
Introduction to the SCIP Optimization Suite

Matthias Miltenberger

Zuse Institute Berlin

28th September 2015

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 1 / 39

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 2 / 39

SCIP Optimization Suite

I toolbox for generating and solving constraint integer programs
I free for academic use, available in source code

ZIMPL
I model and generate LPs, MIPs, and MINLPs

SCIP
I MIP, MINLP and CIP solver, branch-cut-and-price framework

SoPlex
I revised primal and dual simplex algorithm

GCG
I generic branch-cut-and-price solver

UG
I framework for parallelization of MIP and MINLP solvers

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 3 / 39

SCIP (Solving Constraint Integer Programs)

I is a branch-cut-and-price framework,
I is constraint based,
I incorporates

. CP features (domain propagation),

. MIP features (cutting planes, LP
relaxation),

. SAT-solving features (conflict analysis,
restarts), and

. MINLP features (expression trees, convex
underestimators)

I has a modular structure via plugins,
I provides a full-scale MIP and MINLP solver,
I is free for academic purposes
I has just been released in its new version 3.2

SCIP Primal
Heuristic

actcons
diving

clique

coef
diving

cross
over

dins

dist.
diving

dualval

feaspump fixand
infer

fracdiving

guided
diving

indicator

intdiving

int
shifting

linesearch
diving

local
branching

mutation

objpscost
diving

octane

ofins

oneopt

proximity

pscost
diving

rens

reopt
sols

random
rounding

rins

rootsol
divingrounding

shift&
prop

shifting

simple
rounding

subnlp

trivial

trivial
negation

trysol

twoopt under
cover

vbound

veclen
diving

zi round

zero
objective

Event

Expr.
Interpr.

CppAD

Separator

cgmip

clique

close
cuts

cmir

disju
nctive

eccuts

flow
cover gomory

implied
bounds

intobj

mcf

odd
cycle

rapid
learn

strong
cg

zero
half

· · ·

Reader

bnd

ccg

cip

cnf

fix

fzn

gms
lp

mps

opb

osil

pip

ppm

pbm

rlp

sol

wbo
zpl

Pricer

Branch

allfull
strong

cloud

full
strong

infer
enceleastinf

mostinf

mult
aggr

node
reopt

pscost

random
relps
cost

NLP

ipopt

Relax

Constraint
Handler

abs
power

and

bivar
iate

bound
disjunc.

conjunc
tion

count
sols

cumu
lative

disjunc
tion

indi
cator

integral

knap
sack

linear

linking

logicor

non
linear

or
orbi
tope

pseudo
boolean

quad
ratic

setppc

soc

sos1

sos2

super
indicator

var
bound

xor

Conflict

Tree

LP

clp

cpx

grb

msk

none

qso
spx

spx2

xprs

Node
selector

bfs

breadth
first

dfs

esti
mate

hybrid
estim

restart
dfs

uct

Propa
gator

dualfix
gen

vbound

obbt

probing

pseudo
obj

redcost

root
redcost

vbound

Impli
cations

Presolver

bound
shift

comp
onents

convert
int

domcol

dual
agg

dual
infer

gate
extractimplics

intto
binary

redvub

stuffing

trivial

tworow
bnd

Cutpool

Dialog

default

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 4 / 39

Fastest MIP solver available in Source Code

solved
(of 87)

0

1000

2000

3000

4000

ti
m
e
in

se
co

n
d
s

23

5.82x

36

4.31x

29

4.35x

48

3.60x

51

2.92x

58

2.26x

63

1.89x

67

1.54x

65

1.44x

67

1.24x

70

1.00x

SCIP 0.7 – SoPlex 1.2.2
SCIP 0.8 – SoPlex 1.2.2
SCIP 0.9 – SoPlex 1.3.0
SCIP 1.0 – SoPlex 1.3.2
SCIP 1.1 – SoPlex 1.4.0
SCIP 1.2 – SoPlex 1.4.2
SCIP 2.0 – SoPlex 1.5.0
SCIP 2.1 – SoPlex 1.6.0
SCIP 3.0 – SoPlex 1.7.0
SCIP 3.1 – SoPlex 2.0.0
SCIP 3.2 – SoPlex 2.2.0

Benchmark results from Hans Mittelmann, http://plato.asu.edu/ftp/milpc
Matthias Miltenberger – Introduction to the SCIP Optimization Suite 5 / 39

http://plato.asu.edu/ftp/milpc

Some facts about SCIP

I documentation and guidelines
. more than 450 000 lines of C code, 20% documentation

with 30 000 assertions and 4 000 debug messages
. HowTos: plugin types, debugging, automatic testing
. 9 examples and 4 applications illustrating the use of SCIP
. active mailing list scip@zib.de (300 members)

I interface and usability
. user-friendly interactive shell
. interfaces to AMPL, GAMS, ZIMPL, MATLAB, Python and Java
. C++ wrapper classes
. LP solvers: CLP, CPLEX, Gurobi, MOSEK, QSopt, SoPlex, Xpress
. over 1 600 parameters and 15 emphasis settings

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 6 / 39

The SCIP Community
I 27 active developers

. 4 running Bachelor and Master projects

. 15 running PhD projects

. 8 postdocs and professors
I 4 development centers in Germany

. Aachen: GCG

. Berlin: SCIP, SoPlex, UG, ZIMPL

. Darmstadt: SCIP and SCIP-SDP

. Erlangen-Nürnberg: SCIP
I many international contributors and users

. more than 8 000 downloads per year from over 100 countries
I careers

. 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV

. 7 former developers are now building commercial optimization
software at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 7 / 39

8 000 Downloads from more than 100 Countries

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 8 / 39

UG – Ubiquity Generator

UG	
 framework	

Using	
 API	
 to	
 control	
 	

solving	
 algorithms	

	

	

	

Using	
 API	
 to	
 control	
 	

solving	
 algorithms	

	

	

	

Using	
 API	
 to	
 control	
 	

solving	
 algorithms	

	

	

	

Base	
 solver	
 Base	
 solver	
 Base	
 solver	

Using	
 MPI	
 or	
 pthreads	

for	
 communica7ons	

Using	
 MPI	
 or	
 pthreads	

for	
 communica7ons	

Using	
 MPI	
 or	
 pthreads	

for	
 communica7ons	

shared	
 memory	

ug[SCIP,	
 pthreads]	

(FiberSCIP)	

Loads	
 are	
 coordinated	
 by	
 a	
 special	
 process	
 or	
 thread	
 	
 	
 	
 	
 	
 	
 	
 	
 Base	
 solver	

I/O	
 ,	
 presolve	

distributed	
 memory	

ug[SCIP,	
 MPI]	

(ParaSCIP)	

Parallel	
 Solver	

Instan8a8on	

Regularly,	
 run	
 on	
 HLRN	
 III	
 over	
 43,000	
 cores	
 	
 	

Run	
 on	
 TITAN	
 at	
 ORNL	
 up	
 to	
 80,000	
 cores	

Run	
 on	
 PC	

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 9 / 39

GCG – Generic Column Generation

I Goal of GCG:
. extend branch-cut-and-price

framework SCIP to generic solver
. based on Dantzig-Wolfe

decomposition
. easy use of branch-cut-and-price

I How does it work?
. structure of problem provided or detected
. pricing problems solved as general MIPs

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 10 / 39

SoPlex – Sequential object-oriented simplex

I implementation of the revised simplex algorithm
I primal and dual solving routines for linear programs
I iterative refinement to overcome numerical problems

. fast and accurate solutions by repeated floating-point solves

max

max

P


max cT x
s. t. Ax = b

x ≥ 0

max ∆dual ĉT x

s. t. Ax = ∆primb̂
x ≥ −∆primx̂

 P̂

x 7→ ∆prim(x − x̂)

y 7→ ∆dual(y − ŷ)

x 7→ x/∆prim + x̂

y 7→ y/∆dual + ŷ

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 11 / 39

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 12 / 39

Most basic Linux commands

I SCIP is a command line tool:
. no GUI (graphical user interface)
. completely controlled from the console

I some Linux console commands:
cd <dir> change current directory/navigate through directories

cd .. move one directory up
ls list contents of current directory

rm <file> delete <file>
cp <f1> <f2> copy <f1> to <f2>

less <file> show contents of <file> (for text files, q to quit)
./<binary> execute file <binary>

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 13 / 39

Installing SCIP

basic requirements:
I C/C++ compiler
I LP solver

I everything you need for a basic installation is contained in the
SCIP Optimization Suite

I extract the package and type make:
1. tar -xvf scipoptsuite-3.2.0.tgz
2. make

I will most likely not work on a standard Linux installation...
I additional packages/third-party software is required to fully enjoy SCIP
I carefully read the error messages to see what is missing

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 14 / 39

Installing SCIP

basic requirements:
I C/C++ compiler
I LP solver

I everything you need for a basic installation is contained in the
SCIP Optimization Suite

I extract the package and type make:
1. tar -xvf scipoptsuite-3.2.0.tgz
2. make

I will most likely not work on a standard Linux installation...
I additional packages/third-party software is required to fully enjoy SCIP
I carefully read the error messages to see what is missing

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 14 / 39

Third party software

I ZLIB
. necessary to load compressed problem files

I Readline
. comfortable interactive shell (tab-completion, command history, ...)

I GMP
. Gnu Multiple Precision library
. allows for higher precision arithmetic

I ncurses
. necessary for output formatting

I ...

I You need the respective developer versions, indicated by -devel or
-dev in your favorite package manager!

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 15 / 39

Alternative

What if you cannot install a package?

I most features can be disabled to solve installation problems:
. make ZLIB=false
. make READLINE=false
. make GMP=false

I ZIMPL has additional requirements: bison, flex
I in case you cannot install ZIMPL:
make ZIMPL=false

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 16 / 39

... even more options

I SCIP supports several different LP solvers:

SoPlex (default): make LPS=spx
IBM CPLEX: make LPS=cpx
FICO Xpress: make LPS=xprs
Gurobi: make LPS=grb
CoinOR CLP: make LPS=clp
Mosek: make LPS=msk
QSopt: make LPS=qso
improved SoPlex interface: make LPS=spx2

I for MINLP we recommend you install and use Ipopt
. make IPOPT=true
. a working installation of Ipopt is required (not covered here)

I give your binary a descriptive name:
. make VERSION=awesome-new-feature
. defaults to the current version number

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 17 / 39

Debugging with SCIP

SCIP can be compiled and run in debug mode
I 30 000 asserts will be checked
I additional checks will be performed
I more warnings may be printed
I debug information is available for gdb
I slower than the optimized mode (OPT=opt)
I useful when writing new code and when hunting for bugs

I make OPT=dbg

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 18 / 39

Examples/Applications contained in SCIP

I show how SCIP can be used and
provide starting points for future developments

I examples:
. Branch-and-Price
. Branch-and-Cut
. Callable Library
. ...

I applications:
. Coloring
. Scheduler
. Multi-objective Optimization
. Steiner Tree Problem

I every example/application has its own Makefile
I go to examples/ or applications/ and type make
I code usually relies on a compiled main SCIP

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 19 / 39

Beyond SCIP...

I GCG, a generic column generation solver, can be compiled with
make gcg
. relies on bliss – for graph computations

I UG, the parallelization framework, can be compiled with
make ug
. default is to build FiberSCIP, a shared memory parallel SCIP

extension

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 20 / 39

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 21 / 39

How to use the shell

I navigate to your SCIP installation: cd projects/scip
I start SCIP: ./bin/scip

(when installed globally just type: scip)
I display available commands: help
I commands in <...> open a new set of commands

. press to return to home menu
I commands can be shortened, but need to be unique:

e.g. o[ptimize] or q[uit]
I cycle through previous commands with and
I Tab completion (), e.g. for finding files quickly, is also available

(requires the readline package)

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 22 / 39

SCIP as a shell program

I run ./bin/scip --help to see available options

I example:
./bin/scip -s fast.set -f mip.lp -l out.log

I all commands from the interactive shell can be chained together in one
call with -c:
./bin/scip -c "read mip.lp opt disp stat q"

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 23 / 39

Modifying the Output

I customize (almost) everything with SCIP> set display

freq in-/decrease frequency of node information line
lpinfo enable output of LP solver

verblevel change overall verbosity
adjust which columns to display/hide
...

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 24 / 39

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 25 / 39

Parameters

I parameter tuning is very important to achieve maximal performance
I SCIP has more than 1 600 parameters

I changing one setting may have unforeseen side effects
I trial and error is often unavoidable

Good news:
I SCIP’s default settings are already pretty good!
I SCIP has several emphasis/meta settings to simplify tuning

(these will modify multiple parameters at once)
. SCIP> set presol emph {off|fast|aggressive}
. SCIP> set heur emph {off|fast|aggressive}
. SCIP> set sepa emph {off|fast|aggressive}
. SCIP> set emphasis ... → next slide

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 26 / 39

Parameters

I parameter tuning is very important to achieve maximal performance
I SCIP has more than 1 600 parameters
I changing one setting may have unforeseen side effects
I trial and error is often unavoidable

Good news:
I SCIP’s default settings are already pretty good!
I SCIP has several emphasis/meta settings to simplify tuning

(these will modify multiple parameters at once)
. SCIP> set presol emph {off|fast|aggressive}
. SCIP> set heur emph {off|fast|aggressive}
. SCIP> set sepa emph {off|fast|aggressive}
. SCIP> set emphasis ... → next slide

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 26 / 39

Parameters

I parameter tuning is very important to achieve maximal performance
I SCIP has more than 1 600 parameters
I changing one setting may have unforeseen side effects
I trial and error is often unavoidable

Good news:
I SCIP’s default settings are already pretty good!
I SCIP has several emphasis/meta settings to simplify tuning

(these will modify multiple parameters at once)
. SCIP> set presol emph {off|fast|aggressive}
. SCIP> set heur emph {off|fast|aggressive}
. SCIP> set sepa emph {off|fast|aggressive}
. SCIP> set emphasis ... → next slide

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 26 / 39

Emphasis Settings

I SCIP> set emphasis ...

feasibility for finding feasible solutions quickly
optimality focus on proving optimality

easycip for small and easy problems
hardlp avoid solving many LP relaxations

cpsolver rely on CP techniques instead of MIP
counter for counting all feasible solutions

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 27 / 39

Analyzing a Run

I most important tool is the statistics output:
SCIP> display statistics

I running times of (almost) all components can be compared

How to use the information?
I Check for long running heuristics that don’t find a solution!
I Are cut generators too costly or are more cuts necessary to increase

the dual bound?
I ...

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 28 / 39

Working with Settings Files

I SCIP can save the current settings to a file:
. either all of them: SCIP> set save <file.set>
. or only the modified ones: SCIP> set diffsave <file.set>

I load a settings file:
. SCIP> set load <file.set>

I settings files can also be modified by hand
I if a file called scip.set is present in SCIP’s home directory, it is

automatically loaded

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 29 / 39

Demo

Customizing Parameters

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 30 / 39

Example: Presolving

I SCIP> read check/instances/MIP/bell5.mps
(models a fiber optic design network)

I disable presolving and compare with default
I SCIP> set presol emph off

I presolving reduces the problem size
I smaller problems are usually easier to solve

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 31 / 39

Example: Presolving

I SCIP> read check/instances/MIP/bell5.mps
(models a fiber optic design network)

I disable presolving and compare with default
I SCIP> set presol emph off

I presolving reduces the problem size
I smaller problems are usually easier to solve

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 31 / 39

Example: Node Selection

I SCIP> read check/instances/MIP/dcmulti.mps
(models multi-period facility location problem)

I try different rules, e.g. depth-first search and breadth-first-search
I SCIP> set nodesel dfs stdprio 1000000
I SCIP> set nodesel breadthfirst stdprio 1000000

I node selection rules
. determine the order of open node processing
. influence when solutions are found and how many nodes are needed

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 32 / 39

Example: Node Selection

I SCIP> read check/instances/MIP/dcmulti.mps
(models multi-period facility location problem)

I try different rules, e.g. depth-first search and breadth-first-search
I SCIP> set nodesel dfs stdprio 1000000
I SCIP> set nodesel breadthfirst stdprio 1000000

I node selection rules
. determine the order of open node processing
. influence when solutions are found and how many nodes are needed

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 32 / 39

Example: Separating

I SCIP> read check/instances/MIP/gt2.mps
(models truck routing problem)

I disable separation and compare with default

I cutting planes help to improve the dual bound
I Generating too many cuts can be costly!

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 33 / 39

Example: Separating

I SCIP> read check/instances/MIP/gt2.mps
(models truck routing problem)

I disable separation and compare with default

I cutting planes help to improve the dual bound
I Generating too many cuts can be costly!

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 33 / 39

Example: Branching

I SCIP> read check/instances/MIP/enigma.mps
I try different rules and find one that needs 50% more/less nodes than

default
I SCIP> set branching leastinf prio 1000000
I branching rules determine on which fractional variable to branch

I leastinf branching is very bad
I fullstrong branching is very good

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 34 / 39

Example: Branching

I SCIP> read check/instances/MIP/enigma.mps
I try different rules and find one that needs 50% more/less nodes than

default
I SCIP> set branching leastinf prio 1000000
I branching rules determine on which fractional variable to branch

I leastinf branching is very bad
I fullstrong branching is very good

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 34 / 39

Introduction to the SCIP Optimization Suite

Overview and Introduction

Compiling SCIP

Interactive Shell

Customizing Parameters

Testing Environment

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 35 / 39

Testing Environment

I SCIP package provides many scripts to make testing easy

I general setup:
. set of instances put together in a test set:
check/testset/short.test

. verify solution values:
check/testset/short.solu (optional)

. run SCIP on the entire test set:
(use the same options as for compiling)
make test TEST=short

. test non-default parameters:
make test TEST=short SETTINGS=heuristics-off

. use the interactive shell to create a new settings file

. settings file needs to be placed in settings/

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 36 / 39

Default Values

TEST = short
OPT = opt

SETTINGS = default
VERSION = 3.2.0

LPS = spx
GMP = true

ZIMPL = true
READLINE = true

ZLIB = true
IPOPT = false
TIME = 3600 (sec)
MEM = 6144 (MB)

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 37 / 39

Output of a single test run

I .out file:
concatenation of all logfiles

I .err file:
concatenation of all occured errors/warnings

I .set file:
copy of the used settings

I .res file:
concise summary of test run

I .tex file:
LATEX table of results

I .pav file:
machine readable table of results

I all files are stored in check/results/:
check.short.scip-3.2.0.linux.x86_64.gnu.opt.spx.opt49.default.out

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 38 / 39

Compare multiple runs

I multiple runs over the same test set can be compared
I use check/allcmpres.sh:

1. cd check
2. ./allcmpres.sh results/check.1.res results/check.2.res

I more than two result files can be compared
I typical use cases:

. compare different settings

. compare different versions

. ...

Matthias Miltenberger – Introduction to the SCIP Optimization Suite 39 / 39

	Overview and Introduction
	Compiling SCIP
	Interactive Shell
	Customizing Parameters
	Testing Environment

