An Introduction on SemiDefinite Program from the viewpoint of computation

Hayato Waki

Institute of Mathematics for Industry, Kyushu University

2015-10-08

Combinatorial Optimization at Work, Berlin, 2015

Contents and Purpose of this lecture

Contents

- Part | Formulations & Strong duality on SDP
- Part II Algorithm on SDP Primal-Dual Interior-Point Methods

Part III Comments of Computation on SDP

Survey M. Todd, "Semidefinite optimization", Acta Numerica 10 (2001), pp. 515–560.

Purpose

- Better understanding for the next lecture (MOSEK on SDP) by Dr. Dahl
- Know the difficulty in solving SDP in Part III

Message : SDP is convex, but also nonlinear

Properties and applications of SDP

Properties : SDP is an extension of LP

- Duality Theorem
- Solvable by primal-dual interior-point methods with up to a given tolerance

Applications

- Combinatorial problems, e.g., Max-Cut by Goemans and Williams
- $\bullet\,$ Control theory, e.g., H_∞ control problem
- Lift-and-projection approach for nonconvex quadratic problem
- Lasserre's hierarchy for polynomial optimization problems and complexity theory
- Embedding problems, e.g., sensor networks and molecular conformation
- Statistics and machine learning, etc...

Introduction ○○●○○○○○○○○○○○○	PDIPMs 00000000	Comments	Summary O	References
From LP To SD	P			

LP Primal and Dual

$$\begin{array}{c|c} \min_{x} & c^{\mathsf{T}}x \\ \text{s.t.} & a_{j}^{\mathsf{T}}x = b_{j} \ (\forall j) \\ & x \in \mathbb{R}_{+}^{\mathsf{n}} \end{array} \middle| \begin{array}{c} \max_{(y,s)} & b^{\mathsf{T}}y \\ \text{s.t.} & s = c - \sum_{j=1}^{\mathsf{m}} y_{j}a_{j} \\ & s \in \mathbb{R}_{+}^{\mathsf{n}} \end{array} \right.$$

- Minimize/Maximize linear function over the intersection the affine set and \mathbb{R}^n_+
- $\bullet~\mathbb{R}^n_+$ is closed convex cone in \mathbb{R}^n

 $\mathsf{Extension} \ \mathsf{to} \ \mathsf{SDP}$

• Extension to the space of symmetric matrices $\mathbb{S}^{\mathbf{n}}$

$$c \in \mathbb{R}^n \rightarrow C \in \mathbb{S}^n, a_j \in \mathbb{R}^n \rightarrow A_j \in \mathbb{S}^n$$

 Minimize/Maximize linear function over the intersection the affine set and the set of positive semidefinite matrices Introduction PDIPMs Comments Summary References LP Primal and Dual $\begin{array}{c|c} \min_{x} & c^{\mathsf{T}}x \\ \text{s.t.} & a_{j}^{\mathsf{T}}x = b_{j} \ (\forall j) \\ & x \in \mathbb{R}_{+}^{\mathsf{n}} \end{array} \middle| \begin{array}{c} \max_{(y,s)} & b^{\mathsf{T}}y \\ \text{s.t.} & s = c - \sum_{j=1}^{\mathsf{m}} y_{j}a_{j} \\ & s \in \mathbb{R}_{+}^{\mathsf{n}} \end{array} \right.$ SDP Primal and Dual $\begin{array}{c|c} \min_X & C \bullet X \\ \text{s.t.} & A_j \bullet X = b_j \ (\forall j) \\ & X \in \mathbb{S}^n_+ \end{array} \middle| \begin{array}{c} \max_{(y,S)} & b^T y \\ \text{s.t.} & S = C - \sum_{j=1}^m y_j A_j \\ & S \in \mathbb{S}^n_+ \end{array}$

- \mathbb{S}^n is the set of $\mathbf{n} \times \mathbf{n}$ symmetry matrices,
- \mathbb{S}^n_+ is the set of $n\times n$ symmetry positive semidefinite matrices, and

•
$$\mathbf{A} \bullet \mathbf{X} := \sum_{k=1}^{n} \sum_{\ell=1}^{n} \mathbf{A}_{k\ell} \mathbf{X}_{k\ell}.$$

nstitute of Mathematics for Industry

Remark

• Eigendecomposition (Spectral decomposition); $\exists Q \in \mathbb{R}^{n \times n}$ (orthogonal) and $\exists \lambda_i \geq 0$ such that

$$\mathbf{X} = \mathbf{Q} \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & & \lambda_n \end{pmatrix} \mathbf{Q}^\mathsf{T}$$

- See textbooks of linear algebra for proof
- $\Rightarrow \exists B \in \mathbb{R}^{n \times n}$ such that $X = BB^{\mathsf{T}}$

2. Zero diagonal for positive semidefinite matrices

For $X \in \mathbb{S}^n_+$, each X_{ii} is nonnegative. In addition, if $X_{ii} = 0$ for some i, then $X_{ij} = X_{ji} = 0$ for all $j = 1, \ldots, n$.

or Industry

Primal SDP is formulated as follows:

$$\inf_{x} \begin{cases} 10x_{11} + 8x_{12} = 42, & -8x_{22} = -8, \\ 2x_{11} + x_{22} : & -18x_{12} + 2x_{22} = 20, & \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \in \mathbb{S}^2_+ \end{cases}$$

(Fortunately) the primal solution is uniquely fixed:

$$X = \begin{pmatrix} 5 & -1 \\ -1 & 1 \end{pmatrix}$$
 is positive definite and obj. val. = 11.

es

Introduction	PDIPMs	Comments	Summary	References
00000000000000000				

Primal SDP is formulated as follows:

$$\inf_{X} \left\{ \begin{aligned} &10x_{11}+8x_{12}=42, &-8x_{22}=-8, \\ &2x_{11}+x_{22}: & -18x_{12}+2x_{22}=20, & \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \in \mathbb{S}_{+}^{2} \\ \end{aligned} \right\}$$

Dual SDP is formulated as follows:

$$\sup_{(y,S)} \left\{ 42y_1 - 8y_2 + 20y_3 : \begin{pmatrix} 2 - 10y_1 & -4y_1 + 9y_3 \\ -4y_1 + 9y_3 & 1 + 8y_2 - 2y_3 \end{pmatrix} \in \mathbb{S}^2_+ \right\}$$

A dual solution is (1/5, -37/360, 4/45) with the obj. val. = 11.

 Introduction
 PDIPMs
 Comments
 Summary
 References

 Application :
 Computation of lower bounds of nonconvex
 QP
 References
 <t

$$\theta^* := \inf_{x} \left\{ x^\mathsf{T} \mathsf{Q} x + 2 \mathsf{c}^\mathsf{T} x : x^\mathsf{T} \mathsf{Q}_j x + 2 \mathsf{c}_j^\mathsf{T} x + \mathsf{r}_j \leq 0 \ (j = 1, \dots, m) \right\}$$

 $\begin{array}{c} \underline{\mathsf{SDP relaxation}} : \text{ Add the following constraint and replace} \\ \mathbf{x}_i \mathbf{x}_j \to \mathbf{X}_{ij} : \\ \begin{pmatrix} \mathbf{1} \\ \mathbf{x} \end{pmatrix} (\mathbf{1}, \mathbf{x}) \in \mathbb{S}^{n+1}_+ \to \mathbf{X} \in \mathbb{S}^{n+1}_+ \\ \\ \mathbf{x} \to \mathbf{x} \in \left(\begin{pmatrix} \mathbf{0} & \mathbf{c}^\mathsf{T} \\ \mathbf{x} \end{pmatrix} \right) \text{ and } \mathbf{x} \in \left(\mathbf{x}^\mathsf{T} \right) \text{ and } \mathbf{x} \in \mathbb{S}^{n+1}_+ \\ \end{array}$

$$\therefore \eta^* := \inf_{\mathsf{x}} \left\{ \begin{pmatrix} \mathsf{0} & \mathsf{c}^+ \\ \mathsf{c} & \mathsf{Q} \end{pmatrix} \bullet \mathsf{X} : \begin{pmatrix} \mathsf{r}_j & \mathsf{c}_j^- \\ \mathsf{c}_j & \mathsf{Q}_j \end{pmatrix} \bullet \mathsf{X} \le \mathsf{0}, \mathsf{X}_{00} = \mathsf{1}, \mathsf{X} \in \mathbb{S}^{\mathsf{n+1}}_+ \right\}$$

٦

Remark

• Handle as SDP

•
$$\eta^* \leq \theta^*$$

• binary $x \in \{0, 1\} \rightarrow x^2 - x = 0 \Rightarrow MIQP$ with binary with dimensional dimensional dimension of the second states of the second state

 Introduction
 PDIPMs
 Comments
 Summary
 References

 Application : Lasserre's SDP relaxation for Polynomial
 Optimization Problems
 Optimization Problems
 Optimization Problems

$$\fbox{POP}$$
 : $\textbf{f},\textbf{g}_{j}$ are polynomials on $\textbf{x} \in \mathbb{R}^{n}$

$$heta^* := \inf_{\mathsf{x}} \left\{ \mathsf{f}(\mathsf{x}) : \mathsf{g}_{\mathsf{j}}(\mathsf{x}) \geq 0 \; (\mathsf{j} = 1, \dots, \mathsf{m}) \right\}$$

Lasserre's SDP relaxation

- Generates a sequence of SDP problems : $\{\mathbb{P}_r\}_{r\geq 1}^{\infty}$
- Optimal value : $heta_{\mathsf{r}} \leq heta_{\mathsf{r}+1} \leq heta^*$ ($\forall \mathsf{r}$)
- Under assumptions, $heta_{\mathsf{r}} o heta^*$ $(\mathsf{r} o \infty)$
- ${\sf r}=2,3$, ${ heta}_{\sf r}pprox { heta}^*$ in practice
- Strongly connected to sum of square polynomials

Introduction	PDIPMs 00000000	Comments	Summary O	References
Compared w	ith LP			

Similar points

- Weak and Strong duality holds
- PDIPM also works in SDP

Different points

• SDP may have an irrational optimal solution

E.g.,
$$\sup_{y} \left\{ y : \begin{pmatrix} 2 & y \\ y & 1 \end{pmatrix} \in \mathbb{S}^{2}_{+} \right\}$$

Optimal solution $\mathbf{y} = \sqrt{2}$, not rational

• Finite optimal value, but $\not\exists$ solutions

$$\mathsf{E}.\mathsf{g}., \ \inf_{y} \left\{ \mathsf{y}_1 : \begin{pmatrix} \mathsf{y}_1 & 1 \\ 1 & \mathsf{y}_2 \end{pmatrix} \in \mathbb{S}^2_+ \right\}$$

or Industr

Introduction	PDIPMs	Comments	Summary	References
000000000000000000000000000000000000000				

Different points (cont'd)

 \exists 2 types of infeasibility

 $\begin{array}{ll} (\mathsf{LP}) \ \exists y; -\mathbf{A}^{\mathsf{T}} y \in \mathbb{R}^{\mathsf{n}}_{+}, \mathbf{b}^{\mathsf{T}} y > \mathbf{0} & \Longleftrightarrow & \mathsf{Primal \ LP \ is \ infeasible} \\ (\mathsf{SDP}) \ \exists y; -\mathbf{A}^{\mathsf{T}} y \in \mathbb{S}^{\mathsf{n}}_{+}, \mathbf{b}^{\mathsf{T}} y > \mathbf{0} & \Rightarrow & \mathsf{Primal \ SDP \ is \ infeasible} \end{array}$

Remark : Need to consider the following cases

- Finite optimal value, but no optimal solutions for Primal and/or Dual
- Difficult to detect the infeasibility completely

Introduction ○○○○○○○○○●○○○○	PDIPMs 00000000	Comments	Summary O	References
Duality on SDP				

Weak duality for any
$$\mathsf{X}\in\mathcal{F}_\mathsf{P}$$
 and $(\mathsf{y},\mathsf{S})\in\mathcal{F}_\mathsf{D}$,

$$\mathsf{C} ullet \mathsf{X} \ge \mathsf{b}^{\mathsf{T}} \mathsf{y} \ \therefore \theta_{\mathsf{P}}^* \ge \theta_{\mathsf{D}}^*$$

Slater conditon : \mathbb{S}_{++}^{n} is the set of positive definite matrices

- \bullet Primal satisfies Slater condition if $\exists X\in \mathcal{F}_{P}$ such that $X\in \mathbb{S}_{++}^{n}$
- Dual Slater condition if $\exists (y, S) \in \mathcal{F}_D$ such that $S \in \mathbb{S}^n_{++}$

Strong duality

- Primal satisfies Slater condition and dual is feasible. Then $\theta_{\rm P}^* = \theta_{\rm D}^*$ and dual has an optimal solution.
- Slater condition are required for both primal and dual for theoretical results on PDIPMs
- See survey on SDP for proof

3. Inner products on positive semidefinite matrices

For all $\mathbf{X}, \mathbf{S} \in \mathbb{S}^n_{\perp}$, $\mathbf{X} \bullet \mathbf{S} > \mathbf{0}$. Moreover, $\mathbf{X} \bullet \mathbf{S} = \mathbf{0}$ iff $\mathbf{X}\mathbf{S} = \mathbf{0}_n$

Proof :
$$\exists B \text{ s. t. } X = BB^T$$
 and $\exists D \text{ s.t. } S = DD^T$. Then

$$\begin{aligned} \mathbf{X} \bullet \mathbf{S} &= \operatorname{Trace}(\mathbf{B}\mathbf{B}^\mathsf{T}\mathbf{D}\mathbf{D}^\mathsf{T}) = \operatorname{Trace}(\mathbf{D}^\mathsf{T}\mathbf{B}\mathbf{B}^\mathsf{T}\mathbf{D}) \\ &= \operatorname{Trace}((\mathbf{B}^\mathsf{T}\mathbf{D})^\mathsf{T}(\mathbf{B}^\mathsf{T}\mathbf{D})) \geq \mathbf{0} \end{aligned}$$

Moreover, $X \bullet S = 0 \Rightarrow B^T D = O_n \Rightarrow XS = O_n$ Proof of weak duality In fact, for $X \in \mathcal{F}_P$ and $(y, S) \in \mathcal{F}_D$,

$$\mathbf{C} \bullet \mathbf{X} - \mathbf{b}^\mathsf{T} \mathbf{y} = \left(\mathbf{C} - \sum_{j=1}^m \mathbf{y}_j \mathbf{A}_j\right) \bullet \mathbf{X} = \mathbf{S} \bullet \mathbf{X} \geq \mathbf{0}$$

because both matrices are positive semidefinite.

Introduction	PDIPMs	Comments	Summary	References
000000000000000000000000000000000000000				

Remark of 3 (cont'd)

• $\textbf{X} \in \mathcal{F}_{P}$: optimal in primal and $(\textbf{y},\textbf{S}) \in \mathcal{F}_{D}$: optimal in dual

• Then,
$$\theta_{\mathsf{P}}^* - \theta_{\mathsf{D}}^* = \mathsf{X} \bullet \mathsf{S} = \mathbf{0} \iff \mathsf{X}\mathsf{S} = \mathsf{O}_{\mathsf{n}}$$

•
$$XS = O_n$$
 is used in PDIPM

SDP with multiple positive semidefinite cones

SDP

$$\label{eq:relation} \begin{split} & \inf_{X_k} \quad \sum_{\substack{k=1 \\ N}}^N C^k \bullet X_k \\ & \text{s.t.} \quad \sum_{\substack{k=1 \\ X_k}}^N A_j^k \bullet X_k = b_j \ (j=1,\ldots,m) \\ & X_k \in \mathbb{S}_+^{n_k} \ (k=1,\ldots,N) \end{split}$$

where
$$\mathbf{C}^{\mathbf{k}}, \mathbf{A}^{\mathbf{k}}_{\mathbf{j}} \in \mathbb{S}^{n_{\mathbf{k}}}$$
Example

$$\sup_{\boldsymbol{y},\boldsymbol{S}_k} \left\{ \boldsymbol{b}^{\mathsf{T}} \boldsymbol{y} : \boldsymbol{S}_k = \boldsymbol{A}_0^k - \sum_{j=1}^m \boldsymbol{y}_j \boldsymbol{A}_j^k \in \mathbb{S}_+^{n_k} \ (k = 1, \dots, N)_{\text{subfine of Nothermotics for Industry}} \right\}$$

Introduction	PDIPMs	Comments	Summary	References
0000000000000000				

Remark

 \bullet SDP with $\mathbb{R}^n_+,$ Second order cone L_n and \mathbb{S}^n_+ can be handled as SDP and PDIPM works

$$\mathsf{L}_{\mathsf{n}}:=\{(\mathsf{x}_0,\mathsf{x})\in\mathbb{R}^{\mathsf{n}}:\|\mathsf{x}\|_2\leq\mathsf{x}_0\}$$

• Free variable can be accepted

$$\begin{aligned} A \bullet X + a^{\mathsf{T}} x &= d, X \in \mathbb{S}^{\mathsf{n}}_{+}, x \in \mathbb{R}^{\mathsf{n}} \\ \Rightarrow & A \bullet X + a^{\mathsf{T}} x_{1} - a^{\mathsf{T}} x_{2} = d, X \in \mathbb{S}^{\mathsf{n}}_{+} \text{ and } x_{1}, x_{2} \in \mathbb{R}^{\mathsf{n}}_{+} \end{aligned}$$

Introduct	tion 00000000	0000	PDIPN ●0000	ls 0000	Comm	ents 000000000000	Summary O	References
~	1.01		C A 1		~	0 D D		

Classification of Algorithms for SDP

Algorithms for SDP

- Ellipsoid method
- Interior-point methods
- Bundle method
- first-order methods, etc

Interior-point methods

- Path-following algorithm (= Logarithmic barrier function)
- Potential reduction algorithm
- Self-dual homogeneous embeddings

Path-following algorithm

- Primal
- Dual
- Primal-dual

 Introduction
 PDIPMs
 Comments
 Summary
 References

 Path-following method
 Image: Summary of the second sec

Optimality conditions : a pair of optimal solutions (X, y, S) satisfies

$$\begin{split} & A_j \bullet X = b_j, X \in \mathbb{S}^n_+, \\ & S = C - \sum_{j=1}^m y_j A_j, S \in \mathbb{S}^n_+, \\ & XS = O_n(\Longleftrightarrow C \bullet X - b^T y = 0) \end{split}$$

Perturbed system | : for $\mu > 0$,

$$\left\{ \begin{array}{l} \textbf{A}_{j} \bullet \textbf{X} = \textbf{b}_{j}, \textbf{X} \in \mathbb{S}_{++}^{n}, \\ \textbf{S} = \textbf{C} - \sum_{j=1}^{m} \textbf{y}_{j}\textbf{A}_{j}, \textbf{S} \in \mathbb{S}_{++}^{n}, \\ \textbf{XS} = \mu \textbf{I}_{n} \end{array} \right.$$

Remark

• for any $\mu > 0$, \exists unique solution (X(μ), y(μ), S(μ))

- Central path $\{(X(\mu), y(\mu), S(\mu)) : \mu > 0\}$ is smooth curve and go to a pair of optimal solutions of primal and dual
- Follows the central path = Path-following method

Kyushu University

Remark

- Infeasible initial guess is acceptable
- # of iteration is polynomial in \mathbf{n}, \mathbf{m} and $\log(\epsilon)$
- Computational cost = Computation of direction

 $\label{eq:linear_line$

Remark

• ΔX may not be symmetry. So, change $XS = \mu I_n$ by

$$\frac{1}{2} \left(\mathsf{PXSP}^{-1} + \mathsf{P}^{-\mathsf{T}}\mathsf{SXP}^{\mathsf{T}} \right) = \mu \mathsf{I}_{\mathsf{n}},$$

where ${\boldsymbol{\mathsf{P}}}$ is nonsingular

Possible choice of P

$$\mathbf{P} = \mathbf{S}^{1/2} (\mathrm{HRVW/KSH/M})$$

 $\mathbf{P} = \mathbf{X}^{-1/2} (\text{dual HRVW/KSH/M})$

 $P = W^{1/2}, W = X^{1/2} (X^{1/2} S X^{1/2})^{-1/2} X^{1/2} (NT) \circ$

P = ... More than 20 types of directions by Todentium of Mathematics for Industry

Computational cost in PDIPM

1. Construction of linear system on $\boldsymbol{\Delta y}$ for HRVW/KSH/M direction,

$$M\Delta y = (RHS)$$
, where $M = (Trace(A_iXA_jS^{-1}))_{1 \le i,j \le m}$

- $\bullet\,$ Use of sparsity in A_j is necessary for computation of M
- Almost the same for other search directions

2. Solving the linear system

- M is dense \Rightarrow takes $O(m^3)$ computation by Cholesky decomposition
- M is often sparse in SDP relax for POP ⇒ sparse Cholesky decomposition works well

After them , $\Delta S = \sum_{j=1}^m \Delta y_j A_j$ and obtain $\Delta X.$

Institute of Mathematics for Industry Kyuhu University

Introduction	PDIPMs ○○○○○●○○	Comments	Summary O	References
Sparsity in SDP				

$$\label{eq:product} \begin{array}{ll} \hline \mathsf{Example} & \mathsf{Q} \text{ is nonsingular and dense. Then } \mathbb{P}_1 \text{ is equivalent to } \mathbb{P}_2 \text{:} \\ \mathbb{P}_1 & : & \inf_X \left\{\mathsf{C} \bullet \mathsf{X} : \mathsf{E}_i \bullet \mathsf{X} = 1 \ (i = 1, \dots, n), \mathsf{X} \in \mathbb{S}^n_+ \right\}, \\ \mathbb{P}_2 & : & \inf_X \left\{ (\mathsf{Q}^\mathsf{T}\mathsf{C}\mathsf{Q}) \bullet \mathsf{X} : (\mathsf{Q}^\mathsf{T}\mathsf{E}_i\mathsf{Q}) \bullet \mathsf{X} = 1 \ (i = 1, \dots, n), \mathsf{X} \in \mathbb{S}^n_+ \right\} \end{array}$$

where

$$(\mathsf{E}_i)_{pq} = \left\{ \begin{array}{ll} 1 & \text{if } p = q = i \\ 0 & \text{o.w.} \end{array} \right. \quad (p,q=1,\ldots,n)$$

 Introduction
 PDIPMs
 Comments
 Summary
 References

 CPU time
 :
 Solved by SeDuMi 1.3 on the MacBook Air (1.7 GHz
 Intel Core i7)

Figure : CPU time on \mathbb{P}_1 and \mathbb{P}_2

Introduction	PDIPMs ○○○○○○●	Comments	Summary O	References
Software				

Information from http://plato.asu.edu/ftp/sparse_sdp.html

- SeDuMi, SDPT3 (MATLAB)
- SDPA (C++, MATLAB)
- CSDP (C, MATLAB)
- DSDP (C, MATLAB)
- MOSEK

Remark

- Based on PDIPM for almost all software
- Performance depends on SDP problems

Modelling languages on SDP \mid : they can call the above software

- YALMIP
- CVX

Strong duality

- Require Slater conditions for Primal or Dual
- PDIPM requires Slater conditions for both Primal and Dual
- Sufficient conditions for optimal solutions
- If either Primal or Dual does not satisfy Slater conditions, ...

E.g., Lasserre's SDP relaxation

$$\mathbb{P}: \inf_{x} \left\{ x: x^2-1 \geq 0, x \geq 0 \right\}$$

- Gererate SDP relaxation problems \mathbb{P}_1 , \mathbb{P}_2 , ...,
- \bullet Slater condition fails in all SDP relaxation & all optimal values are ${\bf 0}$
- $\bullet\,$ SeDuMi and SDPA returns wrong value 1
- All SDP relaxation problems are sensitive to numerical errors in the computation of floating points

Introduction	PDIPMs	Comments	Summary	References
		000000000000000000000000000000000000000		

E.g., Graph Equipartition

- G(V, E): a weighted undirected graph \Rightarrow Partition the vertex set V into L and R
- \bullet the minimum total weight of the cut subject to $|\mathsf{L}| = |\mathsf{R}|$
- QOP formulation

$$\inf_{\boldsymbol{x}\in\mathbb{R}^n}\left\{\frac{1}{2}\sum w_{ij}(1-x_ix_j):\sum_{i=1}^nx_i=0, {x_i}^2=1\ (i=1,\ldots,n)\right\}$$

 \bullet SDP relaxation problem: constant matrices $\boldsymbol{W},~\boldsymbol{E}$ and \boldsymbol{E}_i

 $\inf_{\mathsf{X}\in\mathbb{S}^n_+}\{\mathsf{W}\bullet\mathsf{X}\mid\mathsf{E}\bullet\mathsf{X}=0,\mathsf{E}_{\mathsf{i}}\bullet\mathsf{X}=1\}$

- Since $\mathsf{E}\in\mathbb{S}^n_+,\ \not\exists \mathsf{X}\in\mathbb{S}^n_{++}$ s.t. $\mathsf{E}\bullet\mathsf{X}=0\Rightarrow$ Slater cond. fails
- Inaccurate value and/or many iterations

Table : SeDuMi 1.3 with ϵ =1.0e-8

SDPLIB	iter	cpusec	duality gap
gpp124-1	30	2.40	-4.63e-05
gpp250-1	29	10.19	-1.60e-04
gpp500-1	34	61.58	-1.90e-04
gpp124-4	40	3.02	-2.14e-08
gpp500-2	40	76.88	-8.26e-06

•
$$\mathbf{X} \rightarrow \mathbf{V}^{-\mathsf{T}} \mathbf{X} \mathbf{V}^{-1} =: \mathbf{Z}$$
 and $\mathbf{E} \rightarrow \mathbf{V} \mathbf{E} \mathbf{V}^{\mathsf{T}}$

• Then,
$$X \in \mathbb{S}^n_+ \iff Z \in \mathbb{S}^n_+$$
 and $E \bullet X = 0 \iff Z_{nn} = 0$

 Eliminate nth row and column from transformed SDP ⇒ Slater cond. holds

Table : Numerical Results by SeDuMi 1.3 with ϵ =1.0e-8.

	Slater fails			Slater holds		
Problems	iter	cpusec	d.gap	d.gap	cpusec	iter
gpp100	30	1.78	-2.46e-07	-4.97e-09	0.73	16
gpp124-1	30	2.34	-4.63e-05	-1.75e-08	1.12	19
gpp124-2	26	1.76	-1.41e-06	-1.11e-09	1.03	18
gpp124-3	30	2.56	-4.41e-07	-3.05e-09	1.01	17
gpp124-4	40	2.93	-2.14e-08	-9.52e-11	1.09	17
gpp250-1	29	8.81	-1.60e-04	-1.82e-08	4.71	21
gpp250-2	29	8.61	-1.49e-05	-9.74e-09	4.19	19
gpp250-3	34	9.48	-3.97e-07	-8.12e-10	4.08	18
gpp250-4	35	11.28	-8.80e-07	-7.43e-10	4.37	19
gpp500-1	34	53.45	-1.90e-04	-2.76e-08	31.49	24
gpp500-2	40	68.47	-8.26e-06	-2.20e-09	28.98	22
gpp500-3	28	54.81	-1.00e-05	-2.39e-09	31.35	21
gpp500-4	28	55.06	-1.02e-06	-8.96e-10	32.06	23

Comments : If does not satisfy Slater conditions, ...

- PDIPM computes inaccurate values and/or spends many iter
- But, reduce the size of SDP

nstitute of Mathematics for Industry syushu University

 \downarrow SDP relax.

(SDP)

• A simple (?) transformation generates an SDP in which Slater cond. holds

References

• More elementary approach :

• General case : separate x into basic and nonbasic variables & substitute basic variables
$$\Rightarrow$$
 SDP relax

$$\inf_{x} \left\{ x^{\mathsf{T}}Qx + 2c^{\mathsf{T}}x : a_{j}^{\mathsf{T}}x = b_{j} \ (j = 1, \dots, m), x_{k} \in \left\{ 0, 1 \right\} \right\}$$

equiv.

SDP relax. ↓

(SDP')

Introduction	PDIPMs 00000000	Comments ○○○○○●○○○○○○○○	Summary O	References
Extension				

$$\inf_{X} \left\{ C \bullet X : A_{j} \bullet X = b_{j}, X \in \mathbb{S}_{+}^{n} \right\}$$

SDP

Slater condition fails in Primal $\iff \exists y \in \mathbb{R}^m \setminus \{0\}$ such that

$$\boldsymbol{b}^{\mathsf{T}}\boldsymbol{y}\geq \boldsymbol{0}, -\sum_{j}\boldsymbol{y}_{j}\boldsymbol{A}_{j}\in\mathbb{S}_{+}^{n}$$

Moreover, if $\exists y$ such that $b^{\mathsf{T}}y > 0$, then Primal is infeasible

 $\begin{array}{c} \mbox{Proof of }(\Leftarrow) \end{tabular}: \mbox{ Suppose the contrary that Slater condition holds} \\ \mbox{in Primal. } \exists \hat{X} \mbox{ such that } A_j \bullet \hat{X} = b_j \mbox{ and } \hat{X} \in \mathbb{S}^n_{++}. \end{array}$

$$0 \leq \mathbf{b}^{\mathsf{T}} \mathbf{y} = \sum_{j} (\mathsf{A}_{j} \bullet \hat{\mathsf{X}}) \mathbf{y}_{j} = \left(\sum_{j} \mathsf{A}_{j} \mathbf{y}_{j} \right) \bullet \hat{\mathsf{X}} < 0 \text{(contradiction)}_{\text{Note Metric of Mathematics for Industry}}$$

 Introduction
 PDIPMs
 Comments
 Summary
 References

 Facial Reduction

 References

 References

 References

Idea : Let
$$W:=-\sum_j A_j y_j \in \mathbb{S}^n_+$$
 and $b^\mathsf{T} y=0$

• For any feasible solutions X in Primal,

$$\mathsf{W} \bullet \mathsf{X} = -\sum_{j} (\mathsf{A}_{j} \bullet \mathsf{X}) \mathsf{y}_{j} = -\mathsf{b}^{\mathsf{T}} \mathsf{y} = \mathbf{0}.$$

• Primal is equivalent to

$$\inf_{X} \left\{ C \bullet X : A_{j} \bullet X = b_{j}, X \in \mathbb{S}_{+}^{n} \cap \{W\}^{\perp} \right\}$$

where $\{W\}^{\perp} := \{X : X \bullet W = 0\}$

 $\bullet\,$ The set $\mathbb{S}^n_+\cap\{W\}^\perp$ has nice structure

$$\mathbb{S}^n_+ \cap \{W\}^{\perp} = \left\{ X \in \mathbb{S}^n : X = Q \begin{pmatrix} \mathsf{M} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \end{pmatrix} Q^\mathsf{T}, \mathsf{M} \in \mathbb{S}^\mathsf{r}_{\mathsf{P}} \land \mathsf{C}_\mathsf{Hermitic for industry to the interview of the set of the set$$

$$\mathbb{S}^n_+ \cap \{W\}^\perp = \left\{ X \in \mathbb{S}^n : X = Q \begin{pmatrix} \mathsf{M} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \end{pmatrix} Q^\mathsf{T}, \mathsf{M} \in \mathbb{S}^r_+ \right\}$$

• Assume $\mathbf{Q} = \mathbf{I}_{\mathbf{n}}$. Then Primal is equivalent to

$$\inf_{X}\left\{\tilde{C} \bullet X: \tilde{A}_{j} \bullet X = b_{j}, X \in \mathbb{S}_{+}^{r}\right\}$$

where \tilde{A}_j is $r \times r$ principal matrix

- Compare this SDP with Primal \Rightarrow the size $\mathbf{n} \rightarrow \mathbf{r}$
- May not satisfy Slater cond.
- \Rightarrow Find y and W for the smaller Primal
- This procedure terminates in finitely many iterations
- This procedure is called Facial Reduction Algorithm and acceptable for dual

Histroy of FRA

- Borwein-Wolkowicz in 1980 for general convex optimization
- Ramana, Ramana-Tunçel-Wolkowicz for SDP
- Pataki simplified FRA for the extension
- Apply FRA into SDP relax. for Graph Partition, Quadratic Assignment, Sensor Network by Wolkowicz group
- Apply FRA into SDP relax. for Polynomial Optimization in Waki-Muramatsu

• ...

Introduction	PDIPMs	Comments	Summary	References
		0000000000000000		

Summary on Slater condition

- Hope that both Primal and dual satisfy Slater conditions
- Otherwise, may not have any optimal solutions, and wrong value may be obtained
- Obtain inaccurate solutions even if exists optimal solutions, but, one can reduce the size of SDP
- FRA is a general framework to remove the difficulty in Slater cond.

In modeling to SDP...

- Need to be careful in even dual to guarantee the existence of optimal solutions in dual
- A rigorous solution for FRA is necessary

Introduction	PDIPMs	Comments ○○○○○○○○○●○○○○	Summary O	References
Status of infe	asibility			

Feasiblity and infeasiblity

$$\inf_{X} \left\{ C \bullet X : A_{j} \bullet X = b_{j}, X \in \mathbb{S}_{+}^{n} \right\}$$

- Strongly feasible if SDP satisfies Slater cond.
- Weakly feasible if SDP is feasible but, does not satisfies Slater cond.
- Strongly infeasible if ∃ improving ray **d**, *i.e.*,

$$b^{\mathsf{T}}d>0,-\sum_{j}d_{j}\mathsf{A}_{j}\in\mathbb{S}_{+}^{n}.$$

- Weakly infeasible if SDP is infeasible, but ∄ improving ray Remark
 - Weak infeasibility does not occur in LP
 - SOCP and conic optimization also have the four status

Introduction	PDIPMs	Comments	Summary	References
		000000000000000000000000000000000000000		

Example : Infeasible SDPs

$$\begin{split} \mathbb{P}_1 & \quad \inf_X \left\{ \mathsf{C} \bullet \mathsf{X} : \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \bullet \mathsf{X} = \mathsf{0}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \bullet \mathsf{X} = \mathsf{2}, \mathsf{X} \in \mathbb{S}^2_+ \right\}, \\ \mathbb{P}_2 & \quad \inf_X \left\{ \mathsf{C} \bullet \mathsf{X} : \begin{pmatrix} & \\ & 1 \end{pmatrix} \bullet \mathsf{X} = \mathsf{0}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \bullet \mathsf{X} = \mathsf{2}, \mathsf{X} \in \mathbb{S}^2_+ \right\} \end{split}$$

Comments

- \mathbb{P}_1 is strongly infeasible because \exists certificate $\mathsf{y}=(-1,1)$
- $\bullet \ \mathbb{P}_2$ is weakly infeasible because $\not\exists$ certificate

Characterization of weak infeasibility

• Weakly infeasible SDP; for all $\epsilon >$, $\exists X \in \mathbb{S}^n_+$

$$|\mathsf{A}_{\mathsf{j}} ullet \mathsf{X} - \mathsf{b}_{\mathsf{j}}| < \epsilon \; (\mathsf{j} = 1, \dots, \mathsf{m})$$

 More elementary characterization of Weak infeasibility by recent work by Liu and Pataki

Example
$$\mathbb{P}_2 \mid$$
 Perturb $\mathbf{b}_1 = \mathbf{0}
ightarrow \epsilon > \mathbf{0}$

$$\mathbb{P}_2: \inf_{\mathsf{X}} \left\{ \mathsf{C} \bullet \mathsf{X}: \begin{pmatrix} & \\ & 1 \end{pmatrix} \bullet \mathsf{X} = \boldsymbol{\epsilon}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \bullet \mathsf{X} = 2, \mathsf{X} \in \mathbb{S}^2_+ \right\}$$

Then, perturbed \mathbb{P}_1 is feasible:

$$\mathsf{X} = \begin{pmatrix} 1/\epsilon & 1 \\ 1 & \epsilon \end{pmatrix}$$

Introduction	PDIPMs 00000000	Comments ○○○○○○○○○○○●○	Summary O	References

Pathological?

$$(\mathsf{POP}): \inf_{\mathsf{x},\mathsf{y}} \left\{ -\mathsf{x}-\mathsf{y}: \mathsf{x}\mathsf{y} \leq 1/2, \mathsf{x} \geq 1/2, \mathsf{y} \geq 1/2 \right\}$$

- Optimal value is -1.5
- Apply Lasserre's SDP hierarchy
- All SDP relaxation is weakly infeasible (in Waki 2012)
- SeDuMi and SDPA returns -1.5 for higher oder SDP relaxation
- Sufficient conditions of (POP) for SDP relaxation to be weakly infeasible (in Waki 2012)

Summary on infeasibility

- Weak infeasibility may occur in SDP, SOCP and conic optimization, but not in LP
- Difficult to detect this type of infeasibility by software
- But, software returns good values for weak infeasible SDP

Introduction	PDIPMs	Comments	Summary •	References
Summary				

- Introduce a part of theoretical and practical aspects in SDP
- Skip applications of SDP, *e.g.*, SDP relaxation for combinatorial problems
- Can read papers on SDP
- Not so easy to handle SDP because it is convex but nonlinear programming

N. Anjos and JB Lasserre, 🌑

Handbook of Semidefinite, Conic and Polynomial Optimization: Theory, Algorithms.

International Series in Operations Research & Management Science, Springer US, 2012.

🛸 E. de Klerk.

Aspects of semidefinite programming : interior point algorithms and selected applications. Applied Optimization, Springer US, 2002.

B. Gärtner and J. Matoušek Approximation Algorithms and Semidefinite Programming. Springer, 2012.

M. Todd,

Semidefinite optimization. Acta Numerica 10 (2001), pp. 515–560.

📎 L. Tunçel,

Polyhedral and SDP Methods in Combinatorial Optimization. IFields Institute Monographs, American Mathematical Society, 2012

嗪 H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, Springer US, 2000.

