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Gas Network Example

Given: Gas network G = (V ,A)

. nodes
I sources
I sinks
→ specified gas flow

I innodes

. pipes
resistors
→ nonlinear

. valves
control valves
compressor stations
→ binary variables

. MINLP-model

Introduction 4



Gas Network Example

Given:

. Infeasible scenario

Goal:

. Feasibility due to cost optimal
loop extensions

. loops = building new pipes in
parallel to existing ones

Loop impact:

. Reduce pressure loss / more flow
along a pipe

Introduction 5
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Modelling Pipes

Weymouth equation p2
v − p2

w =
Lvw Cvw

D5
vw︸ ︷︷ ︸

αvw

xvw |xvw |

pv , pw inlet & outlet pressure

αvw > 0 weymouth constant

xvw flow

xvw

p2
v − p2

w
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Parallel Pipe Merge

v w v w

x1

x2

x

p2
v − p2

w = αx1|x1|

p2
v − p2

w = βx2|x2|
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Parallel Pipe Merge

v w v w

x1

x2

x

p2
v − p2

w = αx1|x1|

p2
v − p2

w = βx2|x2|

Transformation to an equivalent single equation for the aggregated flow x = x1 + x2:

p2
v − p2

w = γx |x |
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Parallel Pipe Merge

v w v w

x1

x2

x

p2
v − p2

w = αx1|x1|

p2
v − p2

w = βx2|x2|

Transformation to an equivalent single equation for the aggregated flow x = x1 + x2:

p2
v − p2

w = γx |x |

Since α, β > 0, we know that sign(x1) = sign(x2) = sign(x),

αx2
1 = βx2

2 = γx2
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Parallel Pipe Merge

v w v w

x1

x2

x

p2
v − p2

w = αx1|x1|

p2
v − p2

w = βx2|x2|

Transformation to an equivalent single equation for the aggregated flow x = x1 + x2:

p2
v − p2

w = γx |x |

Since α, β > 0, we know that sign(x1) = sign(x2) = sign(x),

αx2
1 = βx2

2 = γx2

⇒ γ =
βα(√

β +
√
α
)2
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Equivalent Diameter

Calculate an equivalent diameter of two parallel pipes:

v w

α = CL
D5

1

β = CL
D5

2

v w
γ = CL

D̂5

γ =
βα(√

β +
√
α
)2 ⇒ D̂ =

(
D1

5/2 + D2
5/2
)

2/5
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Equivalent Diameter - Example

v w

orig Pipe = 1 [m]

1.loop = 0.8 [m]

2.loop = 0.6 [m]

v w

equiv Diameter = 1.2 [m]

2.loop = 0.6 [m]

v w v w

equiv Diameter = 1.28 [m]
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Diameters

Given:

. Pipe with original diameter Da

. Diameter candidates {D1, . . . ,Dn}

Calculation of equivalent diameters:

D̂i := eq(Da,Di ) =
(

D5/2
a + D5/2

i

)2/5
i ∈ {1, ..., n}

D̂i,j := eq(D̂i ,Dj ) i, j ∈ {1, ..., n}

D̂i,j,k := eq(D̂i,j ,Dk ) i, j, k ∈ {1, ..., n}

v w
... ... ...Da

l0
D̂1
l1

D̂n
ln

D̂1,1
l1,1

D̂n,n
ln,n

D̂1,1,1
l1,1,1

D̂n,n,n
ln,n,n

Possible diameter allocation of a looped pipe.

li ∈ [0, 1]
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l1 = 0.6
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ln

D̂1,1
l1,1

D̂n,n
ln,n

D̂1,1,1
l1,1,1

D̂n,n,n
ln,n,n

Possible diameter allocation of a looped pipe.

li ∈ [0, 1]

Modelling Diameters 12



Intermezzo - Diameters Exercise
Given:
. Pipe with original diameter Da

. Special case: Diameter candidates {Da}

Calculation of equivalent diameters:

D̂1 := eq(Da,Da) single loop

D̂2 := eq(D̂1,Da) double loops

D̂3 := eq(D̂2,Da) triple loops

D̂k := eq(D̂k−1,Da) = (k + 1)2/5 Da k loops

v w
(Da, l0) (D̂1, l1) (D̂2, l2) (D̂3, l3)

li ∈ [0, 1]
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Modelling Diameters

0.2 0.4 0.6 0.8 1 1.2 1.4
Diameters in [m]

co
st

fa
ct

or
c(
.)

Data points
quadratic fit

Diameter Candidates

0 0.1 0.2 0.3 0.4 0.5

D̂−5 in [1/m5]

co
st

fa
ct

or
C

(.
)

Da

D̂1.loop

D̂2.loop

D̂3.loop
conv env

“Lower Part“ of Convex Hull

Fujiwara, O. & Dey, D., "Two Adjacent Pipe Diameters at the Optimal Solution in the Water
Distribution Network Models", Water Resources Research, Vol. 23, Nr.8, p. 1457-1460, 1987.
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Potential Diameters

Original pipe diameter Da = 1.185 [m]

0 0.1 0.2 0.3 0.4 0.5

D̂−5 in [1/m5]

co
st

fa
ct

or
C

(.
)

Dorig

conv env
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Potential Diameters

D̂−5 in [1/m5]

co
st

fa
ct

or
C

(.
)

1.loop = 0.5 [m]

2.loop = 0.8 [m]

3.loop = 1.0 [m]

1.loop = 1.4 [m] 1.loop = 1.2 [m]

⇒ 3592 [e/m] > 0.3 · 2485 [e/m] + 0.7 · 1919 [e/m]︸ ︷︷ ︸
=2083 [e/m]
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Modelling Loops

min
l,x,y,∆

k∑
i=1

la,i Lac
(

D̂a,i

)
︸ ︷︷ ︸

const

s.t. ya = LaC

(
l0
D5

a
+

k∑
i=1

la,i
D̂5

a,i

)

∆a = ya xa|xa| and
k∑

i=0

la,i = 1, la,i ∈ [0, 1]

ya

co
st

fa
ct

or
c(
.)

ya

co
st

fa
ct

or
c a

Observation: . same LP-relaxation
. same variables as branching candidates
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Comparison with the Convex Underestimator generated by SCIP

x y

Difference between the convex envelope and the convex underestimator generated by SCIP for
f (x , y) = y x |x |
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Preliminaries

Let f : D → R with D ⊆ Rn convex and compact. The
epigraph of f is defined by the set

epiD f = {(x , µ)| x ∈ D, µ ∈ R, µ > f (x)}.
f (x) = x|x|

The convex envelope of a nonconvex function
f : D → R over D ⊆ Rn is given by the tightest

convex underestimator of f :

convD[f ](x) = sup{ η(x) | η(y) 6 f (y)

∀y ∈ D, η : D → R convex}.

convD[f ](x) = min{µ| (x , µ) ∈ conv(epiD f )}

Basic Concepts 23
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Convex Envelopes
Convex envelope convD[f ](x) = min{µ| (x , µ) ∈ conv(epiD f )} difficult to find in general.

 leads to solving a nonlinear and nonconvex problem:

convD[f ](x) = minµ

s.t.
∑

k

λk xk = x∑
k

λk f (xk ) = µ∑
k

λk = 1

λk ≥ 0 and xk ∈ D ∀k
But convex envelopes are known for several cases, e.g.

concave functions

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1-convex f (x , y) = x2 · y2 f (x , y) = −
√

x · y2
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Reformulation of Factorable Functions
Techniques to generate convex underestimators:
. Nonlinearities are given as factorable functions
Factorable functions
. Recursive sum of products of univariate functions
. Reduce to simple cases by introducing new variables and equations for

subexpressions

Example

f (x , y) = y x |x |
x ∈ [−3, 3], y ∈ [1, 2]

⇒

{
f = y w f ∈ [−9, 18]

w = x |x | w ∈ [9, 9]

y · w
x · |x |

x

y

Basic Concepts 25



Reformulation of Factorable Functions
Techniques to generate convex underestimators:
. Nonlinearities are given as factorable functions
Factorable functions
. Recursive sum of products of univariate functions
. Reduce to simple cases by introducing new variables and equations for

subexpressions

Example

f (x , y) = y x |x |
x ∈ [−3, 3], y ∈ [1, 2]

⇒

{
f = y w f ∈ [−9, 18]

w = x |x | w ∈ [9, 9]

y · w
x · |x |

x

y

Basic Concepts 25



Reformulation of Factorable Functions
Techniques to generate convex underestimators:
. Nonlinearities are given as factorable functions
Factorable functions
. Recursive sum of products of univariate functions
. Reduce to simple cases by introducing new variables and equations for

subexpressions

Example

f (x , y) = y x |x |
x ∈ [−3, 3], y ∈ [1, 2]

⇒

{
f = y w f ∈ [−9, 18]

w = x |x | w ∈ [9, 9]

y · w
x · |x |

x

y

Basic Concepts 25



Generating Set

The generating set of the convex envelope of f over
a compact and convex set D is defined by

GD(f ) := {x ∈ D | (x , convD[f ](x))

is an extreme point of conv (epiD f )}.

x

Basic Concepts 26



Generating Set - Example McCormick

f (x , y) = xy , x ∈ [x , x ], y ∈ [y , y ]

(x − x) (y − y) ≥ 0

⇒ xy ≥ xy + xy − xy

(x − x)
(

y − y
)
≥ 0

⇒ xy ≥ xy + xy − xy

Convex envelope of f (x , y) = xy :

convD[f ](x , y) =

max{xy + xy − xy , xy + xy − xy}

Generating set: GD(f ) = ?
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Generating Set - Example McCormick

Convex envelope of f (x , y) = xy :

convD[f ](x , y) =

max{xy + xy − xy , xy + xy − xy}

Theorem, Tawarmalani and Sahinidis,
2002
Let f : D → R, with D ⊆ Rn compact and
convex. If there exists a segment lx ⊆ D
that contains x in its relative interior, i.e.
x ∈ ri (lx ∩ D), and f is concave over
ri (lx ∩ D), then x /∈ GD(f ).

Generating set is given by:

GD(f ) = {
(

x , y
)
, (x , y) ,

(
x , y

)
, (x , y)}

Convex envelope is vertex polyhedral, if
. its epigraph is polyhedral
. its vertices correspond to the vertices of the

domain

Basic Concepts 28
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Finding Convex Envelope of f (x , y) = y x |x |

f : (x , y) 7→ y x |x |

Theorem, Tawarmalani and Sahinidis,
2002
Let f : D → R, with D ⊆ Rn compact and
convex. If there exists a segment lx ⊆ D that
contains x in its relative interior, i.e.
x ∈ ri (lx ∩ D), and f is concave over ri (lx ∩ D),
then x /∈ GD(f ).

Observation:
Generating set GD(f ) is subset of y boundary

f (x, y) = y x|x|
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Finding Convex Envelope of f (x , y) = y x |x |

Theorem
Let f : D ⊂ Rn → R and A be a subset of D.
Then conv(epiD f ) = conv(epiAf ) if and only if
GD(f ) ⊆ A.

conv(epiD f ) = conv(epiDy∪Dy
f )

conv(epiD f ) = conv(epiDy
ϕ ∪ epiDy

ϕ)

ϕ(x , y) =

{
yx2 x ≥ βx
2βxxy − (βx)2y x < βx ,

f (x, y) = y x|x|
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ϕ(x, y)
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Solution Approach - Optimization Problem

Remember: convD[f ](x , y) = min{µ| (x , y , µ) ∈ conv(epiD f )}

In our case: convD[f ](x , y) = min{µ| (x , y , µ) ∈ conv(epiDy
ϕ ∪ epiDy

ϕ)}.

(x , y , µ) ∈ conv(epiDy
ϕ ∪ epiDy

ϕ) ⇔

(x , y , µ) = (1− λ)(x1, y , µ1) + λ(x2, y , µ2)

λ ∈ [0, 1], x1, x2 ∈ [x , x ], µ1 ≥ ϕ(x1, y), µ2 ≥ ϕ(x2, y)

min
x1,x2

(1− λ)ϕ(x1, y) + λϕ(x2, y)

s.t. (1− λ)x1 + λx2 = x

(1− λ)y + λy = y

λ ∈ [0, 1]

(x1, x2) ∈ [x , x ]2
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Solution Approach - Optimization Problem

min
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xx
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Using x2 = tx,y (x1), we can rewrite it to a 1-dim the optimization problem:

min
x1

(1− λy )ϕ(x1, y) + λyϕ(tx,y (x1), y)

s.t. x ≤ x1 ≤ x

x ≤ tx,y (x1) ≤ x
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Solution Approach

Optimization Problem is of the form:

min F (x1)

s.t. a ≤ x1 ≤ b
(1)

with

F (x1) = (1− λy )ϕ(x1, y) + λyϕ(tx,y (x1), y)

Remark:

F (x1) is convex⇒ the solution of Problem 1 is F (mid(a, b, x∗))

Note: . mid(x1, x2, x3) selects the middle value of three given scalars

F (x1) is coercive, i. e., limx1→∞ F (x1) =∞ and limx1→−∞ F (x1) =∞
⇒ F (x1) has a global minimum

. It can be shown that the global minimum of F (x1) is unique
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Solution

To compute the minimum, we solve equation F
′
(x1) = 0.

βx xx
y

y

LL

βx xx
y

y

LR

βx xx
y

y

RL

sol: x∗RL if tx,y (x∗LR) ≤ βx

βx xx
y

y

RR

sol: x∗RR if tx,y (x∗RR) ≥ βx

convD[f ](x , y) =

{
F (mid(a, b, x∗RL)) if tx,y (x∗RL) ≤ βx
F (mid(a, b, x∗RR)) otherwise

Solution:

convD[f ](x , y) = F (min {b,max{x∗RL, x
∗
RR}})
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Solution

x

y

(a) f (x , y) = y x |x |

x

y

(b) convD [f ](x , y)
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Computational Experiments
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using SCIP 3.1.1
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Results
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average dual bound improvement with cuts: 11%
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Summary

. We presented two equivalent models for optimal gas network expansion planning
with continuous loop lengths, where
I parallel pipes are represented by one “symbolic” pipe using equivalent diameters,
I equivalent diameters correspond to extreme points of the “lower” part of the

convex hull

. We showed basic ideas that might help to find the convex envelope of a nonconvex
function,
I such as using the generating set to simplify the resulting optimization model

. As an example, we calculated the convex envelope of the nonconvex function
f (x , y) = y x |x | that arises in the presented network expansion models
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Questions?

Thank you!

Ralf Lenz <lenz@zib.de>
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Gas Network Operation - Pressure Distribution

80 bar 10 bar

Exit

Entry

. pressure loss
due to friction
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Gas Network Operation - Pressure Distribution
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. pressure loss
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Extended Gas Network - Pressure Distribution

. The pressure distribution changes when adding network elements:

original network extended network

Introduction 45



Gas Network Elements

Pipeline – Compressor – Control Valve – Valve

Introduction 46



Building Cost

. C 0.5 - 2.5 million per km pipeline

. C 2.6 - 8.9 million per new control valve

. C 17 - 41 million per additional compressor

. C 35 - 78 million per new compressor station

Introduction 47



Optimization Problem Formulation

Topology Optimization Problem

Given: . a detailed description of a gas network
. a nomination specifying amounts of gas flow at entries and exits
. a list of candidates of network extension

Task: Find
. cost-optimal selection of network extensions
& settings for active devices

(valves, control valves, compressors)
& values for physical parameters of the network that comply with

I gas physics
I legal and technical limitations

Introduction 48
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Network Elements and Variables

. A gas transportation network is modeled by a directed graph

G = (V ,A).

. Arc types:
I passive: pipelines
I active: compressors, control valves, valves

. Variables:

π4

π2

π3

π5
π6

π1

q1,2

q3,2

q3,3

q1

q4

q5

q2 q6

q3

qa flow for each arc a ∈ A

πv , pv (squared) pressure for
each node v ∈ V
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Pipelines

. The flow qa of pipe a ∈ A is restricted by the non-convex equation:

αa qa|qa| = πv − γaπw

(πv − γaπw )

qa

. pressure loss due to friction

. αa ∼ L
D5 is a constant for pipe a, depending on its length L, diameter D, height

and physical gas constants.
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Compressors - Control Valves - Valves

. A compressor a = (v ,w) ∈ A is described by three operation modes:

I Closed : arc a is deleted (qa = 0)

I Bypass: arc a is contracted, endnodes v and w are identified (pv = pw )

I Active: flow and pressures are restricted by linear inequalities
(Aa (qa, pv , pw )T ≤ ba)
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qapu

pv

Had,a ∼ pw/pv , Qa ∼ qa/pv polytope

. A control valve is modeled similarly to a compressor.

. A valve can only be closed or in bypass.
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Combination of Compressor Stations
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Subnetwork Operation Modes

. Due to symmetry and technical limitations only a subset of the potential
configurations corresponds to real operation modes.
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Extended Gas Network

. An extended gas transportation network is modeled by a directed multigraph

G = (V ,AX ).

. The extended graph contains
I all original arcs,
I additional arcs for active elements,
I additional arcs for loops,
I additional arcs for extensions.

original network extended network

v4

v3

v2
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v6

v1

a4
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a2 a6

a3
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π1

q1,2

q3,2

q3,3

q1,1

q4,1
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q2,1 q6,1

q3,1
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x3,3x4,0
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x2,1 x6,1

x3,1

variables q, π variables x
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MINLP Model of Topology Optimization Problem
min

∑
(a,i)∈AX

ca,i xa,i

s.t. xa,i = 1⇒ αa,i qa,i |qa,i |ka − βa,i ya,i − (πv − γaπw ) = 0 ∀ (a, i) = (v ,w, i) ∈ AX , i 6= 0,

xa,i = 1⇒ Aa (qa,i , pv , pw )T 6 0 ∀ (a, i) = (v ,w, i) ∈ AX , i ≥ 2,

xa,i = 0⇒ qa,i = 0 ∀ (a, i) ∈ AX , i 6= 0,∑
i:(a,i)∈AX

xa,i = 1 ∀ a ∈ A,

∑
w,i:(v,w,i)∈AX ,

i 6=0

qv,w,i −
∑

w,i:(w,v,i)∈AX ,
i 6=0

qw,v,i = dv ∀ v ∈ V ,

pv |pv | − πv = 0 ∀ v ∈ V ,

πv 6 πv 6 πv ∀ v ∈ V ,

q
a,i

6 qa,i 6 qa,i ∀ (a, i) ∈ AX ,

y
a,i

6 ya,i 6 ya,i ∀ (a, i) ∈ AX ,

xa,i ∈ {0, 1} ∀ (a, i) ∈ AX ,

x ∈ X .

ka = 2 for pipes; ka = 1, αa = 0 for active arcs
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MINLP Model of Topology Optimization Problem
min

∑
(a,i)∈AX

ca,i xa,i

s.t. xa,i = 1⇒ αa,i qa,i |qa,i |ka − βa,i ya,i − (πv − γaπw ) = 0 (selected) pipelines

xa,i = 1⇒ Aa (qa,i , pv , pw )T 6 0 (active) compressors / control valves

xa,i = 0⇒ qa,i = 0 closed / non-selected elements∑
i:(a,i)∈AX

xa,i = 1 pipe / operation mode selection

∑
w,i:(v,w,i)∈AX ,

i 6=0

qv,w,i −
∑

w,i:(w,v,i)∈AX ,
i 6=0

qw,v,i = dv flow conservation

pv |pv | − πv = 0 (squared) pressure coupling

πv 6 πv 6 πv bounds

q
a,i

6 qa,i 6 qa,i bounds

y
a,i

6 ya,i 6 ya,i bounds

xa,i ∈ {0, 1} binary variables

x ∈ X . subnetwork operation modes

ka = 2 for pipes; ka = 1, αa = 0 for active arcs
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Computational Study

. Large-scale network provided
by Open Grid Europe GmbH

. Size:
I 4165 nodes
I 3983 pipes
I 0308 valves
I 0012 compressors
I 0121 control valves

. nominations: 30

. feasibility problem

. timelimit: 4h

. Computational results:

Baron Antigone SCIP

feas infeas time limit feas infeas time limit feas infeas time limit
- 3 27 - 28 2 1 - 29
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Spatial Branching in SCIP
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Domain Relaxation

. Consider the domain relaxation of the ATP:

min
∆v >0,v∈V

∑
v∈V

∆v +
∑
a∈A′

(∆a + ‖∆̃a‖) s. t.

s. t. αaqa|qa|ka − βaya − (πv − γaπw ) = 0 ∀ a = (v ,w) ∈ A′,

Aa (qa, pv , pw )T − ∆̃a ≤ ba ∀ a = (v ,w) ∈ A′,∑
w :(v,w)∈A′

qv,w −
∑

w :(w,v)∈A′
qw,v = dv ∀ v ∈ V ,

pv |pv | − πv = 0 ∀ v ∈ V ,

y
a
≤ ya ≤ ya ∀ a ∈ A′,

qa −∆a 6 qa ∀ a ∈ A′,

qa + ∆a > q
a

∀ a ∈ A′,

πv −∆v 6 πv ∀ v ∈ V ,

πv + ∆v > πv ∀ v ∈ V ,

∆ ≥ 0.
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Parametric Sensitivity Analysis

. Consider the domain relaxation as a parametric NLP (p̃ = 0)

min f (z)

s.t. g(z)− p̃ 6 0

and a KKT point (z∗, λ∗) fulfilling

∇zL(z, λ) = 0,

λ > 0, g(z)− p̃ 6 0, λ (g(z)− p̃) = 0,

where L denotes the Lagrange function.

. When f , g are C2 it follows from Fiacco and Ishizuka (1990)

∂f
∂p̃i

= −λ∗i .
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Heuristic Switching based on Dual Information
. Consider a solution of the domain relaxation and focus on active arcs.

C
lo

se
d

(q
a

=
0)

Bypass (pw/pv = 1)

pw
pv

qa
pv

Active

λ∗i > 0

Enlarging the operation
space in this direction
can lead to a reduction of
slack.

Switch from active to
bypass.

. Depending on the active constraints and slack values of this solution,
change between the physical states bypass, closed or active.
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Computational Results

network nominations BARON ANTIGONE
SCIP

default with heuristic

version 1 30 - - 4 30
version 2 30 - - 4 18
version 3 30 - - 1 18
version 4 30 - - - 17
version 5 30 - - 1 18

102 103 104

102

103

104

Run time default (sec)

R
un
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e

w
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tic
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Subproblem: Passive Transmission Problem (PTP)

. Assume the network consists of pipelines and valves only.

. Fixing all discrete decisions yields the passive transmission problem (PTP):

∃ q, π, p

s. t. αaqa|qa|ka − β̃a − (πv − γaπw ) = 0 ∀ a = (v ,w) ∈ A′,∑
w :(v,w)∈A′

qv,w −
∑

w :(w,v)∈A′
qw,v = dv ∀ v ∈ V ,

pv |pv | − πv = 0 ∀ v ∈ V ,

πv 6 πv ∀ v ∈ V ,

πv > πv ∀ v ∈ V ,

qa 6 qa ∀ a ∈ A′,

qa > q
a
∀ a ∈ A′.

It holds y
a

= ya and β̃a := βay
a
.
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Feasible and Convex Domain Relaxation

Theorem (H. and Fügenschuh 2013, Collins et al. 1978, Maugis 1977)
The domain relaxation of the PTP is a feasible and convex continuous optimization problem:

min
∆v>0,v∈V

∑
v∈V

∆v

s. t. αaqa|qa|ka − (πv − γaπw ) = 0 ∀ a = (v ,w) ∈ A′,∑
w :(v,w)∈A′

qv,w −
∑

w :(w,v)∈A′
qw,v = dv ∀ v ∈ V ,

πv −∆v 6 πv ∀ v ∈ V ,

πv + ∆v > πv ∀ v ∈ V ,

qa −∆a 6 qa ∀ a ∈ A′,

qa + ∆a > q
a

∀ a ∈ A′,

∆ ≥ 0.
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Different Discrete Decisions (pipelines + valves)

. Squared pressure values for a test network with
2 valves, 4 discrete settings, no flow bounds:
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Solution Framework

Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with
MILP solution

infeasible PTP

feasible no-
de with fixed x

feasible PTP

feasible node
globally solved

infeasible PTP

infeasible node

infeasible node

NLP
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Computational Results

10−1 100 101 102 103 104
0

25

50

75

100

Run time (sec)

N
um

be
ro

fs
ol

ve
d

in
st

an
ce

s
(%

) 3: SCIP + pruning
2: SCIP branch prio
1: SCIP default

Strategies

1. SCIP default

2. SCIP default with branching priorities

3. SCIP with domain relaxation and node classification
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Computational Results

. Strategies
1. SCIP default
2. SCIP default with branching priorities
3. SCIP with domain relaxation and node classification

. Benchmark set: Networks containing only pipes and valves

. Solved instances

strategy 1 2 3 all

solved instances 24 30 45 52

. Means

solved(30) incomp.(1)
time [s] nodes gap [%]

strategy 2 25.9 1,038 15
strategy 3 7.2 147 15

shifted geom. mean −72 % −86 % 0 %
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Solution Framework

Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with
MILP solution

infeasible PTP

feasible no-
de with fixed x

feasible PTP

feasible node
globally solved

infeasible PTP

infeasible node

infeasible node

NLP

Cut
Cut
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Pipe Network Design

. Consider a network consisting of pipes only while different pipe diameters are
available and no flow bounds on the arcs are imposed.
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NLP Lagrange Dual Multipliers

. Consider a network consisting of pipes only while different pipe diameters are
available and no flow bounds on the arcs are imposed.

. For the domain relaxation of the PTP (without flow bounds and γa = 1)

min
∆v >0,v∈V

∑
v∈V

∆v s. t.

[µa]

Φa(qa)︷ ︸︸ ︷
αaqa|qa|ka − β̃a −(πv − πw ) = 0 ∀ a = (v ,w) ∈ A′,

[µv ]
∑

w :(v,w)∈A′
qv,w −

∑
w :(w,v)∈A′

qw,v = dv ∀ v ∈ V ,

[λ+
v ] πv −∆v 6 πv ∀ v ∈ V ,

[λ−v ] πv + ∆v > πv ∀ v ∈ V ,

. the Lagrange dual multipliers are denoted by (µ, λ).
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NLP Lagrange Dual Multipliers

. The dual variables of a KKT point (q∗, π∗,∆∗, µ∗, λ∗) fulfill

µa
dΦa

dqa
(qa) = µv − µw ∀ a = (v ,w) ∈ A′,

∑
w :(v,w)∈A′

µ(v,w) −
∑

w :(w,v)∈A′
µ(w,v) = λ

+
v − λ

−
v ∀ v ∈ V ,

0 ≤ λ+
v


= 0 πv < πv

≤ 1 πv = πv

= 1 πv > πv

0 ≤ λ−v


= 0 πv > πv
≤ 1 πv = πv
= 1 πv < πv .

∀ v ∈ V ,

which are part of the KKT conditions.

. This is a system of the same structure.
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Visualization of Primal Solution

πv > πv

πv > πv

πv < πv

max min
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Visualization of Lagrange Dual Multipliers

πv > πv

πv > πv

πv < πv

max min
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A Nonlinear Inequality for the PTP (1)

πv > πv

πv > πv

πv < πv

P2

P1

For the s1-t1-path P1 it holds

∑
a=(v,w)∈A′(P1)

Φa(qa)︷ ︸︸ ︷
(πv − πw ) = πs1 − πt1

≤ πs1 − πt1

For the s2-t2-path P2 it holds

∑
a=(v,w)∈A′(P2)

Φa(qa)︷ ︸︸ ︷
(πv − πw ) = πs2 − πt2

≤ πs2 − πt2
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A Nonlinear Inequality for the PTP (2)

Setting

∑
w :a=(v,w)∈A′

µ
∗
a −

∑
w :a=(w,v)∈A′

µ
∗
a = λ

+,∗
v − λ−,∗v ∀ v ∈ V ,

for every node v ∈ V every feasible solution (q, π) for the PTP has to fulfill the inequality

∑
a∈A′

µ
∗
a

πv−πw︷ ︸︸ ︷
Φa(qa) =

∑
v∈V

πv

 ∑
w :a=(v,w)∈A′

µ
∗
a −

∑
w :a=(w,v)∈A′

µ
∗
a

 =
∑
v∈V

πv

(
λ

+,∗
v − λ−,∗v

)
6
∑
v∈V

λ
+,∗
v πv − λ−,∗v πv .

This is a nonlinear cut in x , q:

∑
(a,i)∈AX ,i 6=0

µ
∗
a xa,i Φa,i (qa,i ) 6

∑
v∈V

λ
+,∗
v πv − λ−,∗v πv .
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A Nonlinear Inequality for the PTP (3)

. Another valid inequality for the PTP in q:

∑
(a,i)∈AX ,i 6=0

(qa,i − q∗a ) xa,i Φa,i (qa,i ) = 0.

This equality is used as regularization term.

. A linear combination of both with ζ ∈ R≥0:

ζ
∑

(a,i)∈AX ,i 6=0

(qa,i − q∗a ) xa,i Φa,i (qa,i ) + (1− ζ)
∑

(a,i)∈A′,i 6=0

µ
∗
a xa,i Φa,i (qa,i )

6 (1− ζ)
∑
v∈V

(λ+
v
∗
πv − λ−v

∗
πv ).
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Visualization

Visualization of the left-hand side

qa,i 7→ ((1− ζ)µ∗a + ζ(qa,i − q∗a )) xa,i Φa,i (qa,i ) =: lhs(qa,i ).

qa,i

lhs(qa,i )

Use linear underestimator in qa,i of the form

qa,i 7→ const(xa,i ) +
(
ζ(π∗v − π∗w ) + (1− ζ)(µ∗v − µ∗w )

)
qa,i .
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A Linear Inequality for the Topology Optimization Problem

. Every primal solution (q, π) for the topology optimization problem has to fulfill the
following inequality:

const(x) + ζ
∑
v∈V

dvπ
∗
v + (1− ζ)

∑
v∈V

dvµ
∗
v

≤

const(x) +
∑

(a,i)=(v,w,i)∈A′,i 6=0

((
ζ(π∗v − π

∗
w ) + (1− ζ)(µ∗v − µ

∗
w )
)

qa,i
)

≤

ζ
∑

(a,i)∈A′,i 6=0

(qa,i − q∗a )xa,i Φa,i (qa,i ) + (1− ζ)
∑

(a,i)∈A′,i 6=0

µ
∗
a xa,i Φa,i (qa,i )

6 (1− ζ)
∑
v∈V

(λ+
v
∗
πv − λ−v

∗
πv ).

Here: ζ ∈ R+, (q∗, π∗) primal solution to the domain relaxation of the PTP.

An Improved Benders Cut 83



A Linear Inequality for the Topology Optimization Problem

. Every primal solution (q, π) for the topology optimization problem has to fulfill the
following inequality:

const(x) + ζ
∑
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Theorem (H. and Fügenschuh 2013)
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain relaxation for arc set A′ and let (µ, λ) be a dual
transmission flow derived from this KKT point. Denote by x∗ the binary values which yield the domain relaxation.
Let ζ ∈]0, 1[ such that

1. if µa q∗a > 0, then (1− ζ)|µ∗a | < ζ γr,v |q∗a |,

2. if µa q∗a < 0, then (1− ζ) |µ∗v − µ
∗
w − λ

∗
a

+ + λ∗a
−| < ζ γr,v |π∗v − γaπ

∗
w − β̃a|,

3. if µa q∗a = 0, then (1− ζ)µ∗a = 0

holds for every arc a ∈ A′. Then for

f̃ζ,q∗,µ(qa,i , ya,i ) := (ζ γr,v (qa,i − q∗a ) + (1 − ζ)µa) (αa,i qa,i |qa,i |
ka − βa,i ya,i )

˜̀
ζ,π∗,µ,λ(qa,i ) := ζ (π′v (π∗) − π′w (π∗)) qa,i + (1 − ζ)(µv − µw − λ

+
a + λ−a ) qa,i

and constants τa,i (ya,i ) := inf{f̃ζ,q∗,µ(qa,i , ya,i )− ˜̀
ζ,π∗,µ,λ(qa,i ) | q

a,i
≤ qa,i ≤ qa,i} for each arc

(a, i) ∈ AX , i 6= 0 the inequality in binary variables x∑
(a,i)∈AX

i 6=0

xa,i τa,i (ya,i ) 6 −ζ
∑

v∈vs
dvπ
′
v (π∗)

+(1 − ζ)


∑

v∈vs

(
λ

+
v πv − λ

−
v πv

)
+

∑
(a,i)∈AX

i 6=0

xa,i
(
λ

+
a qa,i − λ

−
a qa,i

)
−
∑

v∈V
dvµv


+ζ

∑
a=(v,w)∈A′

xa,0 max
{

q∗a (π′v − π
′
w ), q∗a (π′v − π

′
w )
}

+(1 − ζ)
∑

a=(v,w)∈A
xa,0 max

{
µa(πv − πw ), µa(πv − πw )

}

is valid for the topology optimization problem. This inequality cuts off the PTP corresponding to the arc set A′ if
and only if it is infeasible. For the corresponding decision vector x = x∗ the violation of the inequality is greater
than or equal to (1− ζ) times the optimal objective value of the domain relaxation.



Computational Results

10−1 100 101 102 103 104
0

25

50

75

100

Run time (sec)

N
um

be
ro

fs
ol

ve
d

in
st

an
ce

s
(%

) 2: SCIP + cut generation + pruning
1: SCIP + branch prio

Strategies

1. SCIP default with branching priorities

2. SCIP in combination with cut generation and node pruning
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Computational Results

. Strategies
1. SCIP default with branching priorities
2. SCIP in combination with cut generation and node pruning

. Benchmark set: Networks containing only pipes, loops and valves

. Solved instances

strategy 1 2 all

solved instances 53 64 82

. Means

solved(53) incomp.(18)
time [s] nodes gap [%]

strategy 1 180.0 49,219 159
strategy 2 120.0 8,681 31

shifted geom. mean −33 % −82 % −81 %
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Subproblem: Active Transmission Problem (ATP)

. Fixing all discrete decisions yields the active transmission problem (ATP):

∃ q, π, p, y

s. t. αaqa|qa|ka − βaya − (πv − γaπw ) = 0 ∀ a = (v ,w) ∈ A′,

Aa (qa, pv , pw )T ≤ ba ∀ a = (v ,w) ∈ A′,∑
w :(v,w)∈A′

qv,w −
∑

w :(w,v)∈A′
qw,v = dv ∀ v ∈ V ,

pv |pv | − πv = 0 ∀ v ∈ V ,

y
a
≤ ya ≤ ya ∀ a ∈ A′,

qa 6 qa ∀ a ∈ A′,

qa > q
a

∀ a ∈ A′,

πv 6 πv ∀ v ∈ V ,

πv > πv ∀ v ∈ V .

Here the set of selected arcs is denoted by A′ := {(a, i) ∈ AX : xa,i = 1}.
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Visualization of Lagrange Dual Multipliers

. Use domain relaxation for computing a feasible solution and visualize dual multipliers.

πv > πv

πv > πv

πv < πv

max min
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An MILP for Detecting Infeasibility of an ATP

Theorem (H. 2015)

If the infeasibility detection MILP is infeasible or has a non-positive objective value,
then the active transmission problem (ATP) is infeasible.

max z

s. t.
∑

a∈δ+
A′

(v)

qa −
∑

a∈δ−
A′

(v)

qa = dv ∀ v ∈ V,

x+
v − x−v − xv − κv z = 0 ∀ v ∈ V,

κ̃a (qa − q̃a) > 0 ⇒ xv − xw + xa ≥ 0 ∀ a = (v, w) ∈ A′,

κ̃a (qa − q̃a) = 0 ⇒ xv − xw + xa = 0 ∀ a = (v, w) ∈ A′,

κ̃a (qa − q̃a) < 0 ⇒ xv − xw + xa ≤ 0 ∀ a = (v, w) ∈ A′,

αa (qa − q̃a) > 0 ⇒ sv − sw + sa ≥ κaz ∀ a = (v, w) ∈ A′,

αa (qa − q̃a) = 0 ⇒ sv − sw + sa = 0 ∀ a = (v, w) ∈ A′,

αa (qa − q̃a) < 0 ⇒ sv − sw + sa ≤ κaz ∀ a = (v, w) ∈ A′,

qa ≤ qa ≤ qa ∀ a ∈ A′,

sa ≤ sa ≤ sa ∀ a ∈ A′,

xa ≤ xa ≤ xa ∀ a ∈ A′,

x+
v ≤ x+

v ∀ v ∈ V,

x−v ≤ x−v ∀ v ∈ V,

xv , sv ∈ R ∀ v ∈ V,

x+
v , x−v ∈ R+ ∀ v ∈ V,

xa, sa, qa ∈ R ∀ a ∈ A′,

z ∈ R.
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Solution Framework

Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with
MILP solution

infeasible ATP

feasible no-
de with fixed x

feasible ATP

feasible node
globally solved

infeasible ATP, in-
feasibility detection

MILP has non-
positive objective

infeasible node

infeasible node

NLP
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Results

. Strategies
1. SCIP default
2. SCIP default with branching priorities
3. SCIP in combination with domain relaxation for ATP and node pruning
4. SCIP in combination with domain relaxation for ATP

. Solved instances

strategy 1 2 3 4 all

solved instances 43 48 63 50 63

. Means

solved(48) incomp.(3)
time [s] nodes gap [%]

strategy 2 50.4 2,565 28
strategy 3 62.3 2,021 17

shifted geom. mean 23 % −21 % −40 %
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Performance Plot Operation Instances

10−1 100 101 102 103 104
0

25

50

75

100

Run time (sec)

N
um

be
r

of
so

lv
ed

in
st

an
ce

s
(%

) strategy 3
strategy 4
strategy 2
strategy 1

Sufficient Pruning Conditions 93



Outline

1 Gas Network Expansion via Loops

2 Convex Relaxations for Loop Expansions

3 Summary

4 A Discrete Model for Gas Network Topology Optimization

5 Solution Framework

6 Summary

94



Summary

. A model for the topology optimization problem was presented.

. Improvements of the solving performance of SCIP were obtained by

I computing primal solutions heuristically,

I pruning convex subproblems manually,

I adding valid inequalities.

. The presented adaptations of the MINLP solver SCIP allow to improve the solving
performance of large scale network operation and expansion instances.

. The methods are used by our cooperation partner.
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