gives:∑

i

xr,i −
∑
i,r′

xr′,i

|R|
≤ ϵ+r ∀ r ∈ R, (3)

∑
i,r′

xr′,i

|R|
−
∑
i

xr,i ≤ ϵ−r ∀ r ∈ R. (4)

Since we minimise ϵ+r and ϵ−r , ϵ
+
r will take on the positive difference or 0, and

ϵ−r will take on the negative difference or 0. Thus constraint (2) is equivalent to

constraints (4) and (5). The feasible regions are therefore equivalent. The

objective functions are the same, so the optimal solutions will be equivalent.
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ncECPt and ECPt Equivalence

So, we have shown that ECPt and ncECPt are equivalent.

However, the original model ECPt has only |N ||R|+ 2|R| variables and
|N |+ |R| constraints.

This is significantly less variables and constraints than the ncECPt
model, which has |R||N ||T |+ 2|R| variables and |N |+ 2|R| constraints.

Is it significant enough to make a difference to solve times?
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The Equitable Coach Problem: aggregated model

We now consider the version of the ECP where we allocate players to
positions at particular times.

xr,i,t [binary] is 1 if player r plays in position class i in play period t;

ϵ+r [continuous] is the number of periods player r plays above the
average;

ϵ−r [continuous] is the number of periods player r plays below the
average.

R is the set of players;

N is the set of position classes;

T is the total number of game minutes.
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The Equitable Coach Problem: aggregated model

aggECPd : min
∑
r

(
ϵ+r + ϵ−r

)
∑
r

xr,i,t = Ri ∀ i ∈ N, t ∈ T, (5)∑
i

xr,i,t ≤ 1 ∀ r ∈ R, t ∈ T, (6)∑
t,i

xr,i,t −
∑
t,i,r′

xr′,i,t

|R|
= ϵ+r − ϵ−r ∀ r ∈ R, (7)

....
xr,i,t ∈ [0, 1] ∀r ∈ R, i ∈ N, t ∈ T,

ϵ+r , ϵ
−
r ∈ R≥0.
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xr′,i,t

|R|
= ϵ+r − ϵ−r ∀ r ∈ R, (7)

xr,i,t ∈ [0, 1] ∀r ∈ R, i ∈ N, t ∈ T,

ϵ+r , ϵ
−
r ∈ R≥0.
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The Equitable Coach Problem: disaggregated model

We now consider the version of the ECP where we allocate players to
positions at particular times.

xr,i,t [binary] is 1 if player r plays in position i in play period t;

ϵ+r [continuous] is the number of periods player r plays above the
average;

ϵ−r [continuous] is the number of periods player r plays below the
average.

R is the set of players;

N is the set of positions;

T is the total number of game minutes.
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The Equitable Coach Problem: disaggregated model
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The Equitable Coach Problem: disaggregated model

This model performs better because the algorithms detected a
Set-Packing constraint structure in the model. This can be seen by the
number of setppc constraints in the SCIP output statistics.

This structure is well studied, and there are many known cuts for this type
of structure. The topics of structure and cuts will be discussed in more
detail in the coming days.
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