An Introduction on SemiDefinite Program from the viewpoint of computation

Hayato Waki

Institute of Mathematics for Industry, Kyushu University

2015-10-08

Combinatorial Optimization at Work, Berlin, 2015

Contents and Purpose of this lecture

Subject SemiDefinite Program
Contents

Part I Formulations & Strong duality on SDP

Part II Algorithm on SDP – Primal-Dual Interior-Point Methods

Part III Comments of Computation on SDP

Survey M. Todd, "Semidefinite optimization", Acta Numerica 10 (2001), pp. 515–560.

Purpose

Introduction

- Better understanding for the next lecture (MOSEK on SDP) by Dr. Dahl
- Know the difficulty in solving SDP in Part III

Message : SDP is convex, but also nonlinear

Properties |: SDP is an extension of LP

- Duality Theorem
- Solvable by primal-dual interior-point methods with up to a given tolerance

Applications

Introduction

- Combinatorial problems, e.g., Max-Cut by Goemans and Williams
- Control theory, e.g., H_{∞} control problem
- Lift-and-projection approach for nonconvex quadratic problem
- Lasserre's hierarchy for polynomial optimization problems and complexity theory
- Embedding problems, e.g., sensor networks and molecular conformation
- Statistics and machine learning, etc...

LP Primal and Dual

$$\begin{array}{lll} \text{min}_x & c^Tx \\ \text{s.t.} & a_j^Tx = b_j \ (\forall j) \\ & x \in \mathbb{R}_+^n \end{array} \quad \begin{array}{ll} \text{max}_{(y,s)} & b^Ty \\ \text{s.t.} & s = c - \sum_{j=1}^m y_j a_j \\ & s \in \mathbb{R}_+^n \end{array}$$

- Minimize/Maximize linear function over the intersection the affine set and \mathbb{R}^n_+
- \mathbb{R}^n_{\perp} is closed convex cone in \mathbb{R}^n

Extension to SDP

Extension to the space of symmetric matrices Sⁿ

$$c \in \mathbb{R}^n \to C \in \mathbb{S}^n, a_j \in \mathbb{R}^n \to A_j \in \mathbb{S}^n$$

 Minimize/Maximize linear function over the intersection the affine set and the set of positive semidefinite matrices Institute of Mathematics for Industri LP | Primal and Dual

Introduction

0000000000000000

$$\begin{array}{lll} \text{min}_x & c^\mathsf{T} x \\ \text{s.t.} & a_j^\mathsf{T} x = b_j \ (\forall j) \\ & x \in \mathbb{R}_+^n \end{array} \mid \begin{array}{ll} \text{max}_{(y,s)} & b^\mathsf{T} y \\ \text{s.t.} & s = c - \sum_{j=1}^m y_j a_j \\ & s \in \mathbb{R}_+^n \end{array}$$

SDP | Primal and Dual

$$\begin{array}{lll} \text{min}_X & C \bullet X \\ \text{s.t.} & A_j \bullet X = b_j \ (\forall j) \\ & X \in \mathbb{S}^n_+ \end{array} \quad \begin{array}{ll} \text{max}_{(y,S)} & b^T y \\ \text{s.t.} & S = C - \sum_{j=1}^m y_j A_j \\ & S \in \mathbb{S}^n_+ \end{array}$$

- \mathbb{S}^{n} is the set of $\mathbf{n} \times \mathbf{n}$ symmetry matrices,
- \mathbb{S}^{n}_{\perp} is the set of $\mathbf{n} \times \mathbf{n}$ symmetry positive semidefinite matrices, and

$$\bullet \ A \bullet X := \sum_{k=1}^{n} \sum_{\ell=1}^{n} A_{k\ell} X_{k\ell}.$$

 $X \in \mathbb{S}^n$ is positive semidefinite if for all $z \in \mathbb{R}^n$, $z^TXz > 0$. Equivalently, all eigenvalues are nonnegative.

Remark

Introduction

• Eigendecomposition (Spectral decomposition); $\exists \mathbf{Q} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ (orthogonal) and $\exists \lambda_i > 0$ such that

$$\mathbf{X} = \mathbf{Q} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \mathbf{Q}^\mathsf{T}$$

- See textbooks of linear algebra for proof
- ullet $\Rightarrow \exists B \in \mathbb{R}^{n \times n}$ such that $\mathbf{X} = \mathbf{B} \mathbf{B}^\mathsf{T}$

2. Zero diagonal for positive semidefinite matrices

For $X \in \mathbb{S}^n_+$, each X_{ii} is nonnegative. In addition, if $X_{ii} = 0$ for some i, then $X_{ij} = X_{ii} = 0$ for all j = 1, ..., n.

Example of SDP

Primal SDP is formulated as follows:

$$\inf_{X} \left\{ \begin{aligned} & 10x_{11} + 8x_{12} = 42, & -8x_{22} = -8, \\ 2x_{11} + x_{22} : & -18x_{12} + 2x_{22} = 20, & \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \in \mathbb{S}_{+}^{2} \end{aligned} \right\}$$

(Fortunately) the primal solution is uniquely fixed:

$$\mathsf{X} = egin{pmatrix} \mathsf{5} & -\mathsf{1} \\ -\mathsf{1} & \mathsf{1} \end{pmatrix}$$
 is positive definite and obj. val. $= \mathsf{11}.$

Primal SDP is formulated as follows:

$$\inf_{X} \left\{ \begin{aligned} & 10x_{11} + 8x_{12} = 42, & -8x_{22} = -8, \\ 2x_{11} + x_{22} : & -18x_{12} + 2x_{22} = 20, & \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \in \mathbb{S}_{+}^{2} \end{aligned} \right\}$$

Dual SDP is formulated as follows:

$$\sup_{(y,S)} \left\{ 42 \mathsf{y}_1 - 8 \mathsf{y}_2 + 20 \mathsf{y}_3 : \begin{pmatrix} 2 - 10 \mathsf{y}_1 & -4 \mathsf{y}_1 + 9 \mathsf{y}_3 \\ -4 \mathsf{y}_1 + 9 \mathsf{y}_3 & 1 + 8 \mathsf{y}_2 - 2 \mathsf{y}_3 \end{pmatrix} \in \mathbb{S}^2_+ \right\}$$

A dual solution is (1/5, -37/360, 4/45) with the obj. val. = 11.

Application: Computation of lower bounds of nonconvex

QP

QΡ

$$\theta^* := \inf_{\mathbf{x}} \left\{ \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x} + 2 \mathbf{c}^\mathsf{T} \mathbf{x} : \mathbf{x}^\mathsf{T} \mathbf{Q}_j \mathbf{x} + 2 \mathbf{c}_j^\mathsf{T} \mathbf{x} + \mathbf{r}_j \leq 0 \ (j = 1, \dots, m) \right\}$$

SDP relaxation : Add the following constraint and replace

$$x_i x_i \rightarrow X_{ii}$$
:

$$\begin{pmatrix} 1 \\ \mathsf{x} \end{pmatrix} (1,\mathsf{x}) \in \mathbb{S}^{\mathsf{n}+1}_+ \to \mathsf{X} \in \mathbb{S}^{\mathsf{n}+1}_+$$

$$\therefore \eta^* := \inf_{\mathbf{x}} \left\{ \begin{pmatrix} \mathbf{0} & \mathbf{c}^\mathsf{T} \\ \mathbf{c} & \mathbf{Q} \end{pmatrix} \bullet \mathsf{X} : \begin{pmatrix} \mathsf{r}_j & \mathbf{c}_j^\mathsf{T} \\ \mathbf{c}_j & \mathbf{Q}_j \end{pmatrix} \bullet \mathsf{X} \leq \mathbf{0}, \mathsf{X}_{00} = 1, \mathsf{X} \in \mathbb{S}_+^{\mathsf{n}+1} \right\}$$

Remark

- Handle as SDP
- $\eta^* < \theta^*$

Application: Lasserre's SDP relaxation for Polynomial Optimization Problems

POP : $\mathbf{f}, \mathbf{g_i}$ are polynomials on $\mathbf{x} \in \mathbb{R}^n$

$$\theta^* := \inf_{x} \{f(x) : g_j(x) \ge 0 \ (j = 1, \dots, m)\}$$

Lasserre's SDP relaxation

- Generates a sequence of SDP problems : $\{\mathbb{P}_r\}_{r\geq 1}^{\infty}$
- Optimal value : $\theta_r \leq \theta_{r+1} \leq \theta^*$ ($\forall r$)
- Under assumptions, $\theta_r \to \theta^*$ $(r \to \infty)$
- r=2,3, $\theta_r \approx \theta^*$ in practice
- Strongly connected to sum of square polynomials

Compared with LP

Similar points

- Weak and Strong duality holds
- PDIPM also works in SDP

Different points

• SDP may have an irrational optimal solution

$$\text{E.g., } \sup_{y} \left\{ y : \begin{pmatrix} 2 & y \\ y & 1 \end{pmatrix} \in \mathbb{S}^2_+ \right\}$$

Optimal solution $y = \sqrt{2}$, not rational

E.g.,
$$\inf_{y} \left\{ y_1 : \begin{pmatrix} y_1 & 1 \\ 1 & y_2 \end{pmatrix} \in \mathbb{S}^2_+ \right\}$$

or Industry

Different points (cont'd)

Introduction

∃ 2 types of infeasibility

(LP)
$$\exists y; -A^T y \in \mathbb{R}^n_+, b^T y > 0 \iff$$
 Primal LP is infeasible (SDP) $\exists y; -A^T y \in \mathbb{S}^n_+, b^T y > 0 \implies$ Primal SDP is infeasible

Remark : Need to consider the following cases

- Finite optimal value, but no optimal solutions for Primal and/or Dual
- Difficult to detect the infeasibility completely

Weak duality for any $X \in \mathcal{F}_{P}$ and $(y, S) \in \mathcal{F}_{D}$.

$$C \bullet X \ge b^T y :: \theta_P^* \ge \theta_D^*$$

Slater condition $: \mathbb{S}_{++}^{n}$ is the set of positive definite matrices

- Primal satisfies *Slater condition* if $\exists X \in \mathcal{F}_P$ such that $X \in \mathbb{S}_{++}^n$
- Dual Slater condition if $\exists (y, S) \in \mathcal{F}_D$ such that $S \in \mathbb{S}^n_{++}$

Strong duality

- Primal satisfies Slater condition and dual is feasible. Then $\theta_{\rm p}^* = \theta_{\rm p}^*$ and dual has an optimal solution.
- Slater condition are required for both primal and dual for theoretical results on PDIPMs
- See survey on SDP for proof

3. Inner products on positive semidefinite matrices

For all $X, S \in \mathbb{S}^n_+$, $X \bullet S \geq 0$. Moreover, $X \bullet S = 0$ iff $XS = O_n$

Proof : $\exists B \text{ s. t. } X = BB^T \text{ and } \exists D \text{ s.t. } S = DD^T.$ Then

$$X \bullet S = Trace(BB^TDD^T) = Trace(D^TBB^TD)$$

= $Trace((B^TD)^T(B^TD)) \ge 0$

Moreover, $X \bullet S = 0 \Rightarrow B^TD = O_n \Rightarrow XS = O_n$ Proof of weak duality

In fact, for $X \in \mathcal{F}_P$ and $(y, S) \in \mathcal{F}_D$,

$$\mathbf{C} \bullet \mathbf{X} - \mathbf{b}^\mathsf{T} \mathbf{y} = \left(\mathbf{C} - \sum_{j=1}^m \mathbf{y}_j \mathbf{A}_j\right) \bullet \mathbf{X} = \mathbf{S} \bullet \mathbf{X} \geq \mathbf{0}$$

because both matrices are positive semidefinite.

Remark of 3 (cont'd)

Introduction

00000000000000000

- ullet $X\in\mathcal{F}_P$: optimal in primal and $(y,S)\in\mathcal{F}_D$: optimal in dual
- Then, $\theta_{P}^{*} \theta_{D}^{*} = X \bullet S = 0 \iff XS = O_{n}$
- $XS = O_n$ is used in PDIPM

SDP

Introduction

$$\begin{split} &\inf_{\mathsf{X}_k} & \sum_{k=1}^{\mathsf{N}} \mathsf{C}^k \bullet \mathsf{X}_k \\ &\text{s.t.} & \sum_{k=1}^{\mathsf{N}} \mathsf{A}_j^k \bullet \mathsf{X}_k = \mathsf{b}_j \; (j=1,\ldots,m) \\ & \mathsf{X}_k \in \mathbb{S}_+^{\mathsf{n}_k} \; (k=1,\ldots,\mathsf{N}) \end{split}$$

where $C^k, A_i^k \in \mathbb{S}^{n_k}$

Example

$$A \bullet X \leq d, X \in \mathbb{S}^n_+ \Rightarrow A \bullet X + s = d, X \in \mathbb{S}^n_+ \text{ and } s \in \mathbb{S}^1_+ (= \mathbb{R}_+)$$

Dual

$$\sup_{y,S_k} \left\{ b^\mathsf{T} y : S_k = A_0^k - \sum_{j=1}^m y_j A_j^k \in \mathbb{S}_+^{n_k} \text{ ($k=1,\dots,N$)}_{\text{out-planetic for Industry in North University}} \right\}$$

• SDP with \mathbb{R}^n_+ , Second order cone L_n and \mathbb{S}^n_+ can be handled as SDP and PDIPM works

$$L_n := \{(x_0,x) \in \mathbb{R}^n : \|x\|_2 \leq x_0\}$$

Free variable can be accepted

$$\begin{split} \textbf{A} \bullet \textbf{X} + \textbf{a}^{\mathsf{T}}\textbf{x} &= \textbf{d}, \textbf{X} \in \mathbb{S}^{n}_{+}, \textbf{x} \in \mathbb{R}^{n} \\ \Rightarrow & \textbf{A} \bullet \textbf{X} + \textbf{a}^{\mathsf{T}}\textbf{x}_{1} - \textbf{a}^{\mathsf{T}}\textbf{x}_{2} = \textbf{d}, \textbf{X} \in \mathbb{S}^{n}_{+} \text{ and } \textbf{x}_{1}, \textbf{x}_{2} \in \mathbb{R}^{n}_{+} \end{split}$$

Classification of Algorithms for SDP

Algorithms for SDP

- Ellipsoid method
- Interior-point methods
- Bundle method
- first-order methods, etc

Interior-point methods

- Path-following algorithm (= Logarithmic barrier function)
- Potential reduction algorithm
- Self-dual homogeneous embeddings

Path-following algorithm

- Primal
- Dual
- Primal-dual

Path-following method

Optimality conditions | : a pair of optimal solutions (X, y, S)

$$\left\{ \begin{array}{l} A_j \bullet X = b_j, X \in \mathbb{S}^n_+, \\ S = C - \sum_{j=1}^m y_j A_j, S \in \mathbb{S}^n_+, \\ XS = O_n (\iff C \bullet X - b^T y = 0) \end{array} \right.$$

Perturbed system : for $\mu > 0$,

$$\left\{ \begin{array}{l} A_j \bullet X = b_j, X \in \mathbb{S}^n_{++}, \\ S = C - \sum_{j=1}^m y_j A_j, S \in \mathbb{S}^n_{++}, \\ XS = \mu I_n \end{array} \right.$$

Remark

- for any $\mu > 0$, \exists unique solution $(X(\mu), y(\mu), S(\mu))$
- Central path $\{(X(\mu), y(\mu), S(\mu)) : \mu > 0\}$ is smooth curve and go to a pair of optimal solutions of primal and dual
- Follows the central path = Path-following method

Algorithm 1: General framework of path-following method

Input:
$$(\mathbf{X}^0, \mathbf{y}^0, \mathbf{S}^0) \in \mathcal{F}_P \times \mathcal{F}_D$$
 such that $\mathbf{X}^0, \mathbf{S}^0 \in \mathbb{S}^n_{++}$, $\epsilon > 0$, $0 < \theta < 1$ and some parameters $\mathbf{X} \leftarrow \mathbf{X}^0$, $\mathbf{v} \leftarrow \mathbf{v}^0$ and $\mathbf{S} \leftarrow \mathbf{S}^0$:

while
$$X \bullet S > \epsilon$$
 do

Compute direction $(\Delta X, \Delta y, \Delta S)$ from CPE (μ) ;

Compute step size $\alpha_{
m P}, \alpha_{
m D} > 0$;

$$X \leftarrow X + \alpha_P \Delta X$$
;

$$y \leftarrow y + \alpha_D \Delta y$$
; $S \leftarrow S + \alpha_D \Delta S$;

Compute $\mu \leftarrow \theta \mu$;

end

return (X, y, S);

Remark

- Infeasible initial guess is acceptable
- ullet # of iteration is polynomial in $oldsymbol{n}, oldsymbol{m}$ and $oldsymbol{\log(\epsilon)}$
- Computational cost = Computation of direction

Computation of direction |: Find $(\Delta X, \Delta y, \Delta S)$ such that

$$X + \Delta X \in \mathcal{F}_{P}, (y + \Delta y, S + \Delta S) \in \mathcal{F}_{D}$$
 and

$$\left\{ \begin{array}{l} A_{j} \bullet \Delta X = 0, \\ \Delta S - \sum_{j=1}^{m} \Delta y_{j} A_{j} = O_{n}, \\ XS + \Delta XS + X \Delta S = \mu I_{n} \end{array} \right.$$

Remark

Introduction

• ΔX may not be symmetry. So, change $XS = \mu I_n$ by

$$\frac{1}{2} \left(\mathsf{PXSP}^{-1} + \mathsf{P}^{-\mathsf{T}} \mathsf{SXP}^{\mathsf{T}} \right) = \mu \mathsf{I}_{\mathsf{n}},$$

where **P** is nonsingular

Possible choice of P

$$P = S^{1/2} (HRVW/KSH/M)$$

$$P = X^{-1/2} (dual HRVW/KSH/M)$$

$$P = W^{1/2}, W = X^{1/2}(X^{1/2}SX^{1/2})^{-1/2}X^{1/2} (NT) \circ \circ$$

= ... More than 20 types of directions by Tode third of Mathematics for Industry

Computational cost in PDIPM

1. Construction of linear system on Δy for HRVW/KSH/M direction.

$$\textbf{M} \Delta \textbf{y} = (\text{RHS}), \text{where } \textbf{M} = (\text{Trace}(\textbf{A}_i \textbf{X} \textbf{A}_j \textbf{S}^{-1}))_{1 \leq i,j \leq m}$$

- ullet Use of sparsity in A_i is necessary for computation of M
- Almost the same for other search directions
- 2. Solving the linear system
 - M is dense \Rightarrow takes $O(m^3)$ computation by Cholesky decomposition
 - M is often sparse in SDP relax for POP ⇒ sparse Cholesky decomposition works well

After them , $\Delta S = \sum_{i=1}^{m} \Delta y_i A_i$ and obtain ΔX .

Example $| \mathbf{Q} |$ is nonsingular and dense. Then \mathbb{P}_1 is equivalent to \mathbb{P}_2 :

$$\begin{split} \mathbb{P}_1 &: \inf_{X} \left\{ C \bullet X : \mathsf{E}_i \bullet X = 1 \; (i = 1, \ldots, n), X \in \mathbb{S}^n_+ \right\}, \\ \mathbb{P}_2 &: \inf_{Y} \left\{ (Q^T C Q) \bullet X : (Q^T \mathsf{E}_i Q) \bullet X = 1 \; (i = 1, \ldots, n), X \in \mathbb{S}^n_+ \right\} \end{split}$$

 $(E_i)_{pq} = \left\{ \begin{array}{ll} 1 & \text{if } p=q=i \\ 0 & \text{o.w.} \end{array} \right. \quad (p,q=1,\ldots,n)$

CPU time: Solved by SeDuMi 1.3 on the MacBook Air (1.7 GHz Intel Core i7)

Figure : CPU time on \mathbb{P}_1 and \mathbb{P}_2

Software

Information from http://plato.asu.edu/ftp/sparse_sdp.html

- SeDuMi, SDPT3 (MATLAB)
- SDPA (C++, MATLAB)
- CSDP (C, MATLAB)
- DSDP (C, MATLAB)
- MOSEK

Remark

- Based on PDIPM for almost all software
- Performance depends on SDP problems

Modelling languages on SDP : they can call the above software

- YALMIP
- CVX

Strong duality

- Require Slater conditions for Primal or Dual
- PDIPM requires Slater conditions for both Primal and Dual
- Sufficient conditions for optimal solutions
- If either Primal or Dual does not satisfy Slater conditions, ...

E.g., Lasserre's SDP relaxation

$$\mathbb{P}:\inf_{\mathsf{x}}\left\{\mathsf{x}:\mathsf{x}^2-1\geq 0,\mathsf{x}\geq 0\right\}$$

- Gererate SDP relaxation problems \mathbb{P}_1 , \mathbb{P}_2 , ...,
- ullet Slater condition fails in all SDP relaxation & all optimal values are ullet
- SeDuMi and SDPA returns wrong value 1
- All SDP relaxation problems are sensitive to numerical error in the computation of floating points

- G(V, E): a weighted undirected graph \Rightarrow Partition the vertex set V into L and R
- the minimum total weight of the cut subject to $|\mathbf{L}| = |\mathbf{R}|$
- QOP formulation

$$\inf_{\textbf{x} \in \mathbb{R}^n} \left\{ \frac{1}{2} \sum w_{ij} (1-\textbf{x}_i\textbf{x}_j) : \sum_{i=1}^n \textbf{x}_i = 0, \textbf{x}_i^2 = 1 \ (i=1,\ldots,n) \right\}$$

E.g., Graph Equipartition (cont'd)

Introduction

ullet SDP relaxation problem: constant matrices $oldsymbol{W}$, $oldsymbol{E}$ and $oldsymbol{E_i}$

$$\inf_{\boldsymbol{\mathsf{X}}\in\mathbb{S}^n_+}\{\boldsymbol{\mathsf{W}}\bullet\boldsymbol{\mathsf{X}}\mid\boldsymbol{\mathsf{E}}\bullet\boldsymbol{\mathsf{X}}=0,\boldsymbol{\mathsf{E}}_{\mathsf{i}}\bullet\boldsymbol{\mathsf{X}}=1\}$$

- Since $\mathbf{E} \in \mathbb{S}^n_+$, $\not\exists \mathbf{X} \in \mathbb{S}^n_{++}$ s.t. $\mathbf{E} \bullet \mathbf{X} = \mathbf{0} \Rightarrow$ Slater cond. fails
- Inaccurate value and/or many iterations

Table : SeDuMi 1.3 with ϵ =1.0e-8

SDPLIB	iter	cpusec	duality gap
gpp124-1	30	2.40	-4.63e-05
gpp250-1	29	10.19	-1.60e-04
gpp500-1	34	61.58	-1.90e-04
gpp124-4	40	3.02	-2.14e-08
gpp500-2	40	76.88	-8.26e-06

E.g., Graph Equipartition (cont'd)

Introduction

$$\inf_{\boldsymbol{\mathsf{X}}\in\mathbb{S}^n_+}\{\boldsymbol{\mathsf{W}}\bullet\boldsymbol{\mathsf{X}}\mid \boldsymbol{\mathsf{E}}\bullet\boldsymbol{\mathsf{X}}=0, \boldsymbol{\mathsf{E}}_{\mathsf{i}}\bullet\boldsymbol{\mathsf{X}}=1\}$$

Transformation of SDP by V:

$$V = \begin{pmatrix} 1 & & -1 \\ & 1 & & -1 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$

- $X \rightarrow V^{-T}XV^{-1} =: Z \text{ and } E \rightarrow VEV^{T}$
- Then, $X \in \mathbb{S}^n_+ \iff Z \in \mathbb{S}^n_+$ and $\mathsf{E} \bullet \mathsf{X} = 0 \iff \mathsf{Z}_{\mathsf{nn}} = 0$
- Eliminate **n**th row and column from transformed SDP \Rightarrow Slater cond. holds

E.g., Graph Equipartition (cont'd)

Table : Numerical Results by SeDuMi 1.3 with ϵ =1.0e-8.

	Slater fails			Slater holds		
Problems	iter	cpusec	d.gap	d.gap	cpusec	iter
gpp100	30	1.78	-2.46e-07	-4.97e-09	0.73	16
gpp124-1	30	2.34	-4.63e-05	-1.75e-08	1.12	19
gpp124-2	26	1.76	-1.41e-06	-1.11e-09	1.03	18
gpp124-3	30	2.56	-4.41e-07	-3.05e-09	1.01	17
gpp124-4	40	2.93	-2.14e-08	-9.52e-11	1.09	17
gpp250-1	29	8.81	-1.60e-04	-1.82e-08	4.71	21
gpp250-2	29	8.61	-1.49e-05	-9.74e-09	4.19	19
gpp250-3	34	9.48	-3.97e-07	-8.12e-10	4.08	18
gpp250-4	35	11.28	-8.80e-07	-7.43e-10	4.37	19
gpp500-1	34	53.45	-1.90e-04	-2.76e-08	31.49	24
gpp500-2	40	68.47	-8.26e-06	-2.20e-09	28.98	22
gpp500-3	28	54.81	-1.00e-05	-2.39e-09	31.35	21
gpp500-4	28	55.06	-1.02e-06	-8.96e-10	32.06	23

Comments : If does not satisfy Slater conditions, ...

PDIPM computes inaccurate values and/or spends many iter
 Full the of Medianalic

 Full the office of Medianalic

 Full

But. reduce the size of SDP

Comments

Introduction

- A simple (?) transformation generates an SDP in which Slater cond. holds
 - More elementary approach :

$$\text{(QOP)} \ : \ \inf_{\mathbf{x} \in \mathbb{R}^n} \left\{ \frac{1}{2} \sum w_{ij} (1 - \mathbf{x}_i \mathbf{x}_j) : \sum_{i=1}^n \mathbf{x}_i = 0, \mathbf{x}_i^2 = 1 \right\}$$

(QOP') : obtained by substituting
$$x_1 = -\sum_{i=2}^{n} x_i$$
 in (QOP)

$$\begin{array}{ccc}
(QOP) & \xrightarrow{\text{equiv.}} & (QOP') \\
\downarrow \text{SDP relax.} & & \text{SDP relax.} \downarrow \\
(SDP) & \xrightarrow{\text{equiv.}} & (SDP')
\end{array}$$

General case : separate x into basic and nonbasic variables & substitute basic variables ⇒ SDP relax

$$\inf_{\mathbf{x}} \left\{ \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x} + 2 \mathbf{c}^\mathsf{T} \mathbf{x} : \mathbf{a}_j^\mathsf{T} \mathbf{x} = \mathbf{b}_j \ (j = 1, \dots, m), \mathbf{x}_k \in \{0, 1\}^\mathsf{T} \right\}$$

Extension

Introduction

SDP

$$\inf_{X} \left\{ C \bullet X : A_{j} \bullet X = b_{j}, X \in \mathbb{S}^{n}_{+} \right\}$$

Slater condition fails in Primal $\iff \exists y \in \mathbb{R}^m \setminus \{0\}$ such that

$$b^\mathsf{T} y \geq 0, -\sum_i y_j A_j \in \mathbb{S}^n_+$$

Moreover, if $\exists y$ such that $b^T y > 0$, then Primal is infeasible

Proof of (\Leftarrow) : Suppose the contrary that Slater condition holds in Primal. $\exists \hat{\mathbf{X}}$ such that $\mathbf{A_j} \bullet \hat{\mathbf{X}} = \mathbf{b_j}$ and $\hat{\mathbf{X}} \in \mathbb{S}^n_{++}$.

$$0 \leq b^\mathsf{T} \mathsf{y} = \sum_{\mathsf{j}} (\mathsf{A}_{\mathsf{j}} \bullet \hat{\mathsf{X}}) \mathsf{y}_{\mathsf{j}} = \left(\sum_{\mathsf{j}} \mathsf{A}_{\mathsf{j}} \mathsf{y}_{\mathsf{j}} \right) \bullet \hat{\mathsf{X}} < 0 \text{(contradiction)}$$

Facial Reduction

Introduction

Idea | : Let $W := -\sum_i A_i y_i \in \mathbb{S}^n_+$ and $b^T y = 0$

• For any feasible solutions **X** in Primal,

$$W \bullet X = -\sum_{j} (A_{j} \bullet X) y_{j} = -b^{\mathsf{T}} y = 0.$$

Primal is equivalent to

$$\inf_{X} \left\{ C \bullet X : A_{j} \bullet X = b_{j}, X \in \mathbb{S}^{n}_{+} \cap \{W\}^{\perp} \right\}$$

where $\{W\}^{\perp} := \{X : X \bullet W = 0\}$

• The set $\mathbb{S}^{\mathbf{n}}_{\perp} \cap \{\mathbf{W}\}^{\perp}$ has nice structure

$$\mathbb{S}^{\mathsf{n}}_{+} \cap \{\mathsf{W}\}^{\perp} = \left\{\mathsf{X} \in \mathbb{S}^{\mathsf{n}} : \mathsf{X} = \mathsf{Q} \begin{pmatrix} \mathsf{M} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \end{pmatrix} \mathsf{Q}^{\mathsf{T}}, \mathsf{M} \in \mathbb{S}^{\mathsf{r}}_{\mathsf{positive of Motheroitics for Industry}}\right.$$

Idea (cont'd)

$$\mathbb{S}^n_+ \cap \{W\}^\perp = \left\{X \in \mathbb{S}^n : X = Q\begin{pmatrix} M & O \\ O & O \end{pmatrix}Q^T, M \in \mathbb{S}^r_+ \right\}$$

• Assume $Q = I_n$. Then Primal is equivalent to

$$\inf_{X} \left\{ \tilde{C} \bullet X : \tilde{A}_{j} \bullet X = b_{j}, X \in \mathbb{S}^{r}_{+} \right\}$$

where $\tilde{\mathbf{A}}_{\mathbf{j}}$ is $\mathbf{r} \times \mathbf{r}$ principal matrix

- ullet Compare this SDP with Primal \Rightarrow the size ${f n}
 ightarrow {f r}$
- May not satisfy Slater cond.
- $\bullet \Rightarrow$ Find **y** and **W** for the smaller Primal
- This procedure terminates in finitely many iterations
- This procedure is called Facial Reduction Algorithm and acceptable for dual

Histroy of FRA

Introduction

- Borwein-Wolkowicz in 1980 for general convex optimization
- Ramana, Ramana-Tunçel-Wolkowicz for SDP
- Pataki simplified FRA for the extension
- Apply FRA into SDP relax. for Graph Partition, Quadratic Assignment, Sensor Network by Wolkowicz group
- Apply FRA into SDP relax. for Polynomial Optimization in Waki-Muramatsu
- ..

Summary on Slater condition

- Hope that both Primal and dual satisfy Slater conditions
- Otherwise, may not have any optimal solutions, and wrong value may be obtained
- Obtain inaccurate solutions even if exists optimal solutions, but, one can reduce the size of SDP
- FRA is a general framework to remove the difficulty in Slater cond.

In modeling to SDP...

- Need to be careful in even dual to guarantee the existence of optimal solutions in dual
- A rigorous solution for FRA is necessary

Status of infeasibility

Introduction

Feasiblity and infeasiblity

$$\inf_{X} \big\{ C \bullet X : A_j \bullet X = b_j, X \in \mathbb{S}^n_+ \big\}$$

- Strongly feasible if SDP satisfies Slater cond.
- Weakly feasible if SDP is feasible but, does not satisfies Slater cond.
- Strongly infeasible if ∃ improving ray **d**, *i.e.*,

$$b^\mathsf{T} d > 0, -\sum_i d_j A_j \in \mathbb{S}^n_+.$$

• Weakly infeasible if SDP is infeasible, but ∄ improving ray

Remark

• Weak infeasibility does not occur in LP

SOCP and conic optimization also have the four status Knowledge of M

Example : Infeasible SDPs

$$\begin{split} \mathbb{P}_1 & \quad & \inf_{\mathsf{X}} \left\{ \mathsf{C} \bullet \mathsf{X} : \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \bullet \mathsf{X} = 0, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \bullet \mathsf{X} = 2, \mathsf{X} \in \mathbb{S}^2_+ \right\}, \\ \mathbb{P}_2 & \quad & \inf_{\mathsf{X}} \left\{ \mathsf{C} \bullet \mathsf{X} : \begin{pmatrix} & 1 \\ & 1 \end{pmatrix} \bullet \mathsf{X} = 0, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \bullet \mathsf{X} = 2, \mathsf{X} \in \mathbb{S}^2_+ \right\} \end{split}$$

Comments

Introduction

- ullet \mathbb{P}_1 is strongly infeasible because \exists certificate $\mathsf{y}=(-1,1)$
- \mathbb{P}_2 is weakly infeasible because $\not\exists$ certificate

• Weakly infeasible SDP; for all $\epsilon >$, $\exists X \in \mathbb{S}^n_{\perp}$

$$|A_i \bullet X - b_i| < \epsilon \ (j = 1, \dots, m)$$

 More elementary characterization of Weak infeasibility by recent work by Liu and Pataki

Example \mathbb{P}_2 | Perturb $\mathbf{b}_1 = \mathbf{0} \to \epsilon > \mathbf{0}$

$$\mathbb{P}_2:\inf_{X}\left\{C\bullet X:\begin{pmatrix}&1\\&1\end{pmatrix}\bullet X=\underline{\epsilon},\begin{pmatrix}&1\\1&\end{pmatrix}\bullet X=2,X\in\mathbb{S}^2_+\right\}$$

Then, perturbed \mathbb{P}_1 is feasible:

$$\mathbf{X} = \begin{pmatrix} 1/\epsilon & 1 \\ 1 & \epsilon \end{pmatrix}$$

Pathological?

Introduction

$$(\mathsf{POP}): \inf_{\mathsf{x},\mathsf{y}} \left\{ -\mathsf{x} - \mathsf{y} : \mathsf{x}\mathsf{y} \leq 1/2, \mathsf{x} \geq 1/2, \mathsf{y} \geq 1/2 \right\}$$

- Optimal value is -1.5
- Apply Lasserre's SDP hierarchy
- All SDP relaxation is weakly infeasible (in Waki 2012)
- SeDuMi and SDPA returns -1.5 for higher oder SDP relaxation
- Sufficient conditions of (POP) for SDP relaxation to be weakly infeasible (in Waki 2012)

Summary on infeasibility

Introduction

- Weak infeasibility may occur in SDP, SOCP and conic optimization, but not in LP
- Difficult to detect this type of infeasibility by software
- But, software returns good values for weak infeasible SDP

Summary

- Introduce a part of theoretical and practical aspects in SDP
- Skip applications of SDP, e.g., SDP relaxation for combinatorial problems
- Can read papers on SDP
- Not so easy to handle SDP because it is convex but nonlinear programming

Further Reading I

Introduction

M. Anjos and JB Lasserre,

Science, Springer US, 2012.

Handbook of Semidefinite, Conic and Polynomial Optimization: Theory, Algorithms. International Series in Operations Research & Management

E. de Klerk.

Aspects of semidefinite programming: interior point algorithms and selected applications.

Applied Optimization, Springer US, 2002.

B. Gärtner and J. Matoušek Approximation Algorithms and Semidefinite Programming. Springer, 2012.

Further Reading II

- L. Tunçel,
 Polyhedral and SDP Methods in Combinatorial Optimization.
 IFields Institute Monographs, American Mathematical Society,
 2012
- H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, Springer US, 2000.

