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Contents and Purpose of this lecture

Subject SemiDefinite Program

Contents

Part I Formulations & Strong duality on SDP

Part II Algorithm on SDP – Primal-Dual Interior-Point
Methods

Part III Comments of Computation on SDP

Survey M. Todd, “Semidefinite optimization”, Acta Numerica 10

(2001), pp. 515–560.

Purpose

Better understanding for the next lecture (MOSEK on SDP)
by Dr. Dahl

Know the difficulty in solving SDP in Part III

Message : SDP is convex, but also nonlinear
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Properties and applications of SDP

Properties : SDP is an extension of LP

Duality Theorem

Solvable by primal-dual interior-point methods with up to a
given tolerance

Applications

Combinatorial problems, e.g., Max-Cut by Goemans and
Williams

Control theory, e.g., H∞ control problem

Lift-and-projection approach for nonconvex quadratic problem

Lasserre’s hierarchy for polynomial optimization problems and
complexity theory

Embedding problems, e.g., sensor networks and molecular
conformation

Statistics and machine learning, etc...
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From LP To SDP

LP Primal and Dual

minx cTx max(y,s) bTy
s.t. aTj x = bj (∀j) s.t. s = c−

∑m
j=1 yjaj

x ∈ Rn
+ s ∈ Rn

+

Minimize/Maximize linear function over the intersection the
affine set and Rn

+

Rn
+ is closed convex cone in Rn

Extension to SDP

Extension to the space of symmetric matrices Sn

c ∈ Rn → C ∈ Sn, aj ∈ Rn → Aj ∈ Sn

Minimize/Maximize linear function over the intersection the
affine set and the set of positive semidefinite matrices
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LP Primal and Dual

minx cTx max(y,s) bTy
s.t. aTj x = bj (∀j) s.t. s = c−

∑m
j=1 yjaj

x ∈ Rn
+ s ∈ Rn

+

SDP Primal and Dual

minX C • X max(y,S) bTy
s.t. Aj • X = bj (∀j) s.t. S = C−

∑m
j=1 yjAj

X ∈ Sn+ S ∈ Sn+

Sn is the set of n× n symmetry matrices,

Sn+ is the set of n× n symmetry positive semidefinite
matrices, and

A • X :=
n∑

k=1

n∑
ℓ=1

AkℓXkℓ.
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1. Definition of positive semidefinite matrices

X ∈ Sn is positive semidefinite if for all z ∈ Rn, zTXz ≥ 0.
Equivalently, all eigenvalues are nonnegative.

Remark

Eigendecomposition (Spectral decomposition); ∃Q ∈ Rn×n

(orthogonal) and ∃λi ≥ 0 such that

X = Q


λ1

λ2

. . .

λn

QT

See textbooks of linear algebra for proof
⇒ ∃B ∈ Rn×n such that X = BBT

2. Zero diagonal for positive semidefinite matrices

For X ∈ Sn+, each Xii is nonnegative. In addition, if Xii = 0 for
some i, then Xij = Xji = 0 for all j = 1, . . . , n.
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Example of SDP

C =

(
2

1

)
,A1 =

(
10 4
4

)
,A2 =

(
−8

)
,

A3 =

(
−9

−9 2

)
,X =

(
x11 x12
x12 x22

)
, b =

(
42 −8 20

)T
Primal SDP is formulated as follows:

inf
X

2x11 + x22 :
10x11 + 8x12 = 42, −8x22 = −8,

−18x12 + 2x22 = 20,

(
x11 x12
x12 x22

)
∈ S2+


(Fortunately) the primal solution is uniquely fixed:

X =

(
5 −1
−1 1

)
is positive definite and obj. val. = 11.
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Primal SDP is formulated as follows:

inf
X

2x11 + x22 :
10x11 + 8x12 = 42, −8x22 = −8,

−18x12 + 2x22 = 20,

(
x11 x12
x12 x22

)
∈ S2+


Dual SDP is formulated as follows:

sup
(y,S)

{
42y1 − 8y2 + 20y3 :

(
2− 10y1 −4y1 + 9y3
−4y1 + 9y3 1 + 8y2 − 2y3

)
∈ S2+

}
A dual solution is (1/5,−37/360, 4/45) with the obj. val. = 11.
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Application : Computation of lower bounds of nonconvex
QP

QP

θ∗ := inf
x

{
xTQx + 2cTx : xTQjx + 2cTj x + rj ≤ 0 (j = 1, . . . ,m)

}
SDP relaxation : Add the following constraint and replace
xixj → Xij: (

1
x

) (
1, x

)
∈ Sn+1

+ → X ∈ Sn+1
+

∴ η∗ := inf
x

{(
0 cT

c Q

)
• X :

(
rj cTj
cj Qj

)
• X ≤ 0,X00 = 1,X ∈ Sn+1

+

}
Remark

Handle as SDP
η∗ ≤ θ∗

binary x ∈ {0, 1} → x2 − x = 0⇒ MIQP with binary
variables = QP 8 / 43
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Application : Lasserre’s SDP relaxation for Polynomial
Optimization Problems

POP : f, gj are polynomials on x ∈ Rn

θ∗ := inf
x
{f(x) : gj(x) ≥ 0 (j = 1, . . . ,m)}

Lasserre’s SDP relaxation

Generates a sequence of SDP problems : {Pr}∞r≥1

Optimal value : θr ≤ θr+1 ≤ θ∗ (∀r)
Under assumptions, θr → θ∗ (r→∞)

r = 2, 3, θr ≈ θ∗ in practice

Strongly connected to sum of square polynomials
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Compared with LP

Similar points

Weak and Strong duality holds

PDIPM also works in SDP

Different points

SDP may have an irrational optimal solution

E.g., sup
y

{
y :

(
2 y
y 1

)
∈ S2+

}
Optimal solution y =

√
2, not rational

Finite optimal value, but ̸ ∃ solutions

E.g., inf
y

{
y1 :

(
y1 1
1 y2

)
∈ S2+

}
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Different points (cont’d)

∃ 2 types of infeasibility

(LP) ∃y;−ATy ∈ Rn
+, b

Ty > 0 ⇐⇒ Primal LP is infeasible

(SDP) ∃y;−ATy ∈ Sn+, b
Ty > 0 ⇒ Primal SDP is infeasible

Remark : Need to consider the following cases

Finite optimal value, but no optimal solutions for Primal
and/or Dual

Difficult to detect the infeasibility completely
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Duality on SDP

Weak duality for any X ∈ FP and (y, S) ∈ FD,

C • X ≥ bTy ∴ θ∗
P ≥ θ∗

D

Slater conditon : Sn++ is the set of positive definite matrices

Primal satisfies Slater condition if ∃X ∈ FP such that
X ∈ Sn++

Dual Slater condition if ∃(y, S) ∈ FD such that S ∈ Sn++

Strong duality

Primal satisfies Slater condition and dual is feasible. Then
θ∗
P = θ∗

D and dual has an optimal solution.

Slater condition are required for both primal and dual for
theoretical results on PDIPMs

See survey on SDP for proof

12 / 43



Introduction PDIPMs Comments Summary References

3. Inner products on positive semidefinite matrices

For all X, S ∈ Sn+, X • S ≥ 0. Moreover, X • S = 0 iff XS = On

Proof : ∃B s. t. X = BBT and ∃D s.t. S = DDT. Then

X • S = Trace(BBTDDT) = Trace(DTBBTD)

= Trace((BTD)T(BTD)) ≥ 0

Moreover, X • S = 0⇒ BTD = On ⇒ XS = On

Proof of weak duality

In fact, for X ∈ FP and (y, S) ∈ FD,

C • X− bTy =

C−
m∑
j=1

yjAj

 • X = S • X ≥ 0

because both matrices are positive semidefinite.
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Remark of 3 (cont’d)

X ∈ FP : optimal in primal and (y, S) ∈ FD : optimal in
dual

Then, θ∗
P − θ∗

D = X • S = 0 ⇐⇒ XS = On

XS = On is used in PDIPM
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SDP with multiple positive semidefinite cones

SDP

infXk

N∑
k=1

Ck • Xk

s.t.
N∑

k=1

Ak
j • Xk = bj (j = 1, . . . ,m)

Xk ∈ Snk+ (k = 1, . . . ,N)

where Ck,Ak
j ∈ Snk

Example

A•X ≤ d,X ∈ Sn+ ⇒ A•X+s = d,X ∈ Sn+ and s ∈ S1+(= R+)

Dual

sup
y,Sk

bTy : Sk = Ak
0 −

m∑
j=1

yjA
k
j ∈ Snk+ (k = 1, . . . ,N)
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Remark

SDP with Rn
+, Second order cone Ln and Sn+ can be handled

as SDP and PDIPM works

Ln := {(x0, x) ∈ Rn : ∥x∥2 ≤ x0}

Free variable can be accepted

A • X + aTx = d,X ∈ Sn+, x ∈ Rn

⇒ A • X + aTx1 − aTx2 = d,X ∈ Sn+ and x1, x2 ∈ Rn
+
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Classification of Algorithms for SDP

Algorithms for SDP

Ellipsoid method

Interior-point methods

Bundle method

first-order methods, etc

Interior-point methods

Path-following algorithm (= Logarithmic barrier function)

Potential reduction algorithm

Self-dual homogeneous embeddings

Path-following algorithm

Primal

Dual

Primal-dual
17 / 43
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Path-following method

Optimality conditions : a pair of optimal solutions (X, y, S)
satisfies 

Aj • X = bj,X ∈ Sn+,
S = C−

∑m
j=1 yjAj, S ∈ Sn+,

XS = On(⇐⇒ C • X− bTy = 0)

Perturbed system : for µ > 0,
Aj • X = bj,X ∈ Sn++,

S = C−
∑m

j=1 yjAj, S ∈ Sn++,

XS = µIn

Remark

for any µ > 0, ∃ unique solution (X(µ), y(µ), S(µ))

Central path {(X(µ), y(µ), S(µ)) : µ > 0} is smooth curve
and go to a pair of optimal solutions of primal and dual

Follows the central path = Path-following method
18 / 43
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Algorithm 1: General framework of path-following method

Input: (X0, y0, S0) ∈ FP ×FD such that X0, S0 ∈ Sn++, ϵ > 0,
0 < θ < 1 and some parameters

X← X0, y← y0 and S← S0;
while X • S > ϵ do

Compute direction (∆X,∆y,∆S) from CPE(µ);
Compute step size αP, αD > 0;
X← X + αP∆X;
y← y + αD∆y; S← S + αD∆S;
Compute µ← θµ;

end
return (X, y, S);

Remark

Infeasible initial guess is acceptable

# of iteration is polynomial in n,m and log(ϵ)

Computational cost = Computation of direction
19 / 43
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Computation of direction : Find (∆X,∆y,∆S) such that

X + ∆X ∈ FP, (y + ∆y, S + ∆S) ∈ FD and
Aj •∆X = 0,
∆S−

∑m
j=1 ∆yjAj = On,

XS + ∆XS + X∆S = µIn

Remark

∆X may not be symmetry. So, change XS = µIn by

1

2

(
PXSP−1 + P−TSXPT

)
= µIn,

where P is nonsingular
Possible choice of P

P = S1/2 (HRVW/KSH/M)

P = X−1/2 (dual HRVW/KSH/M)

P = W1/2,W = X1/2(X1/2SX1/2)−1/2X1/2 (NT)

P = ... More than 20 types of directions by Todd
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Computational cost in PDIPM

1. Construction of linear system on ∆y for HRVW/KSH/M
direction,

M∆y = (RHS),where M = (Trace(AiXAjS
−1))1≤i,j≤m

Use of sparsity in Aj is necessary for computation of M

Almost the same for other search directions

2. Solving the linear system

M is dense⇒ takes O(m3) computation by Cholesky
decomposition

M is often sparse in SDP relax for POP⇒ sparse Cholesky
decomposition works well

After them , ∆S =
∑m

j=1 ∆yjAj and obtain ∆X.
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Sparsity in SDP

Example Q is nonsingular and dense. Then P1 is equivalent to P2:

P1 : inf
X

{
C • X : Ei • X = 1 (i = 1, . . . , n),X ∈ Sn+

}
,

P2 : inf
X

{
(QTCQ) • X : (QTEiQ) • X = 1 (i = 1, . . . , n),X ∈ Sn+

}
,

where

(Ei)pq =

{
1 if p = q = i
0 o.w.

(p, q = 1, . . . , n)
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CPU time : Solved by SeDuMi 1.3 on the MacBook Air (1.7 GHz
Intel Core i7)

Figure : CPU time on P1 and P2
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Software

Information from http://plato.asu.edu/ftp/sparse_sdp.html

SeDuMi, SDPT3 (MATLAB)

SDPA (C++, MATLAB)

CSDP (C, MATLAB)

DSDP (C, MATLAB)

MOSEK

Remark

Based on PDIPM for almost all software

Performance depends on SDP problems

Modelling languages on SDP : they can call the above software

YALMIP

CVX
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Slater conditions

Strong duality

Require Slater conditions for Primal or Dual

PDIPM requires Slater conditions for both Primal and Dual

Sufficient conditions for optimal solutions

If either Primal or Dual does not satisfy Slater conditions, ...

E.g., Lasserre’s SDP relaxation

P : inf
x

{
x : x2 − 1 ≥ 0, x ≥ 0

}
Gererate SDP relaxation problems P1, P2, . . .,

Slater condition fails in all SDP relaxation & all optimal
values are 0

SeDuMi and SDPA returns wrong value 1

All SDP relaxation problems are sensitive to numerical errors
in the computation of floating points
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E.g., Graph Equipartition

G(V,E): a weighted undirected graph⇒ Partition the vertex
set V into L and R

the minimum total weight of the cut subject to |L| = |R|
QOP formulation

inf
x∈Rn

{
1

2

∑
wij(1− xixj) :

n∑
i=1

xi = 0, xi
2 = 1 (i = 1, . . . , n)

}
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E.g., Graph Equipartition (cont’d)

SDP relaxation problem: constant matrices W, E and Ei

inf
X∈Sn+
{W • X | E • X = 0,Ei • X = 1}

Since E ∈ Sn+, ̸ ∃X ∈ Sn++ s.t. E • X = 0⇒ Slater cond.
fails

Inaccurate value and/or many iterations

Table : SeDuMi 1.3 with ϵ=1.0e-8

SDPLIB iter cpusec duality gap
gpp124-1 30 2.40 -4.63e-05
gpp250-1 29 10.19 -1.60e-04
gpp500-1 34 61.58 -1.90e-04
gpp124-4 40 3.02 -2.14e-08
gpp500-2 40 76.88 -8.26e-06
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E.g., Graph Equipartition (cont’d)

inf
X∈Sn+
{W • X | E • X = 0,Ei • X = 1}

Transformation of SDP by V:

V =


1 −1

1 −1
. . .

...
1


X→ V−TXV−1 =: Z and E→ VEVT

Then, X ∈ Sn+ ⇐⇒ Z ∈ Sn+ and
E • X = 0 ⇐⇒ Znn = 0

Eliminate nth row and column from transformed SDP⇒
Slater cond. holds
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E.g., Graph Equipartition (cont’d)

Table : Numerical Results by SeDuMi 1.3 with ϵ=1.0e-8.

Slater fails Slater holds
Problems iter cpusec d.gap d.gap cpusec iter
gpp100 30 1.78 -2.46e-07 -4.97e-09 0.73 16
gpp124-1 30 2.34 -4.63e-05 -1.75e-08 1.12 19
gpp124-2 26 1.76 -1.41e-06 -1.11e-09 1.03 18
gpp124-3 30 2.56 -4.41e-07 -3.05e-09 1.01 17
gpp124-4 40 2.93 -2.14e-08 -9.52e-11 1.09 17
gpp250-1 29 8.81 -1.60e-04 -1.82e-08 4.71 21
gpp250-2 29 8.61 -1.49e-05 -9.74e-09 4.19 19
gpp250-3 34 9.48 -3.97e-07 -8.12e-10 4.08 18
gpp250-4 35 11.28 -8.80e-07 -7.43e-10 4.37 19
gpp500-1 34 53.45 -1.90e-04 -2.76e-08 31.49 24
gpp500-2 40 68.47 -8.26e-06 -2.20e-09 28.98 22
gpp500-3 28 54.81 -1.00e-05 -2.39e-09 31.35 21
gpp500-4 28 55.06 -1.02e-06 -8.96e-10 32.06 23

Comments : If does not satisfy Slater conditions, ...

PDIPM computes inaccurate values and/or spends many iter.
But, reduce the size of SDP
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Comments

A simple (?) transformation generates an SDP in which Slater
cond. holds
More elementary approach :

(QOP) : inf
x∈Rn

{
1

2

∑
wij(1− xixj) :

n∑
i=1

xi = 0, xi
2 = 1

}

(QOP’) : obtained by substituting x1 = −
n∑

i=2

xi in (QOP)

(QOP)
equiv.−−−→ (QOP’)

↓ SDP relax. SDP relax. ↓
(SDP)

V−−−→
equiv.

(SDP’)

General case : separate x into basic and nonbasic variables &
substitute basic variables⇒ SDP relax

inf
x

{
xTQx + 2cTx : aTj x = bj (j = 1, . . . ,m), xk ∈ {0, 1}

}
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Extension

SDP
inf
X

{
C • X : Aj • X = bj,X ∈ Sn+

}
Slater condition fails in Primal ⇐⇒ ∃y ∈ Rm \ {0} such that

bTy ≥ 0,−
∑
j

yjAj ∈ Sn+

Moreover, if ∃y such that bTy > 0, then Primal is infeasible

Proof of (⇐) : Suppose the contrary that Slater condition holds

in Primal. ∃X̂ such that Aj • X̂ = bj and X̂ ∈ Sn++.

0 ≤ bTy =
∑
j

(Aj • X̂)yj =

∑
j

Ajyj

 • X̂ < 0(contradiction)
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Facial Reduction

Idea : Let W := −
∑

j Ajyj ∈ Sn+ and bTy = 0

For any feasible solutions X in Primal,

W • X = −
∑
j

(Aj • X)yj = −bTy = 0.

Primal is equivalent to

inf
X

{
C • X : Aj • X = bj,X ∈ Sn+ ∩ {W}

⊥
}

where {W}⊥ := {X : X •W = 0}
The set Sn+ ∩ {W}⊥ has nice structure

Sn+ ∩ {W}
⊥ =

{
X ∈ Sn : X = Q

(
M O
O O

)
QT,M ∈ Sr+

}
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Idea (cont’d)

Sn+ ∩ {W}
⊥ =

{
X ∈ Sn : X = Q

(
M O
O O

)
QT,M ∈ Sr+

}

Assume Q = In. Then Primal is equivalent to

inf
X

{
C̃ • X : Ãj • X = bj,X ∈ Sr+

}
where Ãj is r × r principal matrix

Compare this SDP with Primal⇒ the size n→ r

May not satisfy Slater cond.

⇒ Find y and W for the smaller Primal

This procedure terminates in finitely many iterations

This procedure is called Facial Reduction Algorithm and
acceptable for dual
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Histroy of FRA

Borwein-Wolkowicz in 1980 for general convex optimization

Ramana, Ramana-Tunçel-Wolkowicz for SDP

Pataki simplified FRA for the extension

Apply FRA into SDP relax. for Graph Partition, Quadratic
Assignment, Sensor Network by Wolkowicz group

Apply FRA into SDP relax. for Polynomial Optimization in
Waki-Muramatsu

...
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Summary on Slater condition

Hope that both Primal and dual satisfy Slater conditions

Otherwise, may not have any optimal solutions, and wrong
value may be obtained

Obtain inaccurate solutions even if exists optimal solutions,
but, one can reduce the size of SDP

FRA is a general framework to remove the difficulty in Slater
cond.

In modeling to SDP...

Need to be careful in even dual to guarantee the existence of
optimal solutions in dual

A rigorous solution for FRA is necessary
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Status of infeasibility

Feasiblity and infeasiblity

inf
X

{
C • X : Aj • X = bj,X ∈ Sn+

}
Strongly feasible if SDP satisfies Slater cond.

Weakly feasible if SDP is feasible but, does not satisfies Slater
cond.

Strongly infeasible if ∃ improving ray d, i.e.,

bTd > 0,−
∑
j

djAj ∈ Sn+.

Weakly infeasible if SDP is infeasible, but ̸ ∃ improving ray

Remark

Weak infeasibility does not occur in LP

SOCP and conic optimization also have the four status
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Example : Infeasible SDPs

P1 inf
X

{
C • X :

(
1

1

)
• X = 0,

(
1

1

)
• X = 2,X ∈ S2+

}
,

P2 inf
X

{
C • X :

(
1

)
• X = 0,

(
1

1

)
• X = 2,X ∈ S2+

}
Comments

P1 is strongly infeasible because ∃ certificate y = (−1, 1)
P2 is weakly infeasible because ̸ ∃ certificate
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Characterization of weak infeasibility

Weakly infeasible SDP; for all ϵ >, ∃X ∈ Sn+

|Aj • X− bj| < ϵ (j = 1, . . . ,m)

More elementary characterization of Weak infeasibility by
recent work by Liu and Pataki

Example P2 Perturb b1 = 0→ ϵ > 0

P2 : inf
X

{
C • X :

(
1

)
• X = ϵ,

(
1

1

)
• X = 2,X ∈ S2+

}
Then, perturbed P1 is feasible:

X =

(
1/ϵ 1
1 ϵ

)
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Pathological?

(POP) : inf
x,y
{−x− y : xy ≤ 1/2, x ≥ 1/2, y ≥ 1/2}

Optimal value is −1.5
Apply Lasserre’s SDP hierarchy

All SDP relaxation is weakly infeasible (in Waki 2012)

SeDuMi and SDPA returns −1.5 for higher oder SDP
relaxation

Sufficient conditions of (POP) for SDP relaxation to be
weakly infeasible (in Waki 2012)
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Summary on infeasibility

Weak infeasibility may occur in SDP, SOCP and conic
optimization, but not in LP

Difficult to detect this type of infeasibility by software

But, software returns good values for weak infeasible SDP

40 / 43



Introduction PDIPMs Comments Summary References

Summary

Introduce a part of theoretical and practical aspects in SDP

Skip applications of SDP, e.g., SDP relaxation for
combinatorial problems

Can read papers on SDP

Not so easy to handle SDP because it is convex but nonlinear
programming
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Further Reading I

M. Anjos and JB Lasserre,
Handbook of Semidefinite, Conic and Polynomial
Optimization: Theory, Algorithms.
International Series in Operations Research & Management
Science, Springer US, 2012.

E. de Klerk,
Aspects of semidefinite programming : interior point
algorithms and selected applications.
Applied Optimization, Springer US, 2002.

B. Gärtner and J. Matoušek
Approximation Algorithms and Semidefinite Programming.
Springer, 2012.

42 / 43



Introduction PDIPMs Comments Summary References

Further Reading II

M. Todd,
Semidefinite optimization.
Acta Numerica 10 (2001), pp. 515–560.

L. Tunçel,
Polyhedral and SDP Methods in Combinatorial Optimization.
IFields Institute Monographs, American Mathematical Society,
2012.

H. Wolkowicz, R. Saigal and L. Vandenberghe,
Handbook of Semidefinite Programming.
International Series in Operations Research & Management
Science, Springer US, 2000.
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