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Gas Network Example

Introduction

Given: Gas network G = (V, A)
> nodes

> sources

> sinks

— specified gas flow

> innodes
> pipes

resistors

— nonlinear

> valves
control valves
compressor stations
— binary variables

> MINLP-model



Gas Network Example

Given:

- > Infeasible scenario

E’i;%‘ ~ Goal:

‘- > Feasibility due to cost optimal
%tg loop extensions

> loops = building new pipes in

¥ parallel to existing ones
:IEJQ Y ; ] I Loop impact:
= ﬂi%JJ[ > Reduce pressure loss / more flow
o : long a pipe
i B :
'fib*ﬂ '
Fwfd
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Modelling Pipes

Weymouth equation  pZ — ph = =22 Xyw| Xw|

pv, pw inlet & outlet pressure
aw > 0 weymouth constant
Xvw flow

Py — Pw

Xvw
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Parallel Pipe Merge
X1
O W= O——®
X2

2
P} — Pl = axi|x|

P — P = Bxe|xe|
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Parallel Pipe Merge
Xq
O W= O——®
X2

2 2
Py — Pw = aXq| x|

P — Pl = Bl xe

Transformation to an equivalent single equation for the aggregated flow x = xy + x»:

Pi — P = vx|X|

Modelling Pipes 8



Parallel Pipe Merge
Xq
O W= O——®
X2

2 2
Py — Pw = aXq| x|

P — Pl = Bl xe

Transformation to an equivalent single equation for the aggregated flow x = xy + x»:

Pi — P = vx|X|

Since «, 8 > 0, we know that sign(xs) = sign(xz) = sign(x),

axt = px5 = yx°
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Parallel Pipe Merge
Xq
O W= O——®
X2

2 2
Py — Pw = aXq| x|

P — Pl = Bl xe

Transformation to an equivalent single equation for the aggregated flow x = xy + x»:

Pi — P = vx|X|

Since «, 8 > 0, we know that sign(xs) = sign(xz) = sign(x),

axt = px5 = yx°

Ba

= |ly=—""

(VB+va)®
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Equivalent Diameter

Calculate an equivalent diameter of two parallel pipes:

_CL
a= T o
O Tw=0—®
O e ov e el O il
«
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Equivalent Diameter - Example

orig Pipe = 1[m] equiv Diameter = 1.2 [m] equiv Diameter = 1.28 [m]
1.loop = 0.8 [m] @
2.loop = 0.6 [m] 2.loop = 0.6 [m]

Modelling Diameters 11



Diameters

Given:
> Pipe with original diameter D,
> Diameter candidates {Dx, ..., Dn}

Calculation of equivalent diameters:

. 2/5 )
i := eq(Da, D;) = (D§/2+D?/2) ie{1,..,n
Di; = eq(D;, D)) ije{1,..,n}
Dijx = eq(Di;, De) ijke{1,..n}
(v) b - -~ — @
Da D1 Dn D1,1 Dn,n D1,1,1 Dn,n,n
IO l1 ln I1 )1 ln,n l1 1,1 ln,n,n

Possible diameter allocation of a looped pipe.
i € [07 1]
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Diameters

Given:

> Pipe with original diameter D,
> Diameter candidates {Dx, ..., Dn}

Calculation of equivalent diameters:

A 2/5 ]
i := eq(Da, D;) = (03/2 + D?/z) ie{1,..,n
bi; = eq(D;, D)) ije{t,..,n}
Dijx = eq(Di;, De) ijke{1,..n}
(v) - ————+ - (w)
Da by by D1,1 Dn,n D1,1,1 Dn,n,n
IO =04 /1 =0.6 [n [.‘,1 lnm /1’171 ln,n,n

Possible diameter allocation of a looped pipe.
i € [07 1]
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Intermezzo - Diameters Exercise

Given:
> Pipe with original diameter D,
> Special case: Diameter candidates {D.}

Calculation of equivalent diameters:

D := eq(Da, Ds) single loop
D> := eq(Dy, D,) double loops
Ds := eq(D2, D,) triple loops
Di := eq(Dx_1,Da) = | (k +1)*° D, k loops

(Da; b) (Dy, 1) (D2, ) (Ds, k)

I € 0,1]
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Modelling Diameters

T T T
e Data points , . D
- - - quadratic fit /0' +  Diloop
P ©  Daiop
— / = x Dy loop
5 /,0 Q —e—conv env
g .. 5
8 i 8
= . hot
3 14 3
o 'Y o
o
- ’//
L]
e
_ -
012 014 0.‘6 O.‘B 1‘ 1‘.2 114 0 0.5
Diameters in [m] b=*in[1/m]
Diameter Candidates “Lower Part” of Convex Hull

Fujiwara, O. & Dey, D., "Two Adjacent Pipe Diameters at the Optimal Solution in the Water
Distribution Network Models", Water Resources Research, Vol. 23, Nr.8, p. 1457-1460, 1987.
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Potential Diameters

Original pipe diameter D, = 1.185 [m]

cost factor C(.)

| |
0 0.1 0.2 0.3 0.4 0.5
D=%in[1/m°]
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Potential Diameters

Original pipe diameter D, = 1.185 [m]

cost factor C(.)

| |
0 0.1 0.2 0.3 0.4 0.5
D=%in[1/m°]
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Potential Diameters

cost factor C(.)

D-%in[1/m°]

z /’g:, :} O Q /()

1.loop = 0.5 [m] \\\\\ _--7 ~o 7 o -
~ - S - = - S - -

2.loop = 0.8 [m] SNl 1.loop = 1.4 [m] 1.loop = 1.2 [m]
3.loop = 1.0 [m]

= 3592[€/m] > 0.3-2485[€/m]+0.7-1919 [€/m]

=2083 [€/m]
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Modelling Loops

k
min Zla,i/-ac(ba,i)
Lx,y,A <

i=1 ——

const
b | < fa
st ya= LaC ("5 +Y = >
Da i=1 Dg,i
k
Aa=YyaXalXaland > o =1, ;i €[0,1]
i=0

cost factor c(.)
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Modelling Loops

k
min Zla,,-Lac(Da,,-)
Lx,y,A <

i=1 ——

const C,Ti/r,]A Ca l—a
k .
i st.ca>si ti Vi
S.t.ya:[_ac #_,_Z 135,1 a 2> SiYa+ i
a =1 Mai DAg = YaXa|Xal
K
Aa=YaxalXa and > li=1, la; €[0,1]
i=0

cost factor c(.)
cost factor ca
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Modelling Loops

k
min Zla,,-Lac(Da,,-)
Lx,y,A <

i=1 ——

const C,Ti/r,]A Ca l—a
k .
i st.ca>si ti Vi
S.t.ya:[_ac #_,_Z 135,1 a 2> SiYa+ i
a =1 Mai DAg = YaXa|Xal
K
Aa=YaxalXa and > li=1, la; €[0,1]
i=0

cost factor c(.)
cost factor ca

Ya

Observation: > same LP-relaxation
> same variables as branching candidates
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Modelling Loops

K
min Zla,,-Lac(Da,,-)
Lx,y,A £

i=1 N’

min CaLa
const C,X,,V,A
, Ko st.ca>siyat+ti Vi
st ya=L.C (05 +y = > Da=Ya XalXa
Dz i=1 Dg,i o

=2z, abspower

k N————

Aa=YaxalXa and > li=1, la; €[0,1] ~YarZa quadralic
i=0

cost factor c(.)
cost factor ca

Ya

Observation: > same LP-relaxation
> same variables as branching candidates
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Modelling Loops

K
min Zla,,-Lac(Da,,-)
Lx,y,A £

i=1 N’

const min cz L,
I X L C,X,y,A
st ya=LaC (Dos +2 7% ) Loz syatl 7
a k,'_1 a,i [f(ya, Xa) = YaXa |Xa|]
Az = yaXalXa| and Zla,i =1, l,; €[0,1]
i=0

cost factor c(.)
cost factor ca

Ya

Observation: > same LP-relaxation
> same variables as branching candidates

Modelling Loops 18
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m Motivation
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Comparison with the Convex Underestimator generated by SCIP

Difference between the convex envelope and the convex underestimator generated by SCIP for
fx,y) =y x|x|

Motivation 21
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Preliminaries

Let f: D — R with D C R" convex and compact. The
epigraph of f is defined by the set

epipf = {(x, 1)l x € D, € R, > f(x)}.
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Let f: D — R with D C R" convex and compact. The
epigraph of f is defined by the set

epipf = {(x, 1)l x € D, € R, > f(x)}.

The convex envelope of a nonconvex function
f: D — R over D C R" is given by the tightest
convex underestimator of f:

convp[f](x) = sup{ n(x) | n(y) < f(y)
Vy € D,n: D — R convex}.

Basic Concepts
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Preliminaries

Let f: D — R with D C R" convex and compact. The
epigraph of f is defined by the set

epipf = {(x, 1)l x € D, € R, > f(x)}.

The convex envelope of a nonconvex function
f: D — R over D C R" is given by the tightest
convex underestimator of f:

convo[f](x) = sup{ n(x) | n(y) < f(y) /‘
Vy € D,n: D — R convex}.

convp[f](x) = min{y| (x, u) € conv(epipf)}

Basic Concepts 23



Convex Envelopes

Convex envelope convp[f](x) = min{y| (x, 1) € conv(epiyf)} difficult to find in general.
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Convex Envelopes
Convex envelope convp[f](x) = min{y| (x, 1) € conv(epiyf)} difficult to find in general.

~ leads to solving a nonlinear and nonconvex problem:

convp[f](x) = minu
s.t. Z A Xk = X
k

D Af(x) = p
k

> =1

k

M > 0and xx € DVk
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Convex Envelopes
Convex envelope convp[f](x) = min{y| (x, 1) € conv(epiyf)} difficult to find in general.

~ leads to solving a nonlinear and nonconvex problem:

convp[f](x) = minu

ZAka:X
k
D Af(x) = p
k
> =1
k

Ak > 0and xx € DVk
But convex envelopes are known for several cases, e.g.
concave functions 1-convex f(x,y) = x*-y®  f(x,y) = —Vx-y?

Basic Concepts 24
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Reformulation of Factorable Functions

Techniques to generate convex underestimators:

> Nonlinearities are given as factorable functions
Factorable functions

> Recursive sum of products of univariate functions

> Reduce to simple cases by introducing new variables and equations for
subexpressions

Example

f(x,y) =y x|x|
X € [_373]! ye [172]

Basic Concepts



Reformulation of Factorable Functions

Techniques to generate convex underestimators:

> Nonlinearities are given as factorable functions
Factorable functions

> Recursive sum of products of univariate functions

> Reduce to simple cases by introducing new variables and equations for
subexpressions

Example

f(x,y) =y x|x| L Jf=yw fe[-9.18
xe[-3,3], ye1,2] w=x|x| wel9,9
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Reformulation of Factorable Functions

Techniques to generate convex underestimators:

> Nonlinearities are given as factorable functions
Factorable functions

> Recursive sum of products of univariate functions

> Reduce to simple cases by introducing new variables and equations for
subexpressions

Example
f(x,y) =y x|x| L Jf=yw fe[-9.18
xe[-3,3, ye1,2] w=x|x| wel9,9
X - |x|
y-w
y

|

Basic Concepts



Generating Set

The generating set of the convex envelope of f over
a compact and convex set D is defined by

Gp(f) == {x € D| (x, convp[f](x))
is an extreme point of conv (epijf)}.

Basic Concepts 26



Generating Set - Example McCormick

fx,y)=xy, xe[x,x], yelyVl

x=x)(y—-y)=0
=Xy > XY+ XY —Xy

(x-x)(y-y) =0
=Xy > XY+ Xy - Xy

Convex envelope of f(x,y) = xy:

convp[f](x,y) =
max{xy + Xy — Xy, Xy + xy — xy}
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Generating Set - Example McCormick

fx,y)=xy, xe[x,x], yelyVl

x=x)(y—-y)=0
=Xy > XY+ XY —Xy

(x-x)(y-y) =0
=Xy > XY+ Xy - Xy

Convex envelope of f(x,y) = xy:

convp[f](x,y) =
max{xy + Xy — Xy, Xy + xy — xy}

Generating set: Gp(f) =?
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Generating Set - Example McCormic

Convex envelope of f(x,y) = xy :
convp[fl(x,y) =
max{Xy + Xy — Xy,xy + xy — xy}

Basic Concepts 28



Generating Set - Example McCormick

Convex envelope of f(x,y) = xy :
convp[fl(x,y) =
max{Xy + Xy — Xy,xy + xy — xy}

Theorem, Tawarmalani and Sahinidis,
2002

Let f: D — R, with D C R" compact and
convex. If there exists a segment Iy C D
that contains x in its relative interior, i.e.
x €ri (lkn D), and f is concave over

ri (ik N D), then x ¢ Gp(f).
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Generating Set - Example McCormick

Convex envelope of f(x,y) = xy :

convpl[f](x,y) =

max{xy + Xy — Xy, Xy +xy — xy}
Theorem, Tawarmalani and Sahinidis,
2002

Let f: D — R, with D C R" compact and
convex. If there exists a segment Iy C D
that contains x in its relative interior, i.e.
x €ri (lkn D), and f is concave over

ri (ik N D), then x ¢ Gp(f).

Generating set is given by:

Go(f) = {(x,z) ,(%,Y), (7: Z) (X, ¥)}

Basic Concepts 28



Generating Set - Example McCormick

Convex envelope of f(x,y) = xy :
convp[fl(x,y) =
max{Xy + Xy — Xy,xy + xy — xy}

Theorem, Tawarmalani and Sahinidis,
2002

Let f: D — R, with D C R" compact and
convex. If there exists a segment Iy C D
that contains x in its relative interior, i.e.
x €ri (lkn D), and f is concave over

ri (ik N D), then x ¢ Gp(f).

Generating set is given by:

Go(f) = {(x,z) ,(%,Y), (7: Z) (X, ¥)}

Convex envelope is vertex polyhedral, if
> its epigraph is polyhedral
> its vertices correspond to the vertices of the
domain

Basic Concepts 28
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Finding Convex Envelope of f(x,y) = y x |x|

f (%, y) = y x|x|

f(x,y) =y xIx| _
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Finding Convex Envelope of f(x,y) = y x |x|

f (%, y) = y x|x|

fx,y) = yx|x| <

Theorem, Tawarmalani and Sahinidis,
2002

Let f: D — R, with D C R” compact and
convex. If there exists a segment /x C D that

contains x in its relative interior, i.e. v y\
x €ri (I N D), and f is concave over ri (i N D), y \

then x ¢ Gp(f).
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Finding Convex Envelope of f(x,y) = y x |x|

f (%, y) = y x|x|

fx,y) = yx|x| <

Theorem, Tawarmalani and Sahinidis,
2002

Let f: D — R, with D C R” compact and
convex. If there exists a segment /x C D that

contains x in its relative interior, i.e. v y\
x €ri (I N D), and f is concave over ri (i N D), y \

then x ¢ Gp(f).

Observation:
Generating set Gp(f) is subset of y boundary

Finding Convex Envelope of f(x, y) = y x | x| 30



Finding Convex Envelope of f(x,y) = y x |x|

Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epipf) = conv(epi,f) if and only if
Go(f) C A

fx,y) = yxIx| <
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Finding Convex Envelope of f(x,y) = y x |x|

Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epipf) = conv(epi,f) if and only if
Go(f) C A

conv(epipf) = conv(epiDyU%f)
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Finding Convex Envelope of f(x,y) = y x |x|

Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epi,f) = conv(epi,f) if and only if
Go(f) C A

conv(epipf) = conv(epiDyu%f)

= conv(epip, fU epi%f)

¥
= conv(conv(epip, f) U conv(epi,, )) y\
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Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epi,f) = conv(epi,f) if and only if
Go(f) C A

conv(epipf) = conv(epiDyu%f)
= conv(epip, fU epi%f)

= conv(conv(epiDy f)u conv(epiDyf))
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Finding Convex Envelope of f(x,y) = y x |x|

Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epi,f) = conv(epi,f) if and only if
Go(f) C A

conv(epipf) = conv(epiDyu%f)

= conv(epip, fU epi%f)

¥
= conv(conv(epip, f) U conv(epi,, )) y\

conv(epipf) = conv(epi, p U epi%cp)
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Finding Convex Envelope of f(x,y) = y x |x|

Theorem

Let f: D C R" — R and A be a subset of D.
Then conv(epi,f) = conv(epi,f) if and only if
Go(f) C A

conv(epipf) = conv(epiDyu%f)
= conv(epip, fU epi%f)

= conv(conv(epip f) U conv(epiDyf))
conv(epipf) = conv(epi, p U epi%cp)

yx® X > Bx

SD(ny) = {25)()(_}/— (ﬁ1)2y X < Bl,

Finding Convex Envelope of f(x, y) = y x |x|




Solution Approach - Optimization Problem

Remember: convp[f](x,y) = min{y| (x,y, 1) € conv(epipf)}
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Solution Approach - Optimization Problem

Remember: convp[f](x,y) = min{y| (x,y,u) € conv(epipf)}
In our case: convp[f](x,y) = min{y| (x,y,u) € conv(epiDycp U epi%w)}.
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Solution Approach - Optimization Problem

Remember: convp[f](x,y) = min{y| (x,y,u) € conv(epipf)}
In our case: convp[f](x,y) = min{y| (x,y,u) € conv(epiDycp U epi%w)}.

(x,¥, 1) € conv(epip, ¢ Uepip o) <
(X7ya :u) = (1 - A)(Xth/“) + )‘(X27Y7/J'2)
AE [071]5X13X2 € [K,Y],,U/1 > SD(X1)Z)7/'L2 > SO(X27Y)

Finding Convex Envelope of f(x, y) = y x | x| 32



Solution Approach - Optimization Problem

Remember: convp[f](x,y) = min{y| (x,y,u) € conv(epipf)}
In our case: convp[f](x,y) = min{y| (x,y,u) € conv(epiDycp U epi%w)}.

(x,¥, 1) € conv(epip, ¢ Uepip o) <
(X7ya :u) = (1 - A)(Xth/“) + )‘(X27Y7/J'2)
AE [05 1])X13X2 € [K,Y],,U/1 > SD(X1)Z)7/'L2 > SO(X27Y)

2“)2 (1= N1, y) + Ap(xe, ¥)
st (1 =A)x + X e =x
A=Ay+rxy=y
A €[0,1]

(X17X2) € [17Y]2

Finding Convex Envelope of f(x, y) = y x | x| 32



Solution Approach - Optimization Problem

mln(1 - )‘)@(th) + )‘QO(XZaY) 7
X1,X2 -

st.(1=XN)x1 + e =x
(A=Ay+xy=y e (X,¥)
A€ [0,1]

(X1 s X2) € [K7Y]2

<

>
x|

Finding Convex Envelope of f(x, y) = y x | x| 33



Solution Approach - Optimization Problem

min(t - Ne(x,y) + Xe0e7) ¥ by
st.(1=X)x 4+ e =x
(A=Ay+xy=y (x,¥)
A€ [0,1] y \
(x1,%) € [x,X]° X (x1,¥) X

Finding Convex Envelope of f(x, y) = y x | x| 33



Solution Approach - Optimization Problem

min(t - Ne(x,y) + Xe0e7) ¥ ey
st.(1=X)x 4+ e =x
(A=Ay+xy=y (x,¥)
A€ [0,1] y \
(x1,%) € [x,X]° X (x1,¥) X

Finding Convex Envelope of f(x, y) = y x | x| 33



Solution Approach - Optimization Problem

min(1 ~ Xe(a.9) + p(e.7) ¥ b
st.(1=X)x 4+ e =x
(A=Ay+xy=y (x,¥)
A€ [0,1] y \
(X1, %) € [x, X]° X (x1,¥) X

Using xo = tx,y(x1), we can rewrite it to a 1-dim the optimization problem:

rr)l(in (1 =X )e(x, y) + Ayp(tey(x1), ¥)

s.t. x < x4

X
X < ty(x) <X

<
<

Finding Convex Envelope of f(x, y) = y x | x|



Solution Approach

Optimization Problem is of the form:

min F(xy)
st.a<xi<b

with

FOa) = (1 = X)e(x, ) + Aye(teoy (), ¥)

Finding Convex Envelope of f(x, y) = y x |x| 34



Solution Approach

Optimization Problem is of the form:

min F(xy) )
st.a<x3<b
with
F(x1) = (1 = A\)e(x1,y) + Ayp(bey(x1),¥)
Remark:

F(x1) is convex = the solution of Problem 1 is F(mid(a, b, x*))
Note: > mid(x1, X2, X3) selects the middle value of three given scalars

Finding Convex Envelope of f(x, y) = y x | x| 34



Solution Approach

Optimization Problem is of the form:

min F(xy) )
st.a<x3<b
with
F(x1) = (1 = A\)e(x1,y) + Ayp(bey(x1),¥)
Remark:

F(x1) is convex = the solution of Problem 1 is F(mid(a, b, x*))
Note: > mid(x1, X2, X3) selects the middle value of three given scalars

F(xy) is coercive, i.e., limy, o0 F(X1) = co and limy, o F(X1) = 00
= F(x1) has a global minimum

> It can be shown that the global minimum of F(x1) is unique

Finding Convex Envelope of f(x, y) = y x | x| 34



To compute the minimum, we solve equation F'(x;) = 0.

y l y

4 - Y -
X Bx X X Bx X

yg y

4 >~ Y el
X Bx X X Bx X
sol: x5, if by (X/g) < Bx sol: x4g if tx,y(Xgg) > Bx

F(mid(a, b, xg,)) if txy(x4) < Bx
F(mid(a, b, x3z)) otherwise

convpl[f](x,y) = {

Solution:

convp[f](x,y) = F(min {b, max{xa., Xar}})

Finding Convex Envelope of f(x, y) = y x | x| 35!



(@) f(x,y) = y x|x| (b) convp[f](x, y)

36




Computational Experiments

Belgium network with circles

using SCIP 3.1.1

Finding Convex Envelope of f(x, y) = y x | x| 37



600 |-

400 |-

Dual bound (with cuts)

200 400 600
Dual bound (without cuts)
1h runtime

average dual bound improvement with cuts: 11%

Finding Convex Envelope of f(x, y) = y x | x| 38



B Summary



> We presented two equivalent models for optimal gas network expansion planning
with continuous loop lengths, where
» parallel pipes are represented by one “symbolic” pipe using equivalent diameters,
» equivalent diameters correspond to extreme points of the “lower” part of the
convex hull

> We showed basic ideas that might help to find the convex envelope of a nonconvex
function,

» such as using the generating set to simplify the resulting optimization model

> As an example, we calculated the convex envelope of the nonconvex function
f(x,y) = y x|x| that arises in the presented network expansion models



Questions?

Thank you!

Ralf Lenz <lenz@zib.de>
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Gas Network Operation - Pressure Distribution

> Entry

[ Exit
> pressure loss

o due to friction

§ lgg%/’ﬁ
o

80 bar m—— T sossssmmm 10 bar
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Gas Network Operation - Pressure Distribution
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Gas Network Operation - Pressure Distribution
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> Entry =
O Exit
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Gas Network Operation - Pressure Distribution

®
pemm— — |
=" <
> Entry =
O Exit
> pressure loss
Pt due to friction
“L. m]
L”HE:
80 bar m—— T oo 10 bar
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Extended Gas Network - Pressure Distribution

> The pressure distribution changes when adding network elements:

il
[l I
original network extended network

Introduction 45



Gas Network Elements

Pipeline — Compressor — Control Valve — Valve

Introduction 46



Building Cost

> € 0.5 - 2.5 million per km pipeline

> € 2.6 - 8.9 million per new control valve

> € 17 - 41 million per additional compressor
> € 35 - 78 million per new compressor station

Introduction 47



Optimization Problem Formulation

Topology Optimization Problem

Given: > a detailed description of a gas network
> a nomination specifying amounts of gas flow at entries and exits
> a list of candidates of network extension

Task: Find
> cost-optimal selection of network extensions

& settings for active devices
(valves, control valves, compressors)

& values for physical parameters of the network that comply with

» gas physics
> legal and technical limitations

Introduction



B A Discrete Model for Gas Network Topology Optimization

m MINLP Formulation
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Network Elements and Variables

> A gas transportation network is modeled by a directed graph

G=(V,A).

> Arc types:

> passive: pipelines
» active: compressors, control valves, valves

> Variables:

Qa flow foreacharcae A

v, Py (squared) pressure for
eachnode v e V

MINLP Formulation




> The flow g of pipe a € Ais restricted by the non-convex equation:

Qa

Qg CIa|Qa‘ = Tv — YaTw

> pressure loss due to friction

> g~ % is a constant for pipe a, depending on its length L, diameter D, height
and physical gas constants.

MINLP Formulation 51



Compressors - Control Valves - Valves

> A compressor a = (v, w) € Ais described by three operation modes:

» Closed: arc ais deleted (ga = 0)
» Bypass: arc ais contracted, endnodes v and w are identified (p, = pw)

» Active: flow and pressures are restricted by linear inequalities
(Aa(Qa, Pv, pw)T < ba)

80
70

3 60
]
3

m 50
40
30
2 3 4
Qa
Had,a ~ pw/Pv , Qa ~ Qa/py polytope

> A control valve is modeled similarly to a compressor.
> A valve can only be closed or in bypass.

MINLP Formulation 52



Combination of Compressor Stations

Had,a ~ pw/pv y Qa~ Qa/pv

polytope




Subnetwork Operation Modes

> Due to symmetry and technical limitations only a subset of the potential
configurations corresponds to real operation modes.

MINLP Formulation 54



Extended Gas Network

> An extended gas transportation network is modeled by a directed multigraph

G=(V, Ax).

> The extended graph contains

all original arcs,

additional arcs for active elements,
additional arcs for loops,
additional arcs for extensions.

vVYyVvyy

original network extended network

Xi,2

g X .

as ve Gs.1 S *’ .
Vie Ve * 2/ . o 2

Q" 3¢ I
] | .
| .
52\4 £y ' : g ' )(2\4 o1
o ' 3 ! .
v
A X3,1
X3,2

'
\ /
\ ,
\
N 3
N

variables g, ™ variables x
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MINLP Model of Topology Optimization Problem

min E Ca,iXa,i

(a,) €Ay
s.t. Xai=1= aa,,-qa,,'lqa,ilka — Ba,iYa,i — (my — Yamw) = 0 V(a, i) = (v,w,i) € Ax,i #0,
Xai = 1= Aa(Gai, PvsPw)| <O V(a,i) = (v,w,i) € Ax,i > 2,
Xai=0=Q,;=0 V(a,i) € Ax,i #0,
ST xai=1 VacA,
i(a,))€Ay
D Gwi— > Gwwi=0d vvev,
w,i:(v,w,i)EAX, w,ii(w,v, ) EA,
0 0
pvlpy| —m =0 vvev,
R s m <m < vvev,
\'/ 4., <G <, V(a,i) € Ax,
Za,i <}/E,i<ya,i Vv (a,f) € Ax,
VAR Xa,i € {0,1} v (a, i) € Ax,
W
. X e X.

ks = 2 for pipes; ks = 1, ag = 0 for active arcs
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MINLP Model of Topology Optimization Problem

min E Ca,iXa,i

(a,) €Ay
St Xai=1= 22i0ail0ail® — BaiVai — (7v — vamw) = 0 (selected) pipelines
Xa,i =1 = Aa(Qa,i, Pv, pw)T <0 (active) compressors / control valves
Xai=0=Q,;=0 closed / non-selected elements
Z Xai =1 pipe / operation mode selection
i(a,)eAy
Z Qu,w,i — Z Qw,v,i = Qv flow conservation
w,i:(v,w,i)EAX, w,ii(w,v,)EA,
i#0 i#0
pvlpy| —m =0 (squared) pressure coupling
Lo A, _—7" . ™, < Ty < Ty bounds
\*_./ 9, < 9ai < Tay bounds
Voi S$Vai<Va bounds
Y Xa,i € {0,1} binary variables
W
. X e X. subnetwork operation modes

ks = 2 for pipes; ks = 1, ag = 0 for active arcs

MINLP Formulation 56



Computational Study

e

> Large-scale network provided
by Open Grid Europe GmbH

> Size:

4165 nodes
39883 pipes e
308 valves
12 compressors
121 control valves

=
B

v

T TR

vy vy VvYy

> nominations: 30

> feasibility problem

> timelimit: 4h

> Computational results:

Baron Antigone SCIP
feas infeas timelimit feas infeas timelimit feas infeas time limit
- 3 27 - 28 2 1 - 29

MINLP Formulation 57



Spatial Branching in SCIP

3,000 - B
2,000 - 8

1,000 - B

U Galdal
-
:
‘

—1,000 | |

~2,000 |- ,

~3,000 |- )

1 [
-10000 0 10000
Ga

positions with cutting planes during branch and bound
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[l Solution Framework
m A Primal Heuristic
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Domain Relaxat

> Consider the domain relaxation of the ATP:

3ot T (Bat A st

A >0 ve 12
'z acA

s.t. 2Qa|Gal*@ — Baya — (v — Yamw) =0 Va=(v,w) €A,

Aa(Ga,pvpw) —Ba<bs  Va=(v,w)eA,

Z Quv.w — Z Quw,v = dv Yvev,

wi(v,w)eA’ wi(w,v)eA
pvlpy| — T =0 vvev,

¥, <¥a<y, Vach,

da—A0a<q, Vach,

Gat+Da2q, vaec A,

m — Ay < Ty vvev,

T+ A 2T, Yvev,
A>0

A Primal Heuristic 61



Parametric Sensitivity Analysis

> Consider the domain relaxation as a parametric NLP (p = 0)
min f(z)
st. g(z)-p<0
and a KKT point (z*, A*) fulfilling
V:L(z,\) =0,
A20, g(z2)-p<0, A(g(2) -p) =0,

where £ denotes the Lagrange function.

> When f, g are C? it follows from Fiacco and Ishizuka (1990)

of .
FamE

A Primal Heuristic 62



Heuristic Switching based on Dual Information

> Consider a solution of the domain relaxation and focus on active arcs.

> Depending on the active constraints and slack values of this solution,
change between the physical states bypass, closed or active.

A Primal Heuristic

Pw
Pv

=0)

Closed (ga

9a

Pv

Bypass (pw/pv = 1)



Heuristic Switching based on Dual Information

> Consider a solution of the domain relaxation and focus on active arcs.

Pw
Pv

0)

Closed (ga

slack.

A >0

Bypass (pw/pv = 1)

Enlarging the operation
space in this direction
can lead to a reduction of

9a

> Depending on the active constraints and slack values of this solution,
change between the physical states bypass, closed or active.

A Primal Heuristic
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Heuristic Switching based on Dual Information

> Consider a solution of the domain relaxation and focus on active arcs.

Pw
Pv

0)

Closed (ga

Enlarging the operation
space in this direction
can lead to a reduction of
slack.

A >0

Switch from active to
bypass.

9a

Bypass (pw/pv = 1)

Pv

> Depending on the active constraints and slack values of this solution,
change between the physical states bypass, closed or active.

A Primal Heuristic



Heuristic Switching based on Dual Information

> Consider a solution of the domain relaxation and focus on active arcs.

Pw
Pv

9a
Pv

pass (pw/pv = 1)

> Depending on the active constraints and slack values of this solution,
change between the physical states bypass, closed or active.
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Computational Results

Run time with heuristic (sec)

108

102

T

10?

A Primal Heuristic

10°
Run time default (sec)

network  nominations with heuristic
version 1 30 4 30
version 2 30 4 18
version 3 30 1 18
version 4 30 - 17
version 5 30 1 18
i\\HH‘ \\\HH‘ T
10* )




[l Solution Framework

m Node Pruning during Branch-and-Bound
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Subproblem: Passive Transmission Problem (PTP)

> Assume the network consists of pipelines and valves only.
> Fixing all discrete decisions yields the passive transmission problem (PTP):

3q,mp

S.t. 02Ga|al®® — Ba — (mv — vamw) =0  Va=(v,w) € A,

Z Qvw — Z Qw,v =d, Vvev,

wi(v,w)eA wi(w,v)eA

pvlpv| — v =0 vYvev,

m ST YveV,
mzm, VYveV,
02 <q, Vach,
ga>q Vach.

[y

Itholds y_ = ¥, and Ba := Bay .
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Feasible and Convex Domain Relaxation

Theorem (H. and Fligenschuh 2013, Collins et al. 1978, Maugis 1977)

The domain relaxation of the PTP is a feasible and convex continuous optimization problem:

min A
Ay20veV DBIEY
veV

S. 1 Oéaqalqa|ka —(7rv—’}’a7'l'w):0 Va:(v, W) EA/,
> oaw— >, awu=d  VYvev,
w:(v,w)eA’ wi(w,v)eA

v — Ay < Ty VYvev,
v+ Ay 27, Yvev,
Ga—Da<q, Vach,

q Vac A,

Node Pruning during Branch-and-Bound 67



Different Discrete Decisions (pipelines + valves)

> Squared pressure values for a test network with
2 valves, 4 discrete settings, no flow bounds:

T
a8s®
g 6,000 %T .
T;s eoovve®® o
ewewve00 %50
000
g 000gg°°%99
)
Z 4,000 - .
i] 099 g..
e 000004
=
= °
£ 2,000 ce®ee®®
L ° |
& 5 3:"“ °
o 000
=)
s
Z
ol e |
| | | | | | | |

Node index
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Solution Framework

Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with feasible no- infeasible node
MILP solution de with fixed x
Q infeasible PTP feasible PTP infeasible PTP

feasible node
globally solved

infeasible node

Node Pruning during Bral -Bound 69




Computational Results

100 [T T T T T
;\3 ——— 3: SCIP + pruning
e ——— 2: SCIP branch prio
S 75| |—— 1:SCIP default :
]
1]
£
8 50 .
>
o
(2]
S
3 25 -
Q
£
>
=z
0 TN T 1T T T A A N1 B

10~"  10° 10! 102 10°  10*
Run time (sec)

Strategies

1. SCIP default

2. SCIP default with branching priorities

3. SCIP with domain relaxation and node classification

Node Pruning during Brancl



Computational Results

> Strategies

1. SCIP default
2. SCIP default with branching priorities
3. SCIP with domain relaxation and node classification

> Benchmark set: Networks containing only pipes and valves

> Solved instances

strategy 12 3]al
solved instances 24 30 45 | 52

> Means
solved(30) incomp.(1)
time[s] nodes gap [%]
strategy 2 25.9 1,038 15
strategy 3 7.2 147 15

shifted geom. mean —-72% —86% 0%

Node Pruning during Branch-and-Bound 4
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m An Improved Benders Cut
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Solution Framework

Branch-and-bound, separation, and spatial branching
7 A\

node of branching tres)

cut”

feasible nod_e":with feasible no- infeasible node

MILP solition de with fixed x

feasible PTP

feasible node
globally solved

infeasible PTP

infeasible PTP

infeasible node

An Improved Benders Cut




Pipe Network Design

> Consider a network consisting of pipes only while different pipe diameters are
available and no flow bounds on the arcs are imposed.

An Improved Benders Cut 74



NLP Lagrange Dual Multipliers

> Consider a network consisting of pipes only while different pipe diameters are
available and no flow bounds on the arcs are imposed.

> For the domain relaxation of the PTP (without flow bounds and v, = 1)

A ;noin v E A, s.t
v=20,ve vev

a(qa)
[a] aaqra|%|ka_5a—(77v—77w):0 Va=(v,w) €A,
[1v] Z Qv,w — Z Qu,v = dy vvev,
w:(v,w)eA wi(w,v)eA
] m—A, KT VYVEV,
A1 m+ Ay 2@, vvev,

> the Lagrange dual multipliers are denoted by (x, A).

An Improved Benders Cut



NLP Lagrange Dual Multipliers

> The dual variables of a KKT point (g%, 7*, A*, 1™, \*) fulfill

do
tia ——(Ga) = pv — fiw Va=(v,w)e A,
aga
Do omww = DL B =A = A Yvev,
w:(v,w)eA! wi(w,v)eA

=0 m <7y =0 T > @,
0< A<t mny=7y 0< A\, (<1 my=m, Yvev,
=1 7y >7y

=1 m<m,.

which are part of the KKT conditions.

> This is a system of the same structure.
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Visualization of Primal Solution

7T\/>ﬁ|/

Ty <EV

T T Min
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Visualization of Lagrange Dual Multipliers

An Improved Benders Cut 78



A Nonlinear Inequality for the PTP (1)

For the s;-t;-path P; it holds

®a(3a)
(mv — mw) = ms; — T
a=(v,w)eA’ (Py)

S ﬁ$1 - Eh

For the s,-f>-path P- it holds

®a(qa)

(v — Tw) = s, — Ty

a=(v,w)€A’(P,)

An Improved Benders Cut 79



A Nonlinear Inequality for the PTP (2)

Setting

w:a=(v,w)eA’ w:a=(w,v)eA’

for every node v € V every feasible solution (g, ) for the PTP has to fulfill the inequality

Zuavq:;—Zm< Soom— > u2>=ZWv</\J’*AV’*)

acA’ vev w:a=(v,w)eA’ w:a=(w,v)EA’ vev

< ONTE A,

veV

This is a nonlinear cut in x, g:

Z M;Xa,i‘ba,l(%l Z)\} Ty — L,~

(a,)) €Ay ,i#0 vev

An Improved Benders Cut 80



A Nonlinear Inequality for the PTP (3)

> Another valid inequality for the PTP in g:

Z (qa,i - Q;)Xa,i‘t'a,i(Qa,i) = 0.
(a,))EAy,i0

This equality is used as regularization term.

> A linear combination of both with ¢ € Rx>o:

¢ D0 (Gai— ) Xai®ai(a)+ (1 =0 D 1 Xai®ai(da)

(a,i)EA ,i0 (@,i)EA’,i0

SU=0> (=X ")

vev

An Improved Benders Cut al



Visualization

Visualization of the left-hand side
Qai — (1 = Q)pa + C(Gai — Ga)) Xa,i®a,i(Ga,i) =: 1hS(Qqa,i)-

1hs(Qa,)

=~ Qa,i

~
~
~

Use linear underestimator in g, ; of the form

Ga,i — const(xa,) + (C(my — mw) + (1 = )1y — 11w)) Gai-

An Improved Benders Cut 82



A Linear Inequality for the Topology Optimization Problem

> Every primal solution (g, 7) for the topology optimization problem has to fulfill the
following inequality:

¢ > (Gai— @)%i®ai(@a) + (1 =0 D 1iXai®ai(9a)

(a,)EA’ ,ix0 (a,))EA’ ,ix0

SU=0> 0 F =X ")

veV
Here: ¢ € Ry, (g*, ©*) primal solution to the domain relaxation of the PTP.

\_/

An Improved Benders Cut 83



A Linear Inequality for the Topology Optimization Problem

> Every primal solution (g, 7) for the topology optimization problem has to fulfill the
following inequality:

const(x) + > ((€@my —m0) + (1 = 1y = 1)) Gai)

(a,))=(v,w,i) €A ,i0

<( Z (Qa,i — qz)xa,iq)a,i(Qa,i) +(1-0) Z H;Xa,id:‘a,i(%,i)

(a,)EA’ ,ix0 (a,))EA’ ,ix0

SU=-0> (" =X, m).

veV
Here: ¢ € Ry, (g*, ©*) primal solution to the domain relaxation of the PTP.

\_/
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A Linear Inequality for the Topology Optimization Problem

> Every primal solution (g, 7) for the topology optimization problem has to fulfill the
following inequality:

const(x) + ¢ > dvmy +(1-¢) > doy
veV veV

< const(x) + > ((Cmy = m0) + (1 = Oy = #13)) Gai)

(a,))=(v,w,i) €A ,i0

<( Z (Qa,i — qz)xa,iq)a,i(Qa,i) +(1-0) Z H;Xa,id:‘a,i(%,i)

(a,)EA’ ,ix0 (a,))EA’ ,ix0

SU=-0> (" =X, m).

veV
Here: ¢ € Ry, (g*, ©*) primal solution to the domain relaxation of the PTP.

\_/
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Theorem (H. and Figenschuh 2013)

Let (q*, m*, A*, u*, X\*) be a KKT point of the domain relaxation for arc set A" and let (u, \) be a dual
transmission flow derived from this KKT point. Denote by x* the binary values which yield the domain relaxation.
Let ¢ €]0, 1] such that

1. ifuaqy > 0, then (1 — Q) ug] < Cvrvlgzl,
2. ifpagy <O, then(1—¢) |y — piy — Ni¥ + 571 < Crvlmy — vamy — Bal,
3. ifpaqy; =0,then(1 —)p; =0
holds for every arc a € A’. Then for
T g% u(@ais Ya,) = (€ rvi@a; — G3) + (1 = QOua) (va ) g 1194 12 = Ba i¥a i)
L pal@a,) = C(ry (™) = mi (7)) gg j + (1 = Oliv — ww — AL + A7) da,
and constants 7a,i(¥a,i) = inf{% g+ ,.(Ga.i: Ya.i) = Zc,n* 2 (Gai) | 4, ; < Gai < Ty} for each arc
(a,i) € Ax, i # 0 the inequality in binary variables x
3 xaiTaila) < —¢ X dvmi(n®)

(a,i)EAY vEvs
i#0

=0 X (WA - )+ X % T — A7 9,) - X dvny

VEVS (a,)eAx vev
i#0
X xgomax{gz(my — ). 45 () — 7y}
a=(v,w)eA’

+(1 - ¢) > xgomax{pa(® — my), palry, — 7w)}
a=(v,w)eA

is valid for the topology optimization problem. This inequality cuts off the PTP corresponding to the arc set A’ if
and only if it is infeasible. For the corresponding decision vector x = x™ the violation of the inequality is greater
than or equal to (1 — ¢) times the optimal objective value of the domain relaxation.



Computational Results

100 L L L L L I
:\5 ——— 2: SCIP + cut generation + pruning
e —— 1: SCIP + branch prio
8 75|
C
]
®
k=
B 50|
=
]
(7]
ks
o 25|
e}
S
>
z

LTI A el vl vl vl

0
107" 10° 10° 10? 108 10
Run time (sec)

Strategies
1. SCIP default with branching priorities
2. SCIP in combination with cut generation and node pruning
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Computational Results

> Strategies

1. SCIP default with branching priorities
2. SCIP in combination with cut generation and node pruning

> Benchmark set: Networks containing only pipes, loops and valves

> Solved instances

strategy 1 2] al

solved instances 53 64 | 82

> Means
solved(53) incomp.(18)
time [s] nodes gap [%]
strategy 1 180.0 49,219 159
strategy 2 120.0 8,681 31
shifted geom. mean —-33% —82% —81%

An Improved Benders Cut 86



[l Solution Framework

m Sufficient Pruning Conditions
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Subproblem: Active Transmission Problem (ATP)

> Fixing all discrete decisions yields the active transmission problem (ATP):

3q,m,p,y

st a0a|Gal"® — Baya — (v — Yamw) =0 Va=(v,w) €A,
A (Ga: pvsPw)” < ba Va=(v,w) €A,

S oaw— >, qwe=d Yvev,

w:(v,w)eA wi(w,v)eA

pvlpy| —m =0 vvev,

Y,<Ya<Va vac A,

Ga < G, vacA,

% >4, vaeA,

Ty < Ty vvev,

T 2 W, YveV.

Here the set of selected arcs is denoted by A" := {(a, ) € Ax : Xaj = 1}.
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Visualization of Lagrange Dual Multipliers

> Use domain relaxation for computing a feasible solution and visualize dual multipliers.

Sufficient Pruning Conditions 89



Theorem (H. 2015)

If the infeasibility detection MILP is infeasible or has a non-positive objective value,

An MILP for

then the active transmission problem (ATP) is infeasible.

Sufficient Pruning Conditions

s.t. z 9a —
a5}, (v)
X =

max z

z Qa = dv

aeéA’,(v)

— Xy —kyz=0

#a(Ga—Qa) >0 = xy — Xw+Xa >0

Ra(Ga —4a) =0 = Xy — xw +xa =0

Ra(9a —Ga) <0 = Xy —xw+xa <0

@a(qa —da) >0 = sy — sw +sa

2a(ga — §a) =0 = sy — sw + Sa =

ag(da —Ga) <0 = sy — sw +sa <

9, < Qa
55 < sa

Xg < Xa

> raZ

Vvev,

etecting Infeasibility of an



Solution Framework

Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with feasible no- infeasible node
MILP solution de with fixed x
N

infeasible ATP, in-

- feasibility detection
Q infeasible ATP feasible ATP MILP ﬁas non-
positive objective

feasible node
globally solved

| infeasible node |

91




> Strategies
1. SCIP default
2. SCIP default with branching priorities
3. SCIP in combination with domain relaxation for ATP and node pruning
4. SCIP in combination with domain relaxation for ATP

> Solved instances

strategy 12 3 4]al
solved instances 43 48 63 50 | 63

> Means
solved(48) incomp.(3)
time[s] nodes gap [%]
strategy 2 504 2,565 28
strategy 3 62.3 2,021 17

shifted geom. mean 23% -21% —40%
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Performance Plot Operation Instances
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B Summary



> A model for the topology optimization problem was presented.
> Improvements of the solving performance of SCIP were obtained by

» computing primal solutions heuristically,
» pruning convex subproblems manually,
» adding valid inequalities.

> The presented adaptations of the MINLP solver SCIP allow to improve the solving
performance of large scale network operation and expansion instances.

> The methods are used by our cooperation partner.
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